예제 #1
0
파일: initblocks.C 프로젝트: chrinide/Block
void SpinAdapted::InitBlocks::InitNewSystemBlock(SpinBlock &system, SpinBlock &systemDot, SpinBlock &newSystem, int leftState, int rightState, const int& sys_add, const bool &direct, int integralIndex, const Storagetype &storage, bool haveNormops, bool haveCompops, int constraint)
{
  newSystem.set_integralIndex() = integralIndex;
  newSystem.default_op_components(direct, system, systemDot, haveNormops, haveCompops, leftState==rightState);
  newSystem.setstoragetype(storage);
  newSystem.BuildSumBlock (constraint, system, systemDot);

  p2out << "\t\t\t NewSystem block " << endl << newSystem << endl;
  newSystem.printOperatorSummary();
}
예제 #2
0
파일: initblocks.C 프로젝트: chrinide/Block
void SpinAdapted::InitBlocks::InitNewSystemBlock(SpinBlock &system, SpinBlock &systemDot, SpinBlock &newSystem, int leftState, int rightState, const int& sys_add, const bool &direct, int integralIndex, const Storagetype &storage, bool haveNormops, bool haveCompops, int constraint, const std::vector<SpinQuantum>& braquanta, const std::vector<SpinQuantum>& ketquanta)
{
  newSystem.set_integralIndex() = integralIndex;
  newSystem.default_op_components(direct, system, systemDot, haveNormops, haveCompops, leftState==rightState);
  newSystem.setstoragetype(storage);
  newSystem.BuildSumBlock (constraint, system, systemDot,braquanta,ketquanta);

  if (dmrginp.outputlevel() > 0) {
    pout << "\t\t\t NewSystem block " << endl << newSystem << endl;
    newSystem.printOperatorSummary();
  }
}
예제 #3
0
파일: initblocks.C 프로젝트: chrinide/Block
void SpinAdapted::InitBlocks::InitBigBlock(SpinBlock &leftBlock, SpinBlock &rightBlock, SpinBlock &big, const std::vector<SpinQuantum>& braquanta, const std::vector<SpinQuantum>& ketquanta)
{
  //set big block components
  big.set_integralIndex() = leftBlock.get_integralIndex();
  big.nonactive_orb() = leftBlock.nonactive_orb();
  
  big.set_big_components(); 
  // build the big block
  if (dmrginp.hamiltonian() == BCS) {
    if(braquanta.size()!=0)
      big.BuildSumBlock(SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock,braquanta,ketquanta);
    else
      big.BuildSumBlock(SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock);
  } else {
    if(braquanta.size()!=0)
      big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock,braquanta,ketquanta);
    else
      big.BuildSumBlock(PARTICLE_SPIN_NUMBER_CONSTRAINT, leftBlock, rightBlock);

  }
}
예제 #4
0
파일: initblocks.C 프로젝트: chrinide/Block
void SpinAdapted::InitBlocks::InitNewOverlapEnvironmentBlock(SpinBlock &environment, SpinBlock& environmentDot, SpinBlock &newEnvironment, 
							     const SpinBlock &system, SpinBlock &systemDot, int leftState, int rightState,
							     const int &sys_add, const int &env_add, const bool &forward, int integralIndex,
							     const bool &onedot, const bool& dot_with_sys, int constraint)
{
  // now initialise environment Dot
  int systemDotStart, systemDotEnd, environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
  int systemDotSize = sys_add - 1;
  int environmentDotSize = env_add - 1;
  if (forward)
  {
    systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
    systemDotEnd = systemDotStart + systemDotSize;
    environmentDotStart = systemDotEnd + 1;
    environmentDotEnd = environmentDotStart + environmentDotSize;
    environmentStart = environmentDotEnd + 1;
    environmentEnd = dmrginp.spinAdapted() ? dmrginp.last_site() - 1 : dmrginp.last_site()/2 - 1;
  }
  else
  {
    systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
    systemDotEnd = systemDotStart - systemDotSize;
    environmentDotStart = systemDotEnd - 1;
    environmentDotEnd = environmentDotStart - environmentDotSize;
    environmentStart = environmentDotEnd - 1;
    environmentEnd = 0;
  }

  std::vector<int> environmentSites;
  environmentSites.resize(abs(environmentEnd - environmentStart) + 1);
  for (int i = 0; i < abs(environmentEnd - environmentStart) + 1; ++i) *(environmentSites.begin () + i) = min(environmentStart,environmentEnd) + i;


  p2out << "\t\t\t Restoring block of size " << environmentSites.size () << " from previous iteration" << endl;

  if(dot_with_sys && onedot) {
    newEnvironment.set_integralIndex() = integralIndex;
    SpinBlock::restore (!forward, environmentSites, newEnvironment, leftState, rightState);
  }
  else {
    environment.set_integralIndex() = integralIndex;
    SpinBlock::restore (!forward, environmentSites, environment, leftState, rightState);
  }
  if (dmrginp.outputlevel() > 0)
    mcheck("");

