TextureCache::TCacheEntryBase* TextureCache::DoPartialTextureUpdates(TexCache::iterator iter_t) { TCacheEntryBase* entry_to_update = iter_t->second; const bool isPaletteTexture = (entry_to_update->format == GX_TF_C4 || entry_to_update->format == GX_TF_C8 || entry_to_update->format == GX_TF_C14X2 || entry_to_update->format >= 0x10000); // Efb copies and paletted textures are excluded from these updates, until there's an example where a game would // benefit from this. Both would require more work to be done. // TODO: Implement upscaling support for normal textures, and then remove the efb to ram and the scaled efb restrictions if (entry_to_update->IsEfbCopy() || isPaletteTexture) return entry_to_update; u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format); u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format); u32 block_size = block_width * block_height * TexDecoder_GetTexelSizeInNibbles(entry_to_update->format) / 2; u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width; TexCache::iterator iter = textures_by_address.lower_bound(entry_to_update->addr); TexCache::iterator iterend = textures_by_address.upper_bound(entry_to_update->addr + entry_to_update->size_in_bytes); bool entry_need_scaling = true; while (iter != iterend) { TCacheEntryBase* entry = iter->second; if (entry != entry_to_update && entry->IsEfbCopy() && entry_to_update->addr <= entry->addr && entry->addr + entry->size_in_bytes <= entry_to_update->addr + entry_to_update->size_in_bytes && entry->frameCount == FRAMECOUNT_INVALID && entry->memory_stride == numBlocksX * block_size) { u32 block_offset = (entry->addr - entry_to_update->addr) / block_size; u32 block_x = block_offset % numBlocksX; u32 block_y = block_offset / numBlocksX; u32 x = block_x * block_width; u32 y = block_y * block_height; MathUtil::Rectangle<int> srcrect, dstrect; srcrect.left = 0; srcrect.top = 0; dstrect.left = 0; dstrect.top = 0; if (entry_need_scaling) { entry_need_scaling = false; u32 w = entry_to_update->native_width * entry->config.width / entry->native_width; u32 h = entry_to_update->native_height * entry->config.height / entry->native_height; u32 max = g_renderer->GetMaxTextureSize(); if (max < w || max < h) { iter++; continue; } if (entry_to_update->config.width != w || entry_to_update->config.height != h) { TextureCache::TCacheEntryConfig newconfig; newconfig.width = w; newconfig.height = h; newconfig.rendertarget = true; TCacheEntryBase* newentry = AllocateTexture(newconfig); newentry->SetGeneralParameters(entry_to_update->addr, entry_to_update->size_in_bytes, entry_to_update->format); newentry->SetDimensions(entry_to_update->native_width, entry_to_update->native_height, 1); newentry->SetHashes(entry_to_update->base_hash, entry_to_update->hash); newentry->frameCount = frameCount; newentry->is_efb_copy = false; srcrect.right = entry_to_update->config.width; srcrect.bottom = entry_to_update->config.height; dstrect.right = w; dstrect.bottom = h; newentry->CopyRectangleFromTexture(entry_to_update, srcrect, dstrect); entry_to_update = newentry; u64 key = iter_t->first; iter_t = FreeTexture(iter_t); textures_by_address.emplace(key, entry_to_update); } } srcrect.right = entry->config.width; srcrect.bottom = entry->config.height; dstrect.left = x * entry_to_update->config.width / entry_to_update->native_width; dstrect.top = y * entry_to_update->config.height / entry_to_update->native_height; dstrect.right = (x + entry->native_width) * entry_to_update->config.width / entry_to_update->native_width; dstrect.bottom = (y + entry->native_height) * entry_to_update->config.height / entry_to_update->native_height; entry_to_update->CopyRectangleFromTexture(entry, srcrect, dstrect); // Mark the texture update as used, so it isn't applied more than once entry->frameCount = frameCount; } ++iter; } return entry_to_update; }
void TextureCacheBase::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, u32 dstStride, PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf) { // Emulation methods: // // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures. // // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // // - Hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing. // // For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies. float colmat[28] = { 0 }; float *const fConstAdd = colmat + 16; float *const ColorMask = colmat + 20; ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f; unsigned int cbufid = -1; bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24; if (srcFormat == PEControl::Z24) { switch (dstFormat) { case 0: // Z4 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 0; dstFormat |= _GX_TF_CTF; break; case 8: // Z8H dstFormat |= _GX_TF_CTF; case 1: // Z8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f; cbufid = 1; break; case 3: // Z16 colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f; cbufid = 