SolutionSet *MOCHC::rankingAndCrowdingSelection(SolutionSet * pop, int size) { SolutionSet *result = new SolutionSet(size); // Ranking the union Ranking * ranking = new Ranking(pop); Distance * distance = new Distance(); int remain = size; int index = 0; SolutionSet * front = NULL; // Obtain the next front front = ranking->getSubfront(index); while ((remain > 0) && (remain >= front->size())) { //Assign crowding distance to individuals distance->crowdingDistanceAssignment(front, problem_->getNumberOfObjectives()); //Add the individuals of this front for (int k = 0; k < front->size(); k++) { result->add(new Solution(front->get(k))); } // for //Decrement remain remain = remain - front->size(); //Obtain the next front index++; if (remain > 0) { front = ranking->getSubfront(index); } // if } // while // Remain is less than front(index).size, insert only the best one if (remain > 0) { // front contains individuals to insert distance->crowdingDistanceAssignment(front, problem_->getNumberOfObjectives()); Comparator * c = new CrowdingComparator(); front->sort(c); delete c; for (int k = 0; k < remain; k++) { result->add(new Solution(front->get(k))); } // for remain = 0; } // if delete ranking; delete distance; return result; }
/** * Assigns crowding distances to all solutions in a <code>SolutionSet</code>. * @param solutionSet The <code>SolutionSet</code>. * @param nObjs Number of objectives. */ void Distance::crowdingDistanceAssignment(SolutionSet * solutionSet, int nObjs) { int size = solutionSet->size(); if (size == 0) return; if (size == 1) { solutionSet->get(0)->setCrowdingDistance(std::numeric_limits<double>::max()); return; } // if if (size == 2) { solutionSet->get(0)->setCrowdingDistance(std::numeric_limits<double>::max()); solutionSet->get(1)->setCrowdingDistance(std::numeric_limits<double>::max()); return; } // if //Use a new SolutionSet to evite alter original solutionSet SolutionSet * front = new SolutionSet(size); for (int i = 0; i < size; i++){ front->add(solutionSet->get(i)); } for (int i = 0; i < size; i++) front->get(i)->setCrowdingDistance(0.0); double objetiveMaxn; double objetiveMinn; double distance; for (int i = 0; i<nObjs; i++) { // Sort the population by Obj n Comparator * c = new ObjectiveComparator(i); front->sort(c); delete c; objetiveMinn = front->get(0)->getObjective(i); objetiveMaxn = front->get(front->size()-1)->getObjective(i); //Set de crowding distance front->get(0)->setCrowdingDistance(std::numeric_limits<double>::max()); front->get(size-1)->setCrowdingDistance(std::numeric_limits<double>::max()); for (int j = 1; j < size-1; j++) { distance = front->get(j+1)->getObjective(i) - front->get(j-1)->getObjective(i); distance = distance / (objetiveMaxn - objetiveMinn); distance += front->get(j)->getCrowdingDistance(); front->get(j)->setCrowdingDistance(distance); } // for } // for front->clear(); delete front; } // crowdingDistanceAssignment
SolutionSet *PhyloMOCHC::execute() { int populationSize; int iterations; int maxEvaluations; int convergenceValue; int minimumDistance; int evaluations; int IntervalOptSubsModel; double preservedPopulation; double initialConvergenceCount; bool condition = false; SolutionSet *solutionSet, *offSpringPopulation, *newPopulation; Comparator * crowdingComparator = new CrowdingComparator(); SolutionSet * population; SolutionSet * offspringPopulation; SolutionSet * unionSolution; Operator * cataclysmicMutation; Operator * crossover; Operator * parentSelection; //Read the parameters populationSize = *(int *) getInputParameter("populationSize"); maxEvaluations = *(int *) getInputParameter("maxEvaluations"); IntervalOptSubsModel = *(int *) getInputParameter("intervalupdateparameters"); convergenceValue = *(int *) getInputParameter("convergenceValue"); initialConvergenceCount = *(double *)getInputParameter("initialConvergenceCount"); preservedPopulation = *(double *)getInputParameter("preservedPopulation"); //Read the operators cataclysmicMutation = operators_["mutation"]; crossover = operators_["crossover"]; parentSelection = operators_["selection"]; iterations = 0; evaluations = 0; // calculating the maximum problem sizes .... int size = 0; Solution * sol = new Solution(problem_); PhyloTree *Pt1 = (PhyloTree *)sol->getDecisionVariables()[0]; TreeTemplate<Node> * tree1 = Pt1->getTree(); BipartitionList* bipL1 = new BipartitionList(*tree1, true); bipL1->removeTrivialBipartitions(); size = bipL1->getNumberOfBipartitions() * 2; delete bipL1; delete sol; minimumDistance = (int) std::floor(initialConvergenceCount*size); cout << "Minimun Distance " << minimumDistance << endl; // Create the initial solutionSet Solution * newSolution; ApplicationTools::displayTask("Initial Population", true); population = new SolutionSet(populationSize); Phylogeny * p = (Phylogeny *) problem_; for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); if(p->StartingOptRamas){ p->BranchLengthOptimization(newSolution,p->StartingMetodoOptRamas,p->StartingNumIterOptRamas,p->StartingTolerenciaOptRamas); } if(p->OptimizacionSubstModel){ p->OptimizarParamModeloSust(newSolution); } problem_->evaluate(newSolution); problem_->evaluateConstraints(newSolution); evaluations++; population->add(newSolution); } //for ApplicationTools::displayTaskDone(); while (!condition) { cout << "Evaluating " << evaluations << endl; offSpringPopulation = new SolutionSet(populationSize); Solution **parents = new Solution*[2]; for (int i = 0; i < population->size()/2; i++) { parents[0] = (Solution *) (parentSelection->execute(population)); parents[1] = (Solution *) (parentSelection->execute(population)); if (RFDistance(parents[0],parents[1])>= minimumDistance) { Solution ** offSpring = (Solution **) (crossover->execute(parents)); ((Phylogeny *)problem_)->Optimization(offSpring[0]); //Optimize and update the scores (Evaluate OffSpring) ((Phylogeny *)problem_)->Optimization(offSpring[1]); /*problem_->evaluate(offSpring[0]); problem_->evaluateConstraints(offSpring[0]); problem_->evaluate(offSpring[1]); problem_->evaluateConstraints(offSpring[1]);*/ evaluations+=2; offSpringPopulation->add(offSpring[0]); offSpringPopulation->add(offSpring[1]); delete[] offSpring; } } SolutionSet *join = population->join(offSpringPopulation); delete offSpringPopulation; newPopulation = rankingAndCrowdingSelection(join,populationSize); delete join; if (equals(*population,*newPopulation)) { minimumDistance--; } if (minimumDistance <= -convergenceValue) { minimumDistance = (int) (1.0/size * (1-1.0/size) * size); int preserve = (int) std::floor(preservedPopulation*populationSize); newPopulation->clear(); population->sort(crowdingComparator); for (int i = 0; i < preserve; i++) { newPopulation->add(new Solution(population->get(i))); } for (int i = preserve; i < populationSize; i++) { Solution * solution = new Solution(population->get(i)); cataclysmicMutation->execute(solution); problem_->evaluate(solution); problem_->evaluateConstraints(solution); newPopulation->add(solution); } } //Update Interval if(evaluations%IntervalOptSubsModel==0 and IntervalOptSubsModel > 0){ Solution * sol; double Lk; Phylogeny * p = (Phylogeny*) problem_; cout << "Updating and Optimizing Parameters.." << endl; for(int i=0; i<newPopulation->size(); i++){ sol = newPopulation->get(i); Lk= p->BranchLengthOptimization(sol,p->OptimizationMetodoOptRamas,p->OptimizationNumIterOptRamas,p->OptimizationTolerenciaOptRamas); sol->setObjective(1,Lk*-1); } cout << "Update Interval Done!!" << endl; } iterations++; delete population; population = newPopulation; if (evaluations >= maxEvaluations) { condition = true; } } return population; }
/* * Runs the ssNSGA-II algorithm. * @return a <code>SolutionSet</code> that is a set of non dominated solutions * as a result of the algorithm execution */ SolutionSet * ssNSGAII::execute() { int populationSize; int maxEvaluations; int evaluations; int IntervalOptSubsModel; // TODO: QualityIndicator indicators; // QualityIndicator object int requiredEvaluations; // Use in the example of use of the // indicators object (see below) SolutionSet * population; SolutionSet * offspringPopulation; SolutionSet * unionSolution; Operator * mutationOperator; Operator * crossoverOperator; Operator * selectionOperator; Distance * distance = new Distance(); //Read the parameters populationSize = *(int *) getInputParameter("populationSize"); maxEvaluations = *(int *) getInputParameter("maxEvaluations"); IntervalOptSubsModel = *(int *) getInputParameter("intervalupdateparameters"); // TODO: indicators = (QualityIndicator) getInputParameter("indicators"); //Initialize the variables population = new SolutionSet(populationSize); evaluations = 0; requiredEvaluations = 0; //Read the operators mutationOperator = operators_["mutation"]; crossoverOperator = operators_["crossover"]; selectionOperator = operators_["selection"]; ApplicationTools::displayTask("Initial Population", true); // Create the initial solutionSet Solution * newSolution; Phylogeny * p = (Phylogeny *) problem_; for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); if(p->StartingOptRamas){ p->BranchLengthOptimization(newSolution,p->StartingMetodoOptRamas,p->StartingNumIterOptRamas,p->StartingTolerenciaOptRamas); } if(p->OptimizacionSubstModel) p->OptimizarParamModeloSust(newSolution); problem_->evaluate(newSolution); problem_->evaluateConstraints(newSolution); evaluations++; population->add(newSolution); } //for ApplicationTools::displayTaskDone(); // Generations while (evaluations < maxEvaluations) { // Create the offSpring solutionSet offspringPopulation = new SolutionSet(populationSize); Solution ** parents = new Solution*[2]; if(evaluations%100==0){ cout << "Evaluating " << evaluations << endl; } //obtain parents parents[0] = (Solution *) (selectionOperator->execute(population)); parents[1] = (Solution *) (selectionOperator->execute(population)); // crossover Solution ** offSpring = (Solution **) (crossoverOperator->execute(parents)); // mutation mutationOperator->execute(offSpring[0]); ((Phylogeny *)problem_)->Optimization(offSpring[0]); //Optimize and update the scores (Evaluate OffSpring) // evaluation //problem_->evaluate(offSpring[0]); //problem_->evaluateConstraints(offSpring[0]); // insert child into the offspring population offspringPopulation->add(offSpring[0]); evaluations ++; delete[] offSpring; delete[] parents; // Create the solutionSet union of solutionSet and offSpring unionSolution = population->join(offspringPopulation); delete offspringPopulation; // Ranking the union Ranking * ranking = new Ranking(unionSolution); int remain = populationSize; int index = 0; SolutionSet * front = NULL; for (int i=0;i<population->size();i++) { delete population->get(i); } population->clear(); // Obtain the next front front = ranking->getSubfront(index); while ((remain > 0) && (remain >= front->size())) { //Assign crowding distance to individuals distance->crowdingDistanceAssignment(front, problem_->getNumberOfObjectives()); //Add the individuals of this front for (int k = 0; k < front->size(); k++) { population->add(new Solution(front->get(k))); } // for //Decrement remain remain = remain - front->size(); //Obtain the next front index++; if (remain > 0) { front = ranking->getSubfront(index); } // if } // while // Remain is less than front(index).size, insert only the best one if (remain > 0) { // front contains individuals to insert distance->crowdingDistanceAssignment(front, problem_->getNumberOfObjectives()); Comparator * c = new CrowdingComparator(); front->sort(c); delete c; for (int k = 0; k < remain; k++) { population->add(new Solution(front->get(k))); } // for remain = 0; } // if delete ranking; delete unionSolution; //Update Interval if(evaluations%IntervalOptSubsModel==0 and IntervalOptSubsModel > 0){ Solution * sol; double Lk; Phylogeny * p = (Phylogeny*) problem_; //cout << "Updating and Optimizing Parameters.." << endl; for(int i=0; i<population->size(); i++){ sol = population->get(i); Lk= p->BranchLengthOptimization(sol,p->OptimizationMetodoOptRamas,p->OptimizationNumIterOptRamas,p->OptimizationTolerenciaOptRamas); sol->setObjective(1,Lk*-1); } //cout << "Update Interval Done!!" << endl; } // This piece of code shows how to use the indicator object into the code // of NSGA-II. In particular, it finds the number of evaluations required // by the algorithm to obtain a Pareto front with a hypervolume higher // than the hypervolume of the true Pareto front. // TODO: // if ((indicators != NULL) && // (requiredEvaluations == 0)) { // double HV = indicators.getHypervolume(population); // if (HV >= (0.98 * indicators.getTrueParetoFrontHypervolume())) { // requiredEvaluations = evaluations; // } // if // } // if } // while delete distance; // Return as output parameter the required evaluations // TODO: //setOutputParameter("evaluations", requiredEvaluations); // Return the first non-dominated front Ranking * ranking = new Ranking(population); SolutionSet * result = new SolutionSet(ranking->getSubfront(0)->size()); for (int i=0;i<ranking->getSubfront(0)->size();i++) { result->add(new Solution(ranking->getSubfront(0)->get(i))); } delete ranking; delete population; return result; } // execute