  // now initialise newEnvironment
  if (!dot_with_sys || !onedot)
  {
    newEnvironment.set_integralIndex() = integralIndex;
    newEnvironment.initialise_op_array(OVERLAP, false);
    //newEnvironment.set_op_array(OVERLAP) = boost::shared_ptr<Op_component<Overlap> >(new Op_component<Overlap>(false));
    newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
      
    newEnvironment.BuildSumBlock (constraint, environment, environmentDot);
    p2out << "\t\t\t Environment block " << endl << environment << endl;
    environment.printOperatorSummary();
    p2out << "\t\t\t NewEnvironment block " << endl << newEnvironment << endl;
    newEnvironment.printOperatorSummary();
  }
  else {
    p2out << "\t\t\t Environment block " << endl << newEnvironment << endl;
    newEnvironment.printOperatorSummary();
  }

}
예제 #5
0
파일: initblocks.C 프로젝트: chrinide/Block
void SpinAdapted::InitBlocks::InitNewEnvironmentBlock(SpinBlock &environment, SpinBlock& environmentDot, SpinBlock &newEnvironment, 
						      const SpinBlock &system, SpinBlock &systemDot, int leftState, int rightState,
						      const int &sys_add, const int &env_add, const bool &forward, const bool &direct, 
						      const bool &onedot, const bool &nexact, const bool &useSlater, int integralIndex, 
						      bool haveNormops, bool haveCompops, const bool& dot_with_sys, int constraint, const std::vector<SpinQuantum>& braquanta, const std::vector<SpinQuantum>& ketquanta) {
  // now initialise environment Dot
  int systemDotStart, systemDotEnd, environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;
  int systemDotSize = sys_add - 1;
  int environmentDotSize = env_add - 1;
  if (forward) {
    systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
    systemDotEnd = systemDotStart + systemDotSize;
    environmentDotStart = systemDotEnd + 1;
    environmentDotEnd = environmentDotStart + environmentDotSize;
    environmentStart = environmentDotEnd + 1;
    environmentEnd = dmrginp.spinAdapted() ? dmrginp.last_site() - 1 : dmrginp.last_site()/2 - 1;
  } else {
    systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
    systemDotEnd = systemDotStart - systemDotSize;
    environmentDotStart = systemDotEnd - 1;
    environmentDotEnd = environmentDotStart - environmentDotSize;
    environmentStart = environmentDotEnd - 1;
    environmentEnd = 0;
  }

  std::vector<int> environmentSites;
  environmentSites.resize(abs(environmentEnd - environmentStart) + 1);
  for (int i = 0; i < abs(environmentEnd - environmentStart) + 1; ++i) *(environmentSites.begin () + i) = min(environmentStart,environmentEnd) + i;


  // now initialise environment
  if (useSlater) { // for FCI
    StateInfo system_stateinfo = system.get_stateInfo();
    StateInfo sysdot_stateinfo = systemDot.get_stateInfo();
    StateInfo tmp;
    TensorProduct (system_stateinfo, sysdot_stateinfo, tmp, NO_PARTICLE_SPIN_NUMBER_CONSTRAINT);
    // tmp has the system+dot quantum numbers
    tmp.CollectQuanta ();
    
