예제 #1
0
static void TestObjectSerializationNoAlign(T* testObj, skiatest::Reporter* reporter) {
    SkBinaryWriteBuffer writer;
    SerializationUtils<T>::Write(writer, testObj);
    size_t bytesWritten = writer.bytesWritten();
    REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);

    unsigned char dataWritten[1024];
    writer.writeToMemory(dataWritten);

    SerializationTestUtils<T, testInvalid>::InvalidateData(dataWritten);

    // Make sure this fails when it should (test with smaller size, but still multiple of 4)
    SkReadBuffer buffer(dataWritten, bytesWritten - 4);
    T obj;
    SerializationUtils<T>::Read(buffer, &obj);
    REPORTER_ASSERT(reporter, !buffer.isValid());

    // Make sure this succeeds when it should
    SkReadBuffer buffer2(dataWritten, bytesWritten);
    size_t offsetBefore = buffer2.offset();
    T obj2;
    SerializationUtils<T>::Read(buffer2, &obj2);
    size_t offsetAfter = buffer2.offset();
    // This should have succeeded, since there are enough bytes to read this
    REPORTER_ASSERT(reporter, buffer2.isValid() == !testInvalid);
    // Note: This following test should always succeed, regardless of whether the buffer is valid,
    // since if it is invalid, it will simply skip to the end, as if it had read the whole buffer.
    REPORTER_ASSERT(reporter, offsetAfter - offsetBefore == bytesWritten);
}
sk_sp<SkData> SkFlattenable::serialize(const SkSerialProcs* procs) const {
    SkBinaryWriteBuffer writer;
    if (procs) {
        writer.setSerialProcs(*procs);
    }
    writer.writeFlattenable(this);
    size_t size = writer.bytesWritten();
    auto data = SkData::MakeUninitialized(size);
    writer.writeToMemory(data->writable_data());
    return data;
}
예제 #3
0
static sk_sp<SkColorFilter> reincarnate_colorfilter(SkFlattenable* obj) {
    SkBinaryWriteBuffer wb;
    wb.writeFlattenable(obj);

    size_t size = wb.bytesWritten();
    SkAutoSMalloc<1024> storage(size);
    // make a copy into storage
    wb.writeToMemory(storage.get());

    SkReadBuffer rb(storage.get(), size);
    return rb.readColorFilter();
}
DEF_TEST(FlattenDrawable, r) {
    // Create and serialize the test drawable
    sk_sp<SkDrawable> drawable(new IntDrawable(1, 2, 3, 4));
    SkPaint paint;
    paint.setColor(SK_ColorBLUE);
    sk_sp<RootDrawable> root(new RootDrawable(5, 6, 7, 8, paint, 9, 10, 11, 12, drawable.get()));
    SkBinaryWriteBuffer writeBuffer;
    writeBuffer.writeFlattenable(root.get());

    // Copy the contents of the write buffer into a read buffer
    sk_sp<SkData> data = SkData::MakeUninitialized(writeBuffer.bytesWritten());
    writeBuffer.writeToMemory(data->writable_data());
    SkReadBuffer readBuffer(data->data(), data->size());
    register_test_drawables(readBuffer);

    // Deserialize and verify the drawable
    sk_sp<SkDrawable> out((SkDrawable*)readBuffer.readFlattenable(SkFlattenable::kSkDrawable_Type));
    REPORTER_ASSERT(r, out);
    REPORTER_ASSERT(r, !strcmp("RootDrawable", out->getTypeName()));

    RootDrawable* rootOut = (RootDrawable*) out.get();
    REPORTER_ASSERT(r, 5 == rootOut->compoundDrawable()->intDrawable()->a());
    REPORTER_ASSERT(r, 6 == rootOut->compoundDrawable()->intDrawable()->b());
    REPORTER_ASSERT(r, 7 == rootOut->compoundDrawable()->intDrawable()->c());
    REPORTER_ASSERT(r, 8 == rootOut->compoundDrawable()->intDrawable()->d());
    REPORTER_ASSERT(r, SK_ColorBLUE ==
            rootOut->compoundDrawable()->paintDrawable()->paint().getColor());
    REPORTER_ASSERT(r, 9 == rootOut->intDrawable()->a());
    REPORTER_ASSERT(r, 10 == rootOut->intDrawable()->b());
    REPORTER_ASSERT(r, 11 == rootOut->intDrawable()->c());
    REPORTER_ASSERT(r, 12 == rootOut->intDrawable()->d());