2; break; case 11: // Z16 (reverse order) colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 3; dstFormat |= _GX_TF_CTF; break; case 6: // Z24X8 colmat[0] = colmat[5] = colmat[10] = 1.0f; cbufid = 4; break; case 9: // Z8M colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 5; dstFormat |= _GX_TF_CTF; break; case 10: // Z8L colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 6; dstFormat |= _GX_TF_CTF; break; case 12: // Z16L - copy lower 16 depth bits // expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha) // Used e.g. in Zelda: Skyward Sword colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 7; dstFormat |= _GX_TF_CTF; break; default: ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat); colmat[2] = colmat[5] = colmat[8] = 1.0f; cbufid = 8; break; } dstFormat |= _GX_TF_ZTF; } else if (isIntensity) { fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f / 255.0f; switch (dstFormat) { case 0: // I4 case 1: // I8 case 2: // IA4 case 3: // IA8 case 8: // I8 // TODO - verify these coefficients colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f; colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f; colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f; if (dstFormat < 2 || dstFormat == 8) { colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f; fConstAdd[3] = 16.0f / 255.0f; if (dstFormat == 0) { ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f; cbufid = 9; } else { cbufid = 10; } } else// alpha { colmat[15] = 1; if (dstFormat == 2) { ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f; cbufid = 11; } else { cbufid = 12; } } break; default: ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 13; break; } } else { switch (dstFormat) { case 0: // R4 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; ColorMask[0] = 15.0f; ColorMask[4] = 1.0f / 15.0f; cbufid = 14; dstFormat |= _GX_TF_CTF; break; case 1: // R8 case 8: // R8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; cbufid = 15; dstFormat = GX_CTF_R8; break; case 2: // RA4 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[7] = 1.0f / 15.0f; cbufid = 16; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 17; } dstFormat |= _GX_TF_CTF; break; case 3: // RA8 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; cbufid = 18; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 19; } dstFormat |= _GX_TF_CTF; break; case 7: // A8 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 20; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[0] = 1.0f; fConstAdd[1] = 1.0f; fConstAdd[2] = 1.0f; fConstAdd[3] = 1.0f; cbufid = 21; } dstFormat |= _GX_TF_CTF; break; case 9: // G8 colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 22; dstFormat |= _GX_TF_CTF; break; case 10: // B8 colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 23; dstFormat |= _GX_TF_CTF; break; case 11: // RG8 colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 24; dstFormat |= _GX_TF_CTF; break; case 12: // GB8 colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 25; dstFormat |= _GX_TF_CTF; break; case 4: // RGB565 colmat[0] = colmat[5] = colmat[10] = 1.0f; ColorMask[0] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[6] = 1.0f / 31.0f; ColorMask[1] = 63.0f; ColorMask[5] = 1.0f / 63.0f; fConstAdd[3] = 1.0f; // set alpha to 1 cbufid = 26; break; case 5: // RGB5A3 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f; ColorMask[3] = 7.0f; ColorMask[7] = 1.0f / 7.0f; cbufid = 27; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 28; } break; case 6: // RGBA8 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 29; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 30; } break; default: ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 31; break; } } u8* dst = Memory::GetPointer(dstAddr); if (dst == nullptr) { ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr); return; } const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth() / 2 : srcRect.GetWidth(); const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight() / 2 : srcRect.GetHeight(); unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w; unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h; // Remove all texture cache entries at dstAddr // It's not possible to have two EFB copies at the same address, this makes sure any old efb copies // (or normal textures) are removed from texture cache. They are also un-linked from any partially // updated textures, which forces that partially updated texture to be updated. // TODO: This also wipes out non-efb copies, which is counterproductive. { std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)dstAddr); TexCache::iterator iter = iter_range.first; while (iter != iter_range.second) { iter = InvalidateTexture(iter); } } // Get the base (in memory) format of this efb copy. int baseFormat = TexDecoder_GetEfbCopyBaseFormat(dstFormat); u32 blockH = TexDecoder_GetBlockHeightInTexels(baseFormat); const u32 blockW = TexDecoder_GetBlockWidthInTexels(baseFormat); // Round up source height to multiple of block size u32 actualHeight = ROUND_UP(tex_h, blockH); const u32 actualWidth = ROUND_UP(tex_w, blockW); u32 num_blocks_y = actualHeight / blockH; const u32 num_blocks_x = actualWidth / blockW; // RGBA takes two cache lines per block; all others take one const u32 bytes_per_block = baseFormat == GX_TF_RGBA8 ? 