    // exact environment
    if (dmrginp.do_fci() || environmentSites.size() == nexact) {
      if ((!dot_with_sys && onedot) || !onedot) { // environment has dot
	environment.set_integralIndex() = integralIndex;
	environment.default_op_components(!forward, leftState==rightState);
	environment.setstoragetype(DISTRIBUTED_STORAGE);
	environment.BuildTensorProductBlock(environmentSites); // exact block
	SpinBlock::store (true, environmentSites, environment, leftState, rightState);	
      } 
      else { // environment has no dot, so newEnv = Env
	newEnvironment.set_integralIndex() = integralIndex;
	newEnvironment.default_op_components(!forward, leftState==rightState);
	newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
	newEnvironment.BuildTensorProductBlock(environmentSites);
	SpinBlock::store (true, environmentSites, newEnvironment, leftState, rightState);	
      }
    } else if (dmrginp.warmup() == LOCAL2 || dmrginp.warmup() == LOCAL3 || dmrginp.warmup() == LOCAL4) {
      int nactiveSites, ncoreSites;
      if (dmrginp.warmup() == LOCAL2) {
        nactiveSites = 1;
      } else if (dmrginp.warmup() == LOCAL3) {
        nactiveSites = 2;
      } else if (dmrginp.warmup() == LOCAL4) {
        nactiveSites = 3;
      }
      if (dot_with_sys && onedot) {
        nactiveSites += 1;
      }

      if (nactiveSites > environmentSites.size()) {
        nactiveSites = environmentSites.size();
      }
      ncoreSites = environmentSites.size() - nactiveSites;

      // figure out what sites are in the active and core sites
      int environmentActiveEnd = forward ? environmentStart + nactiveSites - 1 : environmentStart - nactiveSites + 1;
      int environmentCoreStart = forward ? environmentActiveEnd + 1 : environmentActiveEnd - 1;
      
      std::vector<int> activeSites(nactiveSites), coreSites(ncoreSites);
      for (int i = 0; i < nactiveSites; ++i) {
        activeSites[i] = min(environmentStart,environmentActiveEnd) + i;
      }
      for (int i = 0; i < ncoreSites; ++i) {
        coreSites[i] = min(environmentCoreStart,environmentEnd) + i;
      }

      SpinBlock environmentActive, environmentCore;
      environmentActive.nonactive_orb() = system.nonactive_orb();
      environmentCore.nonactive_orb() = system.nonactive_orb();
      if (coreSites.size() > 0) {
	environmentActive.set_integralIndex() = integralIndex;
	environmentCore.set_integralIndex() = integralIndex;
        environmentActive.default_op_components(!forward, leftState==rightState);
        environmentActive.setstoragetype(DISTRIBUTED_STORAGE);
        environmentCore.default_op_components(!forward, leftState==rightState);      
        environmentCore.setstoragetype(DISTRIBUTED_STORAGE);

        environmentActive.BuildTensorProductBlock(activeSites);
        environmentCore.BuildSingleSlaterBlock(coreSites);

        dmrginp.datatransfer -> start();
        environmentCore.addAdditionalCompOps();
        environmentActive.addAdditionalCompOps();
        dmrginp.datatransfer -> stop();

        if ((!dot_with_sys && onedot) || !onedot) {
	  environment.set_integralIndex() = integralIndex;
          environment.default_op_components(!forward, leftState == rightState);
          environment.setstoragetype(DISTRIBUTED_STORAGE);
          environment.BuildSumBlock(constraint, environmentCore, environmentActive,braquanta,ketquanta);
        } else {
	  newEnvironment.set_integralIndex() = integralIndex;
          newEnvironment.default_op_components(direct, environmentCore, environmentActive, haveNormops, haveCompops, leftState == rightState);
          newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
          newEnvironment.BuildSumBlock(constraint, environmentCore, environmentActive,braquanta,ketquanta);
          if (dmrginp.outputlevel() > 0) {
	    pout << "\t\t\t NewEnvironment block " << endl << newEnvironment << endl;
	    newEnvironment.printOperatorSummary();
          }
        }
      } else { // no core
        if ((!dot_with_sys && onedot) || !onedot) {
	  environment.set_integralIndex() = integralIndex;
          environment.default_op_components(!forward, leftState==rightState);
          environment.setstoragetype(DISTRIBUTED_STORAGE);
          environment.BuildTensorProductBlock(environmentSites); // exact block
        } else {
	  newEnvironment.set_integralIndex() = integralIndex;
          newEnvironment.default_op_components(!forward, leftState==rightState);
          newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
          newEnvironment.BuildTensorProductBlock(environmentSites);
        }
      }
    } else { //used for warmup guess environemnt
      std::vector<SpinQuantum> quantumNumbers;
      std::vector<int> distribution;
      std::map<SpinQuantum, int> quantaDist;
      std::map<SpinQuantum, int>::iterator quantaIterator;
      bool environmentComplementary = !forward;
      StateInfo tmp2;