    // Note that we can still recognize the generic drawable as an IntDrawable
    SkDrawable* generic = rootOut->drawable();
    REPORTER_ASSERT(r, !strcmp("IntDrawable", generic->getTypeName()));
    IntDrawable* integer = (IntDrawable*) generic;
    REPORTER_ASSERT(r, 1 == integer->a());
    REPORTER_ASSERT(r, 2 == integer->b());
    REPORTER_ASSERT(r, 3 == integer->c());
    REPORTER_ASSERT(r, 4 == integer->d());
}
DEF_TEST(FlattenRecordedDrawable, r) {
    // Record a set of canvas draw commands
    SkPictureRecorder recorder;
    SkCanvas* canvas = recorder.beginRecording(1000.0f, 1000.0f);
    SkPaint paint;
    paint.setColor(SK_ColorGREEN);
    canvas->drawPoint(42.0f, 17.0f, paint);
    paint.setColor(SK_ColorRED);
    canvas->drawPaint(paint);
    SkPaint textPaint;
    textPaint.setColor(SK_ColorBLUE);
    canvas->drawString("TEXT", 467.0f, 100.0f, textPaint);

    // Draw some drawables as well
    sk_sp<SkDrawable> drawable(new IntDrawable(1, 2, 3, 4));
    sk_sp<RootDrawable> root(new RootDrawable(5, 6, 7, 8, paint, 9, 10, 11, 12, drawable.get()));
    canvas->drawDrawable(root.get(), 747.0f, 242.0f);
    sk_sp<PaintDrawable> paintDrawable(new PaintDrawable(paint));
    canvas->drawDrawable(paintDrawable.get(), 500.0, 500.0f);
    sk_sp<CompoundDrawable> comDrawable(new CompoundDrawable(13, 14, 15, 16, textPaint));
    canvas->drawDrawable(comDrawable.get(), 10.0f, 10.0f);

    // Serialize the recorded drawable
    sk_sp<SkDrawable> recordedDrawable = recorder.finishRecordingAsDrawable();
    SkBinaryWriteBuffer writeBuffer;
    writeBuffer.writeFlattenable(recordedDrawable.get());

    // Copy the contents of the write buffer into a read buffer
    sk_sp<SkData> data = SkData::MakeUninitialized(writeBuffer.bytesWritten());
    writeBuffer.writeToMemory(data->writable_data());
    SkReadBuffer readBuffer(data->data(), data->size());
    register_test_drawables(readBuffer);

    // Deserialize and verify the drawable
    sk_sp<SkDrawable> out((SkDrawable*)readBuffer.readFlattenable(SkFlattenable::kSkDrawable_Type));
    REPORTER_ASSERT(r, out);
    REPORTER_ASSERT(r, !strcmp("SkRecordedDrawable", out->getTypeName()));
}
예제 #6
0
static void TestArraySerialization(T* data, skiatest::Reporter* reporter) {
    SkBinaryWriteBuffer writer;
    SerializationUtils<T>::Write(writer, data, kArraySize);
    size_t bytesWritten = writer.bytesWritten();
    // This should write the length (in 4 bytes) and the array
    REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten);

    unsigned char dataWritten[2048];
    writer.writeToMemory(dataWritten);

    // Make sure this fails when it should
    SkReadBuffer buffer(dataWritten, bytesWritten);
    T dataRead[kArraySize];
    bool success = SerializationUtils<T>::Read(buffer, dataRead, kArraySize / 2);
    // This should have failed, since the provided size was too small
    REPORTER_ASSERT(reporter, !success);

    // Make sure this succeeds when it should
    SkReadBuffer buffer2(dataWritten, bytesWritten);
    success = SerializationUtils<T>::Read(buffer2, dataRead, kArraySize);
    // This should have succeeded, since there are enough bytes to read this
    REPORTER_ASSERT(reporter, success);
}
예제 #7
0
static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed,
                                       skiatest::Reporter* reporter) {
    SkBinaryWriteBuffer writer;
    SerializationUtils<T>::Write(writer, testObj);
    size_t bytesWritten = writer.bytesWritten();
    REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);

    SkASSERT(bytesWritten <= 4096);
    unsigned char dataWritten[4096];
    writer.writeToMemory(dataWritten);