64 : 32; u32 bytes_per_row = num_blocks_x * bytes_per_block; bool copy_to_ram = !g_ActiveConfig.bSkipEFBCopyToRam; bool copy_to_vram = true; if (copy_to_ram) { g_texture_cache->CopyEFB( dst, dstFormat, tex_w, bytes_per_row, num_blocks_y, dstStride, srcFormat, srcRect, isIntensity, scaleByHalf); } else { // Hack: Most games don't actually need the correct texture data in RAM // and we can just keep a copy in VRAM. We zero the memory so we // can check it hasn't changed before using our copy in VRAM. u8* ptr = dst; for (u32 i = 0; i < num_blocks_y; i++) { memset(ptr, 0, bytes_per_row); ptr += dstStride; } } if (g_bRecordFifoData) { // Mark the memory behind this efb copy as dynamicly generated for the Fifo log u32 address = dstAddr; for (u32 i = 0; i < num_blocks_y; i++) { FifoRecorder::GetInstance().UseMemory(address, bytes_per_row, MemoryUpdate::TEXTURE_MAP, true); address += dstStride; } } if (dstStride < bytes_per_row) { // This kind of efb copy results in a scrambled image. // I'm pretty sure no game actually wants to do this, it might be caused by a // programming bug in the game, or a CPU/Bounding box emulation issue with dolphin. // The copy_to_ram code path above handles this "correctly" and scrambles the image // but the copy_to_vram code path just saves and uses unscrambled texture instead. // To avoid a "incorrect" result, we simply skip doing the copy_to_vram code path // so if the game does try to use the scrambled texture, dolphin will grab the scrambled // texture (or black if copy_to_ram is also disabled) out of ram. ERROR_LOG(VIDEO, "Memory stride too small (%i < %i)", dstStride, bytes_per_row); copy_to_vram = false; } // Invalidate all textures that overlap the range of our efb copy. // Unless our efb copy has a weird stride, then we want avoid invalidating textures which // we might be able to do a partial texture update on. // TODO: This also invalidates partial overlaps, which we currently don't have a better way // of dealing with. if (dstStride == bytes_per_row || !copy_to_vram) { TexCache::iterator iter = textures_by_address.begin(); while (iter != textures_by_address.end()) { if (iter->second->addr + iter->second->size_in_bytes <= dstAddr || iter->second->addr >= dstAddr + num_blocks_y * dstStride) ++iter; else iter = InvalidateTexture(iter); } } if (copy_to_vram) { // create the texture TCacheEntryConfig config; config.rendertarget = true; config.width = scaled_tex_w; config.height = scaled_tex_h; config.layers = FramebufferManagerBase::GetEFBLayers(); TCacheEntryBase* entry = AllocateTexture(config); if (entry) { entry->SetGeneralParameters(dstAddr, 0, baseFormat); entry->SetDimensions(tex_w, tex_h, 1); entry->frameCount = FRAMECOUNT_INVALID; entry->SetEfbCopy(dstStride); entry->is_custom_tex = false; entry->FromRenderTarget(dst, srcFormat, srcRect, scaleByHalf, cbufid, colmat); u64 hash = entry->CalculateHash(); entry->SetHashes(hash, hash); if (g_ActiveConfig.bDumpEFBTarget) { static int count = 0; entry->Save(StringFromFormat("%sefb_frame_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(), count++), 0); } textures_by_address.emplace((u64)dstAddr, entry); } } }
TextureCacheBase::TCacheEntryBase* TextureCacheBase::Load(const u32 stage) { const FourTexUnits &tex = bpmem.tex[stage >> 2]; const u32 id = stage & 3; const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5; u32 width = tex.texImage0[id].width + 1; u32 height = tex.texImage0[id].height + 1; const int texformat = tex.texImage0[id].format; const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9; const u32 tlutfmt = tex.texTlut[id].tlut_format; const bool use_mipmaps = SamplerCommon::AreBpTexMode0MipmapsEnabled(tex.texMode0[id]); u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1; const bool from_tmem = tex.texImage1[id].image_type != 0; if (0 == address) return nullptr; // TexelSizeInNibbles(format) * width * height / 16; const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat); const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat); unsigned int expandedWidth = ROUND_UP(width, bsw); unsigned int expandedHeight = ROUND_UP(height, bsh); const unsigned int nativeW = width; const unsigned int nativeH = height; // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup) u64 base_hash = TEXHASH_INVALID; u64 full_hash = TEXHASH_INVALID; u32 full_format = texformat; const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2); // Reject invalid tlut