/* * Runs the ssNSGA-II algorithm. * @return a <code>SolutionSet</code> that is a set of non dominated solutions * as a result of the algorithm execution */ SolutionSet * ssNSGAII::execute() { int populationSize; int maxEvaluations; int evaluations; // TODO: QualityIndicator indicators; // QualityIndicator object int requiredEvaluations; // Use in the example of use of the // indicators object (see below) SolutionSet * population; SolutionSet * offspringPopulation; SolutionSet * unionSolution; Operator * mutationOperator; Operator * crossoverOperator; Operator * selectionOperator; Distance * distance = new Distance(); //Read the parameters populationSize = *(int *) getInputParameter("populationSize"); maxEvaluations = *(int *) getInputParameter("maxEvaluations"); // TODO: indicators = (QualityIndicator) getInputParameter("indicators"); //Initialize the variables population = new SolutionSet(populationSize); evaluations = 0; requiredEvaluations = 0; //Read the operators mutationOperator = operators_["mutation"]; crossoverOperator = operators_["crossover"]; selectionOperator = operators_["selection"]; // Create the initial solutionSet Solution * newSolution; for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); problem_->evaluate(newSolution); problem_->evaluateConstraints(newSolution); evaluations++; population->add(newSolution); } //for // Generations while (evaluations < maxEvaluations) { // Create the offSpring solutionSet offspringPopulation = new SolutionSet(populationSize); Solution ** parents = new Solution*[2]; //obtain parents parents[0] = (Solution *) (selectionOperator->execute(population)); parents[1] = (Solution *) (selectionOperator->execute(population)); // crossover Solution ** offSpring = (Solution **) (crossoverOperator->execute(parents)); // mutation mutationOperator->execute(offSpring[0]); // evaluation problem_->evaluate(offSpring[0]); problem_->evaluateConstraints(offSpring[0]); // insert child into the offspring population offspringPopulation->add(offSpring[0]); evaluations ++; delete[] offSpring; delete[] parents; // Create the solutionSet union of solutionSet and offSpring unionSolution = population->join(offspringPopulation); delete offspringPopulation; // Ranking the union Ranking * ranking = new Ranking(unionSolution); int remain = populationSize; int index = 0; SolutionSet * front = NULL; for (int i=0;i<population->size();i++) { delete population->get(i); } population->clear(); // Obtain the next front front = ranking->getSubfront(index); while ((remain > 0) && (remain >= front->size())) { //Assign crowding distance to individuals distance->crowdingDistanceAssignment(front, problem_->getNumberOfObjectives()); //Add the individuals of this front for (int k = 0; k < front->size(); k++) { population->add(new Solution(front->get(k))); } // for //Decrement remain remain = remain - front->size(); //Obtain the next front index++; if (remain > 0) { front = ranking->getSubfront(index); } // if } // while // Remain is less than front(index).size, insert only the best one if (remain > 0) { // front contains individuals to insert distance->crowdingDistanceAssignment(front, problem_->getNumberOfObjectives()); Comparator * c = new CrowdingComparator(); front->sort(c); delete c; for (int k = 0; k < remain; k++) { population->add(new Solution(front->get(k))); } // for remain = 0; } // if delete ranking; delete unionSolution; // This piece of code shows how to use the indicator object into the code // of NSGA-II. In particular, it finds the number of evaluations required // by the algorithm to obtain a Pareto front with a hypervolume higher // than the hypervolume of the true Pareto front. // TODO: // if ((indicators != NULL) && // (requiredEvaluations == 0)) { // double HV = indicators.getHypervolume(population); // if (HV >= (0.98 * indicators.getTrueParetoFrontHypervolume())) { // requiredEvaluations = evaluations; // } // if // } // if } // while delete distance; // Return as output parameter the required evaluations // TODO: //setOutputParameter("evaluations", requiredEvaluations); // Return the first non-dominated front Ranking * ranking = new Ranking(population); SolutionSet * result = new SolutionSet(ranking->getSubfront(0)->size()); for (int i=0;i<ranking->getSubfront(0)->size();i++) { result->add(new Solution(ranking->getSubfront(0)->get(i))); } delete ranking; delete population; return result; } // execute