    // Make sure this fails when it should (test with smaller size, but still multiple of 4)
    SkReadBuffer buffer(dataWritten, bytesWritten - 4);
    T* obj = nullptr;
    SerializationUtils<T>::Read(buffer, &obj);
    REPORTER_ASSERT(reporter, !buffer.isValid());
    REPORTER_ASSERT(reporter, nullptr == obj);

    // Make sure this succeeds when it should
    SkReadBuffer buffer2(dataWritten, bytesWritten);
    const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
    T* obj2 = nullptr;
    SerializationUtils<T>::Read(buffer2, &obj2);
    const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
    if (shouldSucceed) {
        // This should have succeeded, since there are enough bytes to read this
        REPORTER_ASSERT(reporter, buffer2.isValid());
        REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);
        REPORTER_ASSERT(reporter, obj2);
    } else {
        // If the deserialization was supposed to fail, make sure it did
        REPORTER_ASSERT(reporter, !buffer.isValid());
        REPORTER_ASSERT(reporter, nullptr == obj2);
    }

    return obj2; // Return object to perform further validity tests on it
}
DEF_TEST(UnflattenWithCustomFactory, r) {
    // Create and flatten the test flattenable
    SkBinaryWriteBuffer writeBuffer;
    sk_sp<SkFlattenable> flattenable1(new IntFlattenable(1, 2, 3, 4));
    writeBuffer.writeFlattenable(flattenable1.get());
    sk_sp<SkFlattenable> flattenable2(new IntFlattenable(2, 3, 4, 5));
    writeBuffer.writeFlattenable(flattenable2.get());
    sk_sp<SkFlattenable> flattenable3(new IntFlattenable(3, 4, 5, 6));
    writeBuffer.writeFlattenable(flattenable3.get());

    // Copy the contents of the write buffer into a read buffer
    sk_sp<SkData> data = SkData::MakeUninitialized(writeBuffer.bytesWritten());
    writeBuffer.writeToMemory(data->writable_data());
    SkReadBuffer readBuffer(data->data(), data->size());

    // Register a custom factory with the read buffer
    readBuffer.setCustomFactory(SkString("IntFlattenable"), &custom_create_proc);

    // Unflatten and verify the flattenables
    sk_sp<IntFlattenable> out1((IntFlattenable*) readBuffer.readFlattenable(
            SkFlattenable::kSkUnused_Type));
    REPORTER_ASSERT(r, out1);
    REPORTER_ASSERT(r, 2 == out1->a());
    REPORTER_ASSERT(r, 3 == out1->b());
    REPORTER_ASSERT(r, 4 == out1->c());
    REPORTER_ASSERT(r, 5 == out1->d());

    sk_sp<IntFlattenable> out2((IntFlattenable*) readBuffer.readFlattenable(
            SkFlattenable::kSkUnused_Type));
    REPORTER_ASSERT(r, out2);
    REPORTER_ASSERT(r, 3 == out2->a());
    REPORTER_ASSERT(r, 4 == out2->b());
    REPORTER_ASSERT(r, 5 == out2->c());
    REPORTER_ASSERT(r, 6 == out2->d());

    sk_sp<IntFlattenable> out3((IntFlattenable*) readBuffer.readFlattenable(
            SkFlattenable::kSkUnused_Type));
    REPORTER_ASSERT(r, out3);
    REPORTER_ASSERT(r, 4 == out3->a());
    REPORTER_ASSERT(r, 5 == out3->b());
    REPORTER_ASSERT(r, 6 == out3->c());
    REPORTER_ASSERT(r, 7 == out3->d());
}
예제 #9
0
DEF_TEST(Serialization, reporter) {
    // Test matrix serialization
    {
        SkMatrix matrix = SkMatrix::I();
        TestObjectSerialization(&matrix, reporter);
    }

    // Test path serialization
    {
        SkPath path;
        TestObjectSerialization(&path, reporter);
    }

    // Test region serialization
    {
        SkRegion region;
        TestObjectSerialization(&region, reporter);
    }

    // Test color filter serialization
    {
        TestColorFilterSerialization(reporter);
    }

    // Test string serialization
    {
        SkString string("string");
        TestObjectSerializationNoAlign<SkString, false>(&string, reporter);
        TestObjectSerializationNoAlign<SkString, true>(&string, reporter);
    }

    // Test rrect serialization
    {
        // SkRRect does not initialize anything.
        // An uninitialized SkRRect can be serialized,
        // but will branch on uninitialized data when deserialized.
        SkRRect rrect;
        SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30);
        SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} };
        rrect.setRectRadii(rect, corners);
        SerializationTest::TestAlignment(&rrect, reporter);
    }

