bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { // We model unconditional switches as free, see the comments on handling // branches. if (isa<ConstantInt>(SI.getCondition())) return true; if (Value *V = SimplifiedValues.lookup(SI.getCondition())) if (isa<ConstantInt>(V)) return true; // Otherwise, we need to accumulate a cost proportional to the number of // distinct successor blocks. This fan-out in the CFG cannot be represented // for free even if we can represent the core switch as a jumptable that // takes a single instruction. // // NB: We convert large switches which are just used to initialize large phi // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent // inlining those. It will prevent inlining in cases where the optimization // does not (yet) fire. SmallPtrSet<BasicBlock *, 8> SuccessorBlocks; SuccessorBlocks.insert(SI.getDefaultDest()); for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I) SuccessorBlocks.insert(I.getCaseSuccessor()); // Add cost corresponding to the number of distinct destinations. The first // we model as free because of fallthrough. Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost; return false; }
void Interpreter::visitSwitchInst(SwitchInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue CondVal = getOperandValue(I.getOperand(0), SF); const Type *ElTy = I.getOperand(0)->getType(); // Check to see if any of the cases match... BasicBlock *Dest = 0; for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) if (executeSetEQInst(CondVal, getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { Dest = cast<BasicBlock>(I.getOperand(i+1)); break; } if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); }