/** * Runs of the SMPSO algorithm. * @return a <code>SolutionSet</code> that is a set of non dominated solutions * as a result of the algorithm execution */ SolutionSet * PSO::execute() { initParams(); success_ = false; globalBest_ = NULL; //->Step 1 (and 3) Create the initial population and evaluate for (int i = 0; i < particlesSize_; i++) { Solution * particle = new Solution(problem_); problem_->evaluate(particle); evaluations_ ++; particles_->add(particle); if ((globalBest_ == NULL) || (particle->getObjective(0) < globalBest_->getObjective(0))) { if (globalBest_!= NULL) { delete globalBest_; } globalBest_ = new Solution(particle); } } //-> Step2. Initialize the speed_ of each particle to 0 for (int i = 0; i < particlesSize_; i++) { speed_[i] = new double[problem_->getNumberOfVariables()]; for (int j = 0; j < problem_->getNumberOfVariables(); j++) { speed_[i][j] = 0.0; } } //-> Step 6. Initialize the memory of each particle for (int i = 0; i < particles_->size(); i++) { Solution * particle = new Solution(particles_->get(i)); localBest_[i] = particle; } //-> Step 7. Iterations .. while (iteration_ < maxIterations_) { int * bestIndividualPtr = (int*)findBestSolution_->execute(particles_); int bestIndividual = *bestIndividualPtr; delete bestIndividualPtr; computeSpeed(iteration_, maxIterations_); //Compute the new positions for the particles_ computeNewPositions(); //Mutate the particles_ //mopsoMutation(iteration_, maxIterations_); //Evaluate the new particles_ in new positions for (int i = 0; i < particles_->size(); i++) { Solution * particle = particles_->get(i); problem_->evaluate(particle); evaluations_ ++; } //Actualize the memory of this particle for (int i = 0; i < particles_->size(); i++) { //int flag = comparator_.compare(particles_.get(i), localBest_[i]); //if (flag < 0) { // the new particle is best_ than the older remember if ((particles_->get(i)->getObjective(0) < localBest_[i]->getObjective(0))) { Solution * particle = new Solution(particles_->get(i)); delete localBest_[i]; localBest_[i] = particle; } // if if ((particles_->get(i)->getObjective(0) < globalBest_->getObjective(0))) { Solution * particle = new Solution(particles_->get(i)); delete globalBest_; globalBest_ = particle; } // if } iteration_++; } // Return a population with the best individual SolutionSet * resultPopulation = new SolutionSet(1); int * bestIndexPtr = (int *)findBestSolution_->execute(particles_); int bestIndex = *bestIndexPtr; delete bestIndexPtr; cout << "Best index = " << bestIndex << endl; Solution * s = particles_->get(bestIndex); resultPopulation->add(new Solution(s)); // Free memory deleteParams(); return resultPopulation; } // execute
/** * Runs of the SMPSO algorithm. * @return a <code>SolutionSet</code> that is a set of non dominated solutions * as a result of the algorithm execution */ SolutionSet *SMPSOhv::execute() { initParams(); success = false; //->Step 1 (and 3) Create the initial population and evaluate for (int i = 0; i < swarmSize; i++){ Solution *particle = new Solution(problem_); problem_->evaluate(particle); problem_->evaluateConstraints(particle); particles->add(particle); } //-> Step2. Initialize the speed of each particle to 0 for (int i = 0; i < swarmSize; i++) { speed[i] = new double[problem_->getNumberOfVariables()]; for (int j = 0; j < problem_->getNumberOfVariables(); j++) { speed[i][j] = 0.0; } } // Step4 and 5 for (int i = 0; i < particles->size(); i++){ Solution *particle = new Solution(particles->get(i)); if (leaders->add(particle) == false){ delete particle; } } //-> Step 6. Initialize the memory of each particle for (int i = 0; i < particles->size(); i++){ Solution *particle = new Solution(particles->get(i)); best[i] = particle; } //Crowding the leaders_ //distance->crowdingDistanceAssignment(leaders, problem_->getNumberOfObjectives()); leaders->computeHVContribution(); //-> Step 7. Iterations .. while (iteration < maxIterations) { //Compute the speed_ computeSpeed(iteration, maxIterations); //Compute the new positions for the