    // Test readByteArray
    {
        unsigned char data[kArraySize] = { 1, 2, 3 };
        TestArraySerialization(data, reporter);
    }

    // Test readColorArray
    {
        SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED };
        TestArraySerialization(data, reporter);
    }

    // Test readColor4fArray
    {
        SkColor4f data[kArraySize] = {
            SkColor4f::FromColor(SK_ColorBLACK),
            SkColor4f::FromColor(SK_ColorWHITE),
            SkColor4f::FromColor(SK_ColorRED),
            { 1.f, 2.f, 4.f, 8.f }
        };
        TestArraySerialization(data, reporter);
    }

    // Test readIntArray
    {
        int32_t data[kArraySize] = { 1, 2, 4, 8 };
        TestArraySerialization(data, reporter);
    }

    // Test readPointArray
    {
        SkPoint data[kArraySize] = { {6, 7}, {42, 128} };
        TestArraySerialization(data, reporter);
    }

    // Test readScalarArray
    {
        SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax };
        TestArraySerialization(data, reporter);
    }

    // Test invalid deserializations
    {
        SkImageInfo info = SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize);

        SkBitmap validBitmap;
        validBitmap.setInfo(info);

        // Create a bitmap with a really large height
        SkBitmap invalidBitmap;
        invalidBitmap.setInfo(info.makeWH(info.width(), 1000000000));

        // The deserialization should succeed, and the rendering shouldn't crash,
        // even when the device fails to initialize, due to its size
        TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter);
    }

    // Test simple SkPicture serialization
    {
        SkPictureRecorder recorder;
        draw_something(recorder.beginRecording(SkIntToScalar(kBitmapSize),
                                               SkIntToScalar(kBitmapSize),
                                               nullptr, 0));
        sk_sp<SkPicture> pict(recorder.finishRecordingAsPicture());

        // Serialize picture
        SkBinaryWriteBuffer writer;
        pict->flatten(writer);
        size_t size = writer.bytesWritten();
        SkAutoTMalloc<unsigned char> data(size);
        writer.writeToMemory(static_cast<void*>(data.get()));

        // Deserialize picture
        SkReadBuffer reader(static_cast<void*>(data.get()), size);
        sk_sp<SkPicture> readPict(SkPicture::MakeFromBuffer(reader));
        REPORTER_ASSERT(reporter, reader.isValid());
        REPORTER_ASSERT(reporter, readPict.get());
    }

    TestPictureTypefaceSerialization(reporter);
}
예제 #10
0
DEF_TEST(Serialization, reporter) {
    // Test matrix serialization
    {
        SkMatrix matrix = SkMatrix::I();
        TestObjectSerialization(&matrix, reporter);
    }

    // Test path serialization
    {
        SkPath path;
        TestObjectSerialization(&path, reporter);
    }

    // Test region serialization
    {
        SkRegion region;
        TestObjectSerialization(&region, reporter);
    }

    // Test xfermode serialization
    {
        TestXfermodeSerialization(reporter);
    }

    // Test color filter serialization
    {
        TestColorFilterSerialization(reporter);
    }

    // Test string serialization
    {
        SkString string("string");
        TestObjectSerializationNoAlign<SkString, false>(&string, reporter);
        TestObjectSerializationNoAlign<SkString, true>(&string, reporter);
    }

    // Test rrect serialization
    {
        // SkRRect does not initialize anything.
        // An uninitialized SkRRect can be serialized,
        // but will branch on uninitialized data when deserialized.
        SkRRect rrect;
        SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30);
        SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} };
        rrect.setRectRadii(rect, corners);
        TestAlignment(&rrect, reporter);
    }

    // Test readByteArray
    {
        unsigned char data[kArraySize] = { 1, 2, 3 };
        TestArraySerialization(data, reporter);
    }

    // Test readColorArray
    {
        SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED };
        TestArraySerialization(data, reporter);
    }

    // Test readIntArray
    {
        int32_t data[kArraySize] = { 1, 2, 4, 8 };
        TestArraySerialization(data, reporter);
    }

    // Test readPointArray
    {
        SkPoint data[kArraySize] = { {6, 7}, {42, 128} };
        TestArraySerialization(data, reporter);
    }

    // Test readScalarArray
    {
        SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax };
        TestArraySerialization(data, reporter);
    }

    // Test invalid deserializations
    {
        SkImageInfo info = SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize);