      // tmp is the quantum numbers of newSystem (sys + sysdot)
      if (onedot) tmp.quanta_distribution (quantumNumbers, distribution, true);
      else {
        StateInfo environmentdot_stateinfo = environmentDot.get_stateInfo();
        TensorProduct (tmp, environmentdot_stateinfo, tmp2, constraint);
        tmp2.CollectQuanta ();
        tmp2.quanta_distribution (quantumNumbers, distribution, true);

      }
      
      for (int i = 0; i < distribution.size (); ++i) {
	    quantaIterator = quantaDist.find(quantumNumbers[i]);
	    if (quantaIterator != quantaDist.end()) distribution[i] += quantaIterator->second;
        distribution [i] /= 4; distribution [i] += 1;
        if (distribution [i] > dmrginp.nquanta()) distribution [i] = dmrginp.nquanta();	
	    if(quantaIterator != quantaDist.end()) {
          quantaIterator->second = distribution[i];
        } else {
          quantaDist[quantumNumbers[i]] = distribution[i];
        }
      }

      if (dmrginp.outputlevel() > 0) pout << "\t\t\t Quantum numbers and states used for warm up :: " << endl << "\t\t\t ";
      quantumNumbers.clear(); quantumNumbers.reserve(distribution.size());
      distribution.clear();distribution.reserve(quantumNumbers.size());
      std::map<SpinQuantum, int>::iterator qit = quantaDist.begin();

      for (; qit != quantaDist.end(); qit++) {
	    quantumNumbers.push_back( qit->first); distribution.push_back(qit->second); 
	    if (dmrginp.outputlevel() > 0) {
	      pout << quantumNumbers.back() << " = " << distribution.back() << ", ";
	      if (! (quantumNumbers.size() - 6) % 6) pout << endl << "\t\t\t ";
	    }
      }
      pout << endl;

      if(dot_with_sys && onedot) {
	newEnvironment.set_integralIndex() = integralIndex;
        newEnvironment.BuildSlaterBlock (environmentSites, quantumNumbers, distribution, false, false);
      } else {
	environment.set_integralIndex() = integralIndex;
        environment.BuildSlaterBlock (environmentSites, quantumNumbers, distribution, false, haveNormops);
      }
    }
  } else {
    if (dmrginp.outputlevel() > 0) pout << "\t\t\t Restoring block of size " << environmentSites.size () << " from previous iteration" << endl;
    
    if(dot_with_sys && onedot) {
      newEnvironment.set_integralIndex() = integralIndex;
      SpinBlock::restore (!forward, environmentSites, newEnvironment, leftState, rightState);
    } else {
      environment.set_integralIndex() = integralIndex;
      SpinBlock::restore (!forward, environmentSites, environment, leftState, rightState);
    }
    if (dmrginp.outputlevel() > 0)
      mcheck("");
  }
  // now initialise newEnvironment
  if (!dot_with_sys || !onedot) {
    dmrginp.datatransfer -> start();
    environment.addAdditionalCompOps();
    dmrginp.datatransfer -> stop();

    newEnvironment.set_integralIndex() = integralIndex;
    newEnvironment.default_op_components(direct, environment, environmentDot, haveNormops, haveCompops, leftState==rightState);
    newEnvironment.setstoragetype(DISTRIBUTED_STORAGE);
    newEnvironment.BuildSumBlock (constraint, environment, environmentDot,braquanta,ketquanta);
    if (dmrginp.outputlevel() > -1) {
	  pout << "\t\t\t Environment block " << endl << environment << endl;
	  environment.printOperatorSummary();
	  pout << "\t\t\t NewEnvironment block " << endl << newEnvironment << endl;
	  newEnvironment.printOperatorSummary();
    }
  } else if (dmrginp.outputlevel() > 0) {
    pout << "\t\t\t Environment block " << endl << newEnvironment << endl;
    newEnvironment.printOperatorSummary();
  }
}
예제 #6
0
파일: initblocks.C 프로젝트: chrinide/Block
void SpinAdapted::InitBlocks::InitStartingBlock (SpinBlock& startingBlock, const bool &forward, int leftState, int rightState,
						 const int & forward_starting_size, const int &backward_starting_size,
						 const int& restartSize, const bool &restart, const bool& warmUp, int integralIndex, const vector<SpinQuantum>& braquanta, const vector<SpinQuantum>& ketquanta)
{
  if (restart && restartSize != 1)
  {
    int len = restart? restartSize : forward_starting_size;
    vector<int> sites(len);
    if (forward)
      for (int i=0; i<len; i++)
	sites[i] = i;
    else
      for (int i=0; i<len; i++) 
	sites[i] = dmrginp.last_site() - len +i ;
    