particles_ computeNewPositions(); //Mutate the particles_ mopsoMutation(iteration,maxIterations); //Evaluate the new particles in new positions for (int i = 0; i < particles->size(); i++){ Solution *particle = particles->get(i); problem_->evaluate(particle); problem_->evaluateConstraints(particle); } //Update the archive for (int i = 0; i < particles->size(); i++) { Solution *particle = new Solution(particles->get(i)); if (leaders->add(particle) == false) { delete particle; } } //Update the memory of this particle for (int i = 0; i < particles->size(); i++) { int flag = dominance->compare(particles->get(i), best[i]); if (flag != 1) { // the new particle is best_ than the older remembered Solution *particle = new Solution(particles->get(i)); delete best[i]; best[i] = particle; } } iteration++; } // Build the solution set result SolutionSet * result = new SolutionSet(leaders->size()); for (int i=0;i<leaders->size();i++) { result->add(new Solution(leaders->get(i))); } // Free memory deleteParams(); return result; } // execute
SolutionSet *MOCHC::execute() { int populationSize; int iterations; int maxEvaluations; int convergenceValue; int minimumDistance; int evaluations; double preservedPopulation; double initialConvergenceCount; bool condition = false; SolutionSet *solutionSet, *offSpringPopulation, *newPopulation; Comparator * crowdingComparator = new CrowdingComparator(); SolutionSet * population; SolutionSet * offspringPopulation; SolutionSet * unionSolution; Operator * cataclysmicMutation; Operator * crossover; Operator * parentSelection; //Read the parameters populationSize = *(int *) getInputParameter("populationSize"); maxEvaluations = *(int *) getInputParameter("maxEvaluations"); convergenceValue = *(int *) getInputParameter("convergenceValue"); initialConvergenceCount = *(double *)getInputParameter("initialConvergenceCount"); preservedPopulation = *(double *)getInputParameter("preservedPopulation"); //Read the operators cataclysmicMutation = operators_["mutation"]; crossover = operators_["crossover"]; parentSelection = operators_["parentSelection"]; iterations = 0; evaluations = 0; // calculating the maximum problem sizes .... Solution * sol = new Solution(problem_); int size = 0; for (int var = 0; var < problem_->getNumberOfVariables(); var++) { Binary *binaryVar; binaryVar = (Binary *)sol->getDecisionVariables()[var]; size += binaryVar->getNumberOfBits(); } minimumDistance = (int) std::floor(initialConvergenceCount*size); // Create the initial solutionSet Solution * newSolution; population = new SolutionSet(populationSize); for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); problem_->evaluate(newSolution); problem_->evaluateConstraints(newSolution); evaluations++; population->add(newSolution); } //for while (!condition) { offSpringPopulation = new SolutionSet(populationSize); Solution **parents = new Solution*[2]; for (int i = 0; i < population->size()/2; i++) { parents[0] = (Solution *) (parentSelection->execute(population)); parents[1] = (Solution *) (parentSelection->execute(population)); if (hammingDistance(*parents[0],*parents[1])>= minimumDistance) { Solution ** offSpring = (Solution **) (crossover->execute(parents)); problem_->evaluate(offSpring[0]); problem_->evaluateConstraints(offSpring[0]); problem_->evaluate(offSpring[1]); problem_->evaluateConstraints(offSpring[1]); evaluations+=2; offSpringPopulation->add(offSpring[0]); offSpringPopulation->add(offSpring[1]); } } SolutionSet *join = population->join(offSpringPopulation); delete offSpringPopulation; newPopulation = rankingAndCrowdingSelection(join,populationSize); delete join; if (equals(*population,*newPopulation)) { minimumDistance--; } if (minimumDistance <= -convergenceValue) { minimumDistance = (int) (1.0/size * (1-1.0/size) * size); int preserve = (int) std::floor(preservedPopulation*populationSize); newPopulation->clear(); //do the new in c++ really hurts me(juanjo) population->sort(crowdingComparator); for (int i = 0; i < preserve; i++) { newPopulation->add(new Solution(population->get(i))); } for (int i = preserve; i < populationSize; i++) { Solution * solution = new Solution(population->get(i)); cataclysmicMutation->execute(solution); problem_->evaluate(solution); problem_->evaluateConstraints(solution); newPopulation->add(solution); } } iterations++; delete population; population = newPopulation; if (evaluations >= maxEvaluations) { condition = true; } } return population; }