        SkBitmap validBitmap;
        validBitmap.setInfo(info);

        // Create a bitmap with a really large height
        SkBitmap invalidBitmap;
        invalidBitmap.setInfo(info.makeWH(info.width(), 1000000000));

        // The deserialization should succeed, and the rendering shouldn't crash,
        // even when the device fails to initialize, due to its size
        TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter);
    }

    // Test simple SkPicture serialization
    {
        SkPictureRecorder recorder;
        draw_something(recorder.beginRecording(SkIntToScalar(kBitmapSize),
                                               SkIntToScalar(kBitmapSize),
                                               nullptr, 0));
        sk_sp<SkPicture> pict(recorder.finishRecordingAsPicture());

        // Serialize picture
        SkBinaryWriteBuffer writer;
        pict->flatten(writer);
        size_t size = writer.bytesWritten();
        SkAutoTMalloc<unsigned char> data(size);
        writer.writeToMemory(static_cast<void*>(data.get()));

        // Deserialize picture
        SkValidatingReadBuffer reader(static_cast<void*>(data.get()), size);
        sk_sp<SkPicture> readPict(SkPicture::MakeFromBuffer(reader));
        REPORTER_ASSERT(reporter, readPict.get());
    }

    TestPictureTypefaceSerialization(reporter);

    // Test SkLightingShader/NormalMapSource serialization
    {
        const int kTexSize = 2;

        SkLights::Builder builder;

        builder.add(SkLights::Light(SkColor3f::Make(1.0f, 1.0f, 1.0f),
                                    SkVector3::Make(1.0f, 0.0f, 0.0f)));
        builder.add(SkLights::Light(SkColor3f::Make(0.2f, 0.2f, 0.2f)));

        sk_sp<SkLights> fLights = builder.finish();

        SkBitmap diffuse = sk_tool_utils::create_checkerboard_bitmap(
                kTexSize, kTexSize,
                sk_tool_utils::color_to_565(0x0),
                sk_tool_utils::color_to_565(0xFF804020),
                8);

        SkRect bitmapBounds = SkRect::MakeIWH(diffuse.width(), diffuse.height());

        SkMatrix matrix;
        SkRect r = SkRect::MakeWH(SkIntToScalar(kTexSize), SkIntToScalar(kTexSize));
        matrix.setRectToRect(bitmapBounds, r, SkMatrix::kFill_ScaleToFit);

        SkMatrix ctm;
        ctm.setRotate(45);
        SkBitmap normals;
        normals.allocN32Pixels(kTexSize, kTexSize);

        sk_tool_utils::create_frustum_normal_map(&normals, SkIRect::MakeWH(kTexSize, kTexSize));
        sk_sp<SkShader> normalMap = SkShader::MakeBitmapShader(normals, SkShader::kClamp_TileMode,
                SkShader::kClamp_TileMode, &matrix);
        sk_sp<SkNormalSource> normalSource = SkNormalSource::MakeFromNormalMap(std::move(normalMap),
                                                                               ctm);
        sk_sp<SkShader> diffuseShader = SkShader::MakeBitmapShader(diffuse,
                SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &matrix);

        sk_sp<SkShader> lightingShader = SkLightingShader::Make(diffuseShader,
                                                                normalSource,
                                                                fLights);
        SkAutoTUnref<SkShader>(TestFlattenableSerialization(lightingShader.get(), true, reporter));

        lightingShader = SkLightingShader::Make(std::move(diffuseShader),
                                                nullptr,
                                                fLights);
        SkAutoTUnref<SkShader>(TestFlattenableSerialization(lightingShader.get(), true, reporter));

        lightingShader = SkLightingShader::Make(nullptr,
                                                std::move(normalSource),
                                                fLights);
        SkAutoTUnref<SkShader>(TestFlattenableSerialization(lightingShader.get(), true, reporter));

        lightingShader = SkLightingShader::Make(nullptr,
                                                nullptr,
                                                fLights);
        SkAutoTUnref<SkShader>(TestFlattenableSerialization(lightingShader.get(), true, reporter));
    }

    // Test NormalBevelSource serialization
    {
        sk_sp<SkNormalSource> bevelSource = SkNormalSource::MakeBevel(
                SkNormalSource::BevelType::kLinear, 2.0f, 5.0f);

        SkAutoTUnref<SkNormalSource>(TestFlattenableSerialization(bevelSource.get(), true,
                                                                  reporter));
        // TODO test equality?

    }
}