format. if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3) return nullptr; if (isPaletteTexture) full_format = texformat | (tlutfmt << 16); const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat); u32 additional_mips_size = 0; // not including level 0, which is texture_size // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we limit the mipmap count to 6 there tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels); for (u32 level = 1; level != tex_levels; ++level) { // We still need to calculate the original size of the mips const u32 expanded_mip_width = ROUND_UP(CalculateLevelSize(width, level), bsw); const u32 expanded_mip_height = ROUND_UP(CalculateLevelSize(height, level), bsh); additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); } const u8* src_data; if (from_tmem) src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE]; else src_data = Memory::GetPointer(address); if (!src_data) { ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", address); return nullptr; } // If we are recording a FifoLog, keep track of what memory we read. // FifiRecorder does it's own memory modification tracking independant of the texture hashing below. if (g_bRecordFifoData && !from_tmem) FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP); // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should) base_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); u32 palette_size = 0; if (isPaletteTexture) { palette_size = TexDecoder_GetPaletteSize(texformat); full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); } else { full_hash = base_hash; } // Search the texture cache for textures by address // // Find all texture cache entries for the current texture address, and decide whether to use one of // them, or to create a new one // // In most cases, the fastest way is to use only one texture cache entry for the same address. Usually, // when a texture changes, the old version of the texture is unlikely to be used again. If there were // new cache entries created for normal texture updates, there would be a slowdown due to a huge amount // of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is // faster than creating a new one from scratch. // // Some games use the same address for different textures though. If the same cache entry was used in // this case, it would be constantly overwritten, and effectively there wouldn't be any caching for // those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has multiple // sets of fonts on each other stored in a single texture and uses the palette to make different // characters visible or invisible. In Castlevania 3 some textures are used for 2 different things or // at least in 2 different ways(size 1024x1024 vs 1024x256). // // To determine whether to use multiple cache entries or a single entry, use the following heuristic: // If the same texture address is used several times during the same frame, assume the address is used // for different purposes and allow creating an additional cache entry. If there's at least one entry // that hasn't been used for the same frame, then overwrite it, in order to keep the cache as small as // possible. If the current texture is found in the cache, use that entry. // // For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else it was // done in vain. std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)address); TexCache::iterator iter = iter_range.first; TexCache::iterator oldest_entry = iter; int temp_frameCount = 0x7fffffff; TexCache::iterator unconverted_copy = textures_by_address.end(); while (iter != iter_range.second) { TCacheEntryBase* entry = iter->second; // Do not load strided EFB copies, they are not meant to be used directly if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH && entry->memory_stride == entry->BytesPerRow()) { // EFB copies have slightly different rules as EFB copy formats have different // meanings from texture formats. if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) || IsPlayingBackFifologWithBrokenEFBCopies) { // TODO: We should check format/width/height/levels for EFB copies. Checking // format is complicated because EFB copy formats don't exactly match // texture formats. I'm not sure what effect checking width/height/levels // would have. if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion) return ReturnEntry(stage, entry); // Note that we found an unconverted EFB copy, then continue. We'll // perform the conversion later. Currently, we only convert EFB copies to // palette textures; we could do other conversions if it proved to be // beneficial. unconverted_copy = iter; } else { // Aggressively prune EFB copies: if it isn't useful here, it will probably // never be useful again. It's theoretically possible for a game to do // something weird where the copy could become useful in the future, but in // practice it doesn't