    if (restart)
      SpinBlock::restore (forward, sites, startingBlock, leftState, rightState);
    else
      SpinBlock::restore (true, sites, startingBlock, leftState, rightState);
  }
  else if (forward)
  {
    if(startingBlock.nonactive_orb().size()!=0)
      startingBlock = SpinBlock(0, forward_starting_size - 1,startingBlock.nonactive_orb() , true);
    else
      startingBlock = SpinBlock(0, forward_starting_size - 1, integralIndex, leftState==rightState, true);
    if (dmrginp.add_noninteracting_orbs() && dmrginp.molecule_quantum().get_s().getirrep() != 0 && dmrginp.spinAdapted())
    {
      SpinQuantum s = dmrginp.molecule_quantum();
      s = SpinQuantum(s.get_s().getirrep(), s.get_s(), IrrepSpace(0));
      int qs = 1, ns = 1;
      StateInfo addstate(ns, &s, &qs); 
      SpinBlock dummyblock(addstate, integralIndex);
      SpinBlock newstartingBlock;
      newstartingBlock.set_integralIndex() = integralIndex;
      newstartingBlock.default_op_components(false, startingBlock, dummyblock, true, true, leftState==rightState);
      newstartingBlock.setstoragetype(LOCAL_STORAGE);
      if( braquanta.size()!= 0)
        newstartingBlock.BuildSumBlock(NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, startingBlock, dummyblock,braquanta,ketquanta);
      else
        newstartingBlock.BuildSumBlock(NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, startingBlock, dummyblock);
      startingBlock.clear();
      startingBlock = newstartingBlock;
    }
  }
  else
  {
    std::vector<int> backwardSites;
    if(dmrginp.spinAdapted()) {
      for (int i = 0; i < backward_starting_size; ++i) 
	backwardSites.push_back (dmrginp.last_site() - i - 1);
    }
    else {
      for (int i = 0; i < backward_starting_size; ++i) 
	backwardSites.push_back (dmrginp.last_site()/2 - i - 1);
    }
    sort (backwardSites.begin (), backwardSites.end ());
    startingBlock.set_integralIndex() = integralIndex;
    startingBlock.default_op_components(false, leftState==rightState);
    startingBlock.BuildTensorProductBlock (backwardSites);
  }
}
예제 #7
0
파일: sweep.C 프로젝트: matk86/Block
void SweepOnepdm::BlockAndDecimate (SweepParams &sweepParams, SpinBlock& system, SpinBlock& newSystem, const bool &useSlater, const bool& dot_with_sys, int state)
{
  //mcheck("at the start of block and decimate");
  // figure out if we are going forward or backwards
  dmrginp.guessgenT -> start();
  bool forward = (system.get_sites() [0] == 0);
  SpinBlock systemDot;
  SpinBlock envDot;
  int systemDotStart, systemDotEnd;
  int systemDotSize = sweepParams.get_sys_add() - 1;

  if (forward)
  {
    systemDotStart = dmrginp.spinAdapted() ? *system.get_sites().rbegin () + 1 : (*system.get_sites().rbegin ())/2 + 1 ;
    systemDotEnd = systemDotStart + systemDotSize;
  }
  else
  {
    systemDotStart = dmrginp.spinAdapted() ? system.get_sites()[0] - 1 : (system.get_sites()[0])/2 - 1 ;
    systemDotEnd = systemDotStart - systemDotSize;
  }
  vector<int> spindotsites(2); 
  spindotsites[0] = systemDotStart;
  spindotsites[1] = systemDotEnd;
  systemDot = SpinBlock(systemDotStart, systemDotEnd, system.get_integralIndex(), true);

  SpinBlock environment, environmentDot, newEnvironment;
  int environmentDotStart, environmentDotEnd, environmentStart, environmentEnd;

  const int nexact = forward ? sweepParams.get_forward_starting_size() : sweepParams.get_backward_starting_size();
  
  newSystem.set_integralIndex() = system.get_integralIndex();
  newSystem.default_op_components(dmrginp.direct(), system, systemDot, false, false, true);
  newSystem.erase(CRE_CRE_DESCOMP);
  newSystem.erase(CRE_CRE);
  newSystem.erase(HAM);
  newSystem.setstoragetype(DISTRIBUTED_STORAGE_FOR_ONEPDM);
  newSystem.BuildSumBlock (NO_PARTICLE_SPIN_NUMBER_CONSTRAINT, system, systemDot);
  if (dmrginp.outputlevel() > 0) {
    pout << "\t\t\t NewSystem block " << endl << newSystem << endl;
    newSystem.printOperatorSummary();
  }