/* * Runs the GDE3 algorithm. * @return a <code>SolutionSet</code> that is a set of non dominated solutions * as a result of the algorithm execution */ SolutionSet * GDE3::execute() { int populationSize; int maxIterations; int evaluations; int iterations; SolutionSet * population; SolutionSet * offspringPopulation; Distance * distance; Comparator * dominance; Operator * crossoverOperator; Operator * selectionOperator; distance = new Distance(); dominance = new DominanceComparator(); Solution ** parent; //Read the parameters populationSize = *(int *) getInputParameter("populationSize"); maxIterations = *(int *) getInputParameter("maxIterations"); //Initialize the variables population = new SolutionSet(populationSize); evaluations = 0; iterations = 0; //Read the operators crossoverOperator = operators_["crossover"]; selectionOperator = operators_["selection"]; // Create the initial solutionSet Solution * newSolution; for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); problem_->evaluate(newSolution); problem_->evaluateConstraints(newSolution); evaluations++; population->add(newSolution); } //for // Generations ... while (iterations < maxIterations) { // Create the offSpring solutionSet offspringPopulation = new SolutionSet(populationSize * 2); for (int i = 0; i < populationSize; i++){ // Obtain parents. Two parameters are required: the population and the // index of the current individual void ** object1 = new void*[2]; object1[0] = population; object1[1] = &i; parent = (Solution **) (selectionOperator->execute(object1)); delete[] object1; Solution * child ; // Crossover. Two parameters are required: the current individual and the // array of parents void ** object2 = new void*[2]; object2[0] = population->get(i); object2[1] = parent; child = (Solution *) (crossoverOperator->execute(object2)); delete[] object2; delete[] parent; problem_->evaluate(child) ; problem_->evaluateConstraints(child); evaluations++ ; // Dominance test int result ; result = dominance->compare(population->get(i), child) ; if (result == -1) { // Solution i dominates child offspringPopulation->add(new Solution(population->get(i))); delete child; } // if else if (result == 1) { // child dominates offspringPopulation->add(child) ; } // else if else { // the two solutions are non-dominated offspringPopulation->add(child) ; offspringPopulation->add(new Solution(population->get(i))); } // else } // for // Ranking the offspring population Ranking * ranking = new Ranking(offspringPopulation); int remain = populationSize; int index = 0; SolutionSet * front = NULL; for (int i = 0; i < populationSize; i++) { delete population->get(i); } population->clear(); // Obtain the next front front = ranking->getSubfront(index); while ((remain > 0) && (remain >= front->size())){ //Assign crowding distance to individuals distance->crowdingDistanceAssignment(front,problem_->getNumberOfObjectives()); //Add the individuals of this front for (int k = 0; k < front->size(); k++ ) { population->add(new Solution(front->get(k))); } // for //Decrement remain remain = remain - front->size(); //Obtain the next front index++; if (remain > 0) { front = ranking->getSubfront(index); } // if } // while // remain is less than front(index).size, insert only the best one if (remain > 0) { // front contains individuals to insert while (front->size() > remain) { distance->crowdingDistanceAssignment(front,problem_->getNumberOfObjectives()); Comparator * crowdingComparator = new CrowdingComparator(); int indexWorst = front->indexWorst(crowdingComparator); delete crowdingComparator; delete front->get(indexWorst); front->remove(indexWorst); } for (int k = 0; k < front->size(); k++) { population->add(new Solution(front->get(k))); } remain = 0; } // if delete ranking; delete offspringPopulation; iterations ++ ; } // while delete dominance; delete distance; // Return the first non-dominated front Ranking * ranking = new Ranking(population); SolutionSet * result = new SolutionSet(ranking->getSubfront(0)->size()); for (int i=0;i<ranking->getSubfront(0)->size();i++) { result->add(new Solution(ranking->getSubfront(0)->get(i))); } delete ranking; delete population; return result; } // execute