happen. iter = InvalidateTexture(iter); continue; } } else { // For normal textures, all texture parameters need to match if (entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(iter, &texMem[tlutaddr], tlutfmt); return ReturnEntry(stage, entry); } } // Find the texture which hasn't been used for the longest time. Count paletted // textures as the same texture here, when the texture itself is the same. This // improves the performance a lot in some games that use paletted textures. // Example: Sonic the Fighters (inside Sonic Gems Collection) // Skip EFB copies here, so they can be used for partial texture updates if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount && !entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash)) { temp_frameCount = entry->frameCount; oldest_entry = iter; } ++iter; } if (unconverted_copy != textures_by_address.end()) { TCacheEntryBase* decoded_entry = unconverted_copy->second->ApplyPalette(&texMem[tlutaddr], tlutfmt); if (decoded_entry) { return ReturnEntry(stage, decoded_entry); } } // Search the texture cache for normal textures by hash // // If the texture was fully hashed, the address does not need to match. Identical duplicate textures cause unnecessary slowdowns // Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 different ones if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 || std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8) { iter_range = textures_by_hash.equal_range(full_hash); iter = iter_range.first; while (iter != iter_range.second) { TCacheEntryBase* entry = iter->second; // All parameters, except the address, need to match here if (entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(iter, &texMem[tlutaddr], tlutfmt); return ReturnEntry(stage, entry); } ++iter; } } // If at least one entry was not used for the same frame, overwrite the oldest one if (temp_frameCount != 0x7fffffff) { // pool this texture and make a new one later InvalidateTexture(oldest_entry); } std::shared_ptr<HiresTexture> hires_tex; if (g_ActiveConfig.bHiresTextures) { hires_tex = HiresTexture::Search( src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps ); if (hires_tex) { const auto& level = hires_tex->m_levels[0]; if (level.width != width || level.height != height) { width = level.width; height = level.height; } expandedWidth = level .width; expandedHeight = level.height; CheckTempSize(level.data_size); memcpy(temp, level.data.get(), level.data_size); } } // how many levels the allocated texture shall have const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels; // create the entry/texture TCacheEntryConfig config; config.width = width; config.height = height; config.levels = texLevels; TCacheEntryBase* entry = AllocateTexture(config); GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true); if (!entry) return nullptr; if (!hires_tex) { if (!(texformat == GX_TF_RGBA8 && from_tmem)) { const u8* tlut = &texMem[tlutaddr]; TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat)tlutfmt); } else { u8* src_data_gb = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE]; TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight); } } iter = textures_by_address.emplace((u64)address, entry); if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 || std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8) { entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry); } entry->SetGeneralParameters(address, texture_size, full_format); entry->SetDimensions(nativeW, nativeH, tex_levels); entry->SetHashes(base_hash, full_hash); entry->is_efb_copy = false; entry->is_custom_tex = hires_tex != nullptr; // load texture entry->Load(width, height, expandedWidth, 0); std::string basename = ""; if (g_ActiveConfig.bDumpTextures && !hires_tex) { basename = HiresTexture::GenBaseName( src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps, true ); DumpTexture(entry, basename, 0); } if (hires_tex) { for (u32 level_index = 1; level_index != texLevels; ++level_index) { const auto& level = hires_tex->m_levels[level_index]; CheckTempSize(level.data_size); memcpy(temp, level.data.get(), level.data_size); entry->Load(level.width, level.height, level.width, level_index); } } else { // load mips - TODO: Loading mipmaps from tmem is untested! src_data += texture_size; const u8* ptr_even = nullptr; const u8* ptr_odd = nullptr; if (from_tmem) { ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE + texture_size]; ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE]; } for (u32 level = 1; level != texLevels; ++level) { const u32 mip_width = CalculateLevelSize(width, level); const u32 mip_height = CalculateLevelSize(height, level); const u32 expanded_mip_width = ROUND_UP(mip_width, bsw); const u32 expanded_mip_height = ROUND_UP(mip_height, bsh); const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data; const u8* tlut = &texMem[tlutaddr]; TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat)tlutfmt); mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); entry->Load(mip_width, mip_height, expanded_mip_width, level); if (g_ActiveConfig.bDumpTextures) DumpTexture(entry, basename, level); } } INCSTAT(stats.numTexturesUploaded); SETSTAT(stats.numTexturesAlive, textures_by_address.size()); entry = DoPartialTextureUpdates(iter, &texMem[tlutaddr], tlutfmt); return ReturnEntry(stage, entry); }