  
  InitBlocks::InitNewEnvironmentBlock(environment, systemDot, newEnvironment, system, systemDot, sweepParams.current_root(), sweepParams.current_root(),
				      sweepParams.get_sys_add(), sweepParams.get_env_add(), forward, dmrginp.direct(),
				      sweepParams.get_onedot(), nexact, useSlater, system.get_integralIndex(), false, false, true);
  SpinBlock big;
  newSystem.set_loopblock(true);
  system.set_loopblock(false);
  newEnvironment.set_loopblock(false);
  InitBlocks::InitBigBlock(newSystem, newEnvironment, big); 

  const int nroots = dmrginp.nroots();
  std::vector<Wavefunction> solution(1);

  DiagonalMatrix e;
  GuessWave::guess_wavefunctions(solution[0], e, big, sweepParams.get_guesstype(), true, state, true, 0.0); 

#ifndef SERIAL
  mpi::communicator world;
  mpi::broadcast(world, solution, 0);
#endif

  std::vector<Matrix> rotateMatrix;
  DensityMatrix tracedMatrix(newSystem.get_stateInfo());
  tracedMatrix.allocate(newSystem.get_stateInfo());
  tracedMatrix.makedensitymatrix(solution, big, std::vector<double>(1,1.0), 0.0, 0.0, false);
  rotateMatrix.clear();
  if (!mpigetrank())
    double error = makeRotateMatrix(tracedMatrix, rotateMatrix, sweepParams.get_keep_states(), sweepParams.get_keep_qstates());
  

#ifndef SERIAL
  mpi::broadcast(world,rotateMatrix,0);
#endif
#ifdef SERIAL
  const int numprocs = 1;
#endif
#ifndef SERIAL
  const int numprocs = world.size();
#endif

  Matrix onepdm;
  load_onepdm_binary(onepdm, state ,state);
  Matrix pairmat;
  if (dmrginp.hamiltonian() == BCS)
    load_pairmat_binary(pairmat, state ,state);

  if (sweepParams.get_block_iter() == 0) {
    //this is inface a combination of  2_0_0, 1_1_0 and 0_2_0
    p2out << "\t\t\t compute 2_0_0"<<endl;
    compute_one_pdm_2_0_0(solution[0], solution[0], big, onepdm);
    if (dmrginp.hamiltonian() == BCS)
      compute_pair_2_0_0(solution[0], solution[0], big, pairmat);
    p2out << "\t\t\t compute 1_1_0"<<endl;
    compute_one_pdm_1_1_0(solution[0], solution[0], big, onepdm);
    if (dmrginp.hamiltonian() == BCS)    
      compute_pair_1_1_0(solution[0], solution[0], big, pairmat);
  }

  p2out << "\t\t\t compute 0_2_0"<<endl;
  compute_one_pdm_0_2_0(solution[0], solution[0], big, onepdm);
  if (dmrginp.hamiltonian() == BCS)  
    compute_pair_0_2_0(solution[0], solution[0], big, pairmat);  
  p2out << "\t\t\t compute 1_1"<<endl;
  compute_one_pdm_1_1(solution[0], solution[0], big, onepdm);
  if (dmrginp.hamiltonian() == BCS)  
    compute_pair_1_1(solution[0], solution[0], big, pairmat);

  if (sweepParams.get_block_iter()  == sweepParams.get_n_iters() - 1) {
    p2out << "\t\t\t compute 0_2"<<endl;
    compute_one_pdm_0_2(solution[0], solution[0], big, onepdm);
    if (dmrginp.hamiltonian() == BCS)    
      compute_pair_0_2(solution[0], solution[0], big, pairmat);    
  }

  accumulate_onepdm(onepdm);
  save_onepdm_binary(onepdm, state, state);

  if (dmrginp.hamiltonian() == BCS) {
    accumulate_onepdm(pairmat);
    save_pairmat_binary(pairmat, state, state);
  }

  SaveRotationMatrix (newSystem.get_sites(), rotateMatrix, state);

  solution[0].SaveWavefunctionInfo (big.get_stateInfo(), big.get_leftBlock()->get_sites(), state);

  newSystem.transform_operators(rotateMatrix);

}