void TextureCacheBase::ScaleTextureCacheEntryTo(TextureCacheBase::TCacheEntryBase** entry, u32 new_width, u32 new_height) { if ((*entry)->config.width == new_width && (*entry)->config.height == new_height) { return; } u32 max = g_renderer->GetMaxTextureSize(); if (max < new_width || max < new_height) { ERROR_LOG(VIDEO, "Texture too big, width = %d, height = %d", new_width, new_height); return; } TextureCacheBase::TCacheEntryConfig newconfig; newconfig.width = new_width; newconfig.height = new_height; newconfig.layers = (*entry)->config.layers; newconfig.rendertarget = true; TCacheEntryBase* newentry = AllocateTexture(newconfig); if (newentry) { newentry->SetGeneralParameters((*entry)->addr, (*entry)->size_in_bytes, (*entry)->format); newentry->SetDimensions((*entry)->native_width, (*entry)->native_height, 1); newentry->SetHashes((*entry)->base_hash, (*entry)->hash); newentry->frameCount = frameCount; newentry->is_efb_copy = (*entry)->is_efb_copy; MathUtil::Rectangle<int> srcrect, dstrect; srcrect.left = 0; srcrect.top = 0; srcrect.right = (*entry)->config.width; srcrect.bottom = (*entry)->config.height; dstrect.left = 0; dstrect.top = 0; dstrect.right = new_width; dstrect.bottom = new_height; newentry->CopyRectangleFromTexture(*entry, srcrect, dstrect); // Keep track of the pointer for textures_by_hash if ((*entry)->textures_by_hash_iter != textures_by_hash.end()) { newentry->textures_by_hash_iter = textures_by_hash.emplace((*entry)->hash, newentry); } // Remove the old texture std::pair<TexCache::iterator, TexCache::iterator>iter_range = textures_by_address.equal_range((*entry)->addr); TexCache::iterator iter = iter_range.first; while (iter != iter_range.second) { if (iter->second == *entry) { FreeTexture(iter); iter = iter_range.second; } else { iter++; } } *entry = newentry; textures_by_address.emplace((*entry)->addr, *entry); } else { ERROR_LOG(VIDEO, "Scaling failed"); } }
void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, unsigned int srcFormat, const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf) { // Emulation methods: // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures. // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // - hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing. // // For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies. float colmat[28] = {0}; float *const fConstAdd = colmat + 16; float *const ColorMask = colmat + 20; ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f; unsigned int cbufid = -1; if (srcFormat == PIXELFMT_Z24) { switch (dstFormat) { case 0: // Z4 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 0; break; case 1: // Z8 case 8: // Z8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f; cbufid = 1; break; case 3: // Z16 colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f; cbufid = 24; break; case 11: // Z16 (reverse order) colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 2; break; case 6: // Z24X8 colmat[0] = colmat[5] = colmat[10] = 1.0f; cbufid = 3; break; case 9: // Z8M colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 4; break; case 10: // Z8L colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 5; break; case 12: // Z16L - copy lower 16 depth bits // expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha) // Used e.g. in Zelda: Skyward Sword colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 6; break; default: ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat); colmat[2] = colmat[5] = colmat[8] = 1.0f; cbufid = 7; break; } } else if (isIntensity) { fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f/255.0f; switch (dstFormat) { case 0: // I4 case 1: // I8 case 2: // IA4 case 3: // IA8 case 8: // I8 // TODO - verify these coefficients colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f; colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f; colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f; if (dstFormat < 2 || dstFormat == 8) { colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f; fConstAdd[3] = 16.0f/255.0f; if (dstFormat == 0) { ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f; cbufid = 8; } else { cbufid = 9; } } else// alpha { colmat[15] = 1; if (dstFormat == 2) { ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f; cbufid = 10; } else { cbufid = 11; } } break; default: ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 23; break; } } else { switch (dstFormat) { case 0: // R4 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; ColorMask[0] = 15.0f; ColorMask[4] = 1.0f / 15.0f; cbufid = 12; break; case 1: // R8 case 8: // R8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; cbufid = 13; break; case 2: // RA4 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[7] = 1.0f / 15.0f; cbufid = 14; break; case 3: // RA8 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; cbufid = 15; break; case 7: // A8 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 16; break; case 9: // G8 colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 17; break; case 10: // B8 colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 18; break; case 11: // RG8 colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 19; break; case 12: // GB8 colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 20; break; case 4: // RGB565 colmat[0] = colmat[5] = colmat[10] = 1.0f; ColorMask[0] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[6] = 1.0f / 31.0f; ColorMask[1] = 63.0f; ColorMask[5] = 1.0f / 63.0f; fConstAdd[3] = 1.0f; // set alpha to 1 cbufid = 21; break; case 5: // RGB5A3 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f; ColorMask[3] = 7.0f; ColorMask[7] = 1.0f / 7.0f; cbufid = 22; break; case 6: // RGBA8 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 23; break; default: ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 23; break; } } const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth()/2 : srcRect.GetWidth(); const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight()/2 : srcRect.GetHeight(); unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w; unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h; TCacheEntryBase *entry = textures[dstAddr]; if (entry) { if (entry->type == TCET_EC_DYNAMIC && entry->native_width == tex_w && entry->native_height == tex_h) { scaled_tex_w = tex_w; scaled_tex_h = tex_h; } else if (!(entry->type == TCET_EC_VRAM && entry->virtual_width == scaled_tex_w && entry->virtual_height == scaled_tex_h)) { // remove it and recreate it as a render target delete entry; entry = NULL; } } if (NULL == entry) { // create the texture textures[dstAddr] = entry = g_texture_cache->CreateRenderTargetTexture(scaled_tex_w, scaled_tex_h); // TODO: Using the wrong dstFormat, dumb... entry->SetGeneralParameters(dstAddr, 0, dstFormat, 1); entry->SetDimensions(tex_w, tex_h, scaled_tex_w, scaled_tex_h); entry->SetHashes(TEXHASH_INVALID); entry->type = TCET_EC_VRAM; } entry->frameCount = frameCount; g_renderer->ResetAPIState(); // reset any game specific settings entry->FromRenderTarget(dstAddr, dstFormat, srcFormat, srcRect, isIntensity, scaleByHalf, cbufid, colmat); g_renderer->RestoreAPIState(); }
void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, u32 dstStride, PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf) { // Emulation methods: // // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures. // // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // // - Hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing. // // For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies. float colmat[28] = { 0 }; float *const fConstAdd = colmat + 16; float *const ColorMask = colmat + 20; ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f; unsigned int cbufid = -1; bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24; if (srcFormat == PEControl::Z24) { switch (dstFormat) { case 0: // Z4 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 0; dstFormat |= _GX_TF_CTF; break; case 8: // Z8H dstFormat |= _GX_TF_CTF; case 1: // Z8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f; cbufid = 1; break; case 3: // Z16 colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f; cbufid = 2; break; case 11: // Z16 (reverse order) colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 3; dstFormat |= _GX_TF_CTF; break; case 6: // Z24X8 colmat[0] = colmat[5] = colmat[10] = 1.0f; cbufid = 4; break; case 9: // Z8M colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 5; dstFormat |= _GX_TF_CTF; break; case 10: // Z8L colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 6; dstFormat |= _GX_TF_CTF; break; case 12: // Z16L - copy lower 16 depth bits // expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha) // Used e.g. in Zelda: Skyward Sword colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 7; dstFormat |= _GX_TF_CTF; break; default: ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat); colmat[2] = colmat[5] = colmat[8] = 1.0f; cbufid = 8; break; } dstFormat |= _GX_TF_ZTF; } else if (isIntensity) { fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f / 255.0f; switch (dstFormat) { case 0: // I4 case 1: // I8 case 2: // IA4 case 3: // IA8 case 8: // I8 // TODO - verify these coefficients colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f; colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f; colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f; if (dstFormat < 2 || dstFormat == 8) { colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f; fConstAdd[3] = 16.0f / 255.0f; if (dstFormat == 0) { ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f; cbufid = 9; } else { cbufid = 10; } } else// alpha { colmat[15] = 1; if (dstFormat == 2) { ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f; cbufid = 11; } else { cbufid = 12; } } break; default: ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 13; break; } } else { switch (dstFormat) { case 0: // R4 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; ColorMask[0] = 15.0f; ColorMask[4] = 1.0f / 15.0f; cbufid = 14; dstFormat |= _GX_TF_CTF; break; case 1: // R8 case 8: // R8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; cbufid = 15; dstFormat |= _GX_TF_CTF; break; case 2: // RA4 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[7] = 1.0f / 15.0f; cbufid = 16; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 17; } dstFormat |= _GX_TF_CTF; break; case 3: // RA8 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; cbufid = 18; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 19; } dstFormat |= _GX_TF_CTF; break; case 7: // A8 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 20; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[0] = 1.0f; fConstAdd[1] = 1.0f; fConstAdd[2] = 1.0f; fConstAdd[3] = 1.0f; cbufid = 21; } dstFormat |= _GX_TF_CTF; break; case 9: // G8 colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 22; dstFormat |= _GX_TF_CTF; break; case 10: // B8 colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 23; dstFormat |= _GX_TF_CTF; break; case 11: // RG8 colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 24; dstFormat |= _GX_TF_CTF; break; case 12: // GB8 colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 25; dstFormat |= _GX_TF_CTF; break; case 4: // RGB565 colmat[0] = colmat[5] = colmat[10] = 1.0f; ColorMask[0] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[6] = 1.0f / 31.0f; ColorMask[1] = 63.0f; ColorMask[5] = 1.0f / 63.0f; fConstAdd[3] = 1.0f; // set alpha to 1 cbufid = 26; break; case 5: // RGB5A3 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f; ColorMask[3] = 7.0f; ColorMask[7] = 1.0f / 7.0f; cbufid = 27; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 28; } break; case 6: // RGBA8 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 29; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 30; } break; default: ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 31; break; } } u8* dst = Memory::GetPointer(dstAddr); if (dst == nullptr) { ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr); return; } const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth() / 2 : srcRect.GetWidth(); const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight() / 2 : srcRect.GetHeight(); unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w; unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h; // remove all texture cache entries at dstAddr { std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)dstAddr); TexCache::iterator iter = iter_range.first; while (iter != iter_range.second) { iter = FreeTexture(iter); } } // create the texture TCacheEntryConfig config; config.rendertarget = true; config.width = scaled_tex_w; config.height = scaled_tex_h; config.layers = FramebufferManagerBase::GetEFBLayers(); TCacheEntryBase* entry = AllocateTexture(config); entry->SetGeneralParameters(dstAddr, 0, dstFormat); entry->SetDimensions(tex_w, tex_h, 1); entry->frameCount = FRAMECOUNT_INVALID; entry->SetEfbCopy(dstStride); entry->is_custom_tex = false; entry->FromRenderTarget(dst, dstFormat, dstStride, srcFormat, srcRect, isIntensity, scaleByHalf, cbufid, colmat); u64 hash = entry->CalculateHash(); entry->SetHashes(hash, hash); // Invalidate all textures that overlap the range of our efb copy. // Unless our efb copy has a weird stride, then we want avoid invalidating textures which // we might be able to do a partial texture update on. if (entry->memory_stride == entry->CacheLinesPerRow() * 32) { TexCache::iterator iter = textures_by_address.begin(); while (iter != textures_by_address.end()) { if (iter->second->OverlapsMemoryRange(dstAddr, entry->size_in_bytes)) iter = FreeTexture(iter); else ++iter; } } if (g_ActiveConfig.bDumpEFBTarget) { static int count = 0; entry->Save(StringFromFormat("%sefb_frame_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(), count++), 0); } if (g_bRecordFifoData) { // Mark the memory behind this efb copy as dynamicly generated for the Fifo log u32 address = dstAddr; for (u32 i = 0; i < entry->NumBlocksY(); i++) { FifoRecorder::GetInstance().UseMemory(address, entry->CacheLinesPerRow() * 32, MemoryUpdate::TEXTURE_MAP, true); address += entry->memory_stride; } } textures_by_address.emplace((u64)dstAddr, entry); }