/* * Generates a hash value by reversing the matchLength least significant digits, * ignoring non-digits and zeroes at the end of the number. Returns error if no phone * digits are supplied. * \param phoneNumberString A descriptor containing a phone number. * \param matchLength The number of digits from the right of the phone number to use. * \param numPhoneDigits The number of digits found in the phone number string. * \param error Qt error code.* * \return An integer representation of the phone number string in reverse. */ TInt32 CntFilterDetail::TMatch::createHash( const TDesC& phoneNumberString, TInt matchLength, TInt& numPhoneDigits) { TInt phoneNumberLength = phoneNumberString.Length(); TInt startIndex = 0; if (phoneNumberLength > matchLength) { startIndex = phoneNumberLength - matchLength; } numPhoneDigits = 0; TUint reversedDigits = 0; TInt mult = 1; for (TInt chrIndex = startIndex; (numPhoneDigits < matchLength) && (chrIndex < phoneNumberLength); chrIndex++) { TChar chr = phoneNumberString[chrIndex]; if (chr.IsDigit()) { reversedDigits += (chr.GetNumericValue()) * mult; mult = mult * 10; ++numPhoneDigits; } } return reversedDigits ; }
/** Generates a hash value by reversing the aMatchLength least significant digits, ignoring non-digits and zeroes at the end of the number. Asserts if no phone digits are supplied. @param aPhoneNumberString A descriptor containing a phone number. @param aMatchLength The number of digits from the right of the phone number to use. @param aNumPhoneDigits The number of digits found in the phone number string. @return An integer representation of the phone number string in reverse. */ TInt32 CPplCommAddrTable::TMatch::CreateHashL(const TDesC& aPhoneNumberString, TInt aMatchLength, TInt& aNumPhoneDigits) { TInt phoneNumberLength = aPhoneNumberString.Length(); __ASSERT_DEBUG(phoneNumberLength > 0, User::Leave(KErrNotSupported) ); TInt startIndex = 0; if (phoneNumberLength > aMatchLength) { startIndex = phoneNumberLength - aMatchLength; } aNumPhoneDigits = 0; TUint reversedDigits = 0; TInt mult = 1; for (TInt chrIndex = startIndex; (aNumPhoneDigits < aMatchLength) && (chrIndex < phoneNumberLength); chrIndex++) { TChar chr = aPhoneNumberString[chrIndex]; if (chr.IsDigit() ) { reversedDigits += (chr.GetNumericValue() ) * mult; mult = mult * 10; ++aNumPhoneDigits; } } return reversedDigits ; }
void CntFilterDetail::TMatch::stripOutNonDigitChars(TDes& text) { for (TInt chrPos = 0; chrPos < text.Length(); ++chrPos) { TChar chr = text[chrPos]; if (!chr.IsDigit()) { text.Delete(chrPos, 1); --chrPos; } } }
/** Strip out any non-digit characters before we convert the phone number to an integer. @param aText Phone number which on return will have any non-digit characters removed. */ void CPplCommAddrTable::TMatch::StripOutNonDigitChars(TDes& aText) { for(TInt chrPos = 0; chrPos < aText.Length(); ++chrPos) { TChar chr = aText[chrPos]; if (!chr.IsDigit() ) { aText.Delete(chrPos, 1); --chrPos; } } }
// ----------------------------------------------------------------------------- // SdpUtil::IsTokenChar // Checks if the character is a valid token character // ----------------------------------------------------------------------------- // TBool SdpUtil::IsTokenChar( TChar aChar ) { return ( ( aChar == '!')|| ( aChar >= '#' && aChar <= '\'' ) || ( aChar == '*' || aChar == '+' ) || ( aChar == '-' || aChar == '.' ) || ( aChar.IsDigit() ) || ( aChar >= 'a' && aChar <= 'z' ) || ( aChar >= 'A' && aChar <= 'Z' ) || ( aChar >= '^' && aChar <= '~' ) ); }
/** Initialize the counter with the numeric equivalent of the descriptor contents This function is here to demonstrate reading from the client address space. Note that in this example, the client and the server are part of the same process, */ void CCountServSession::SetFromStringL(const RMessage2& aMessage) { // length of passed descriptor (1st parameter passed from client) TInt deslen = aMessage.GetDesLength(0); // Passed data will be saved in this descriptor. RBuf buffer; // Max length set to the value of "deslen", but current length is zero buffer.CreateL(deslen); // Do the right cleanup if anything subsequently goes wrong buffer.CleanupClosePushL(); // Copy the client's descriptor data into our buffer. aMessage.ReadL(0,buffer,0); // Now do a validation to make sure that the string only has digits if (buffer.Length() == 0) { User::Leave(ENonNumericString); } TLex16 lexer; lexer.Assign(buffer); while (!lexer.Eos()) { TChar thechar; thechar = lexer.Peek(); if (!thechar.IsDigit()) { User::Leave(ENonNumericString); } lexer.Inc(); } // Convert to a simple TInt value. lexer.Assign(buffer); if (lexer.Val(iCount)) { User::Leave(ENonNumericString); } // Clean up the memory acquired by the RBuf variable "buffer" CleanupStack::PopAndDestroy(); }
// --------------------------------------------------------------------------- // CMceIceErrorTrigger::ParseErrorCode // --------------------------------------------------------------------------- // TInt CMceIceErrorTrigger::ParseErrorCode() const { TInt errorCode( 0 ); TLex8 lex( Value() ); TChar ch = lex.Peek(); while ( !ch.IsDigit() && ch != '-' && !ch.Eos() ) { lex.Get(); ch = lex.Peek(); } if ( ch.Eos() ) { errorCode = KErrNotFound; } else { lex.Val( errorCode ); } RDebug::Print( _L("ICEPlugin Dummy: ParseErrorCode=%d" ), errorCode ); return errorCode; }
// Process the received buffer, creating atoms as we go void CImapIO::ProcessBufferL() { // Process the buffer TChar byte; DBG((LogText(_L8("CImapIO::ProcessBuffer(iParserState=%d, Length=%d)"),iParserState,iReceive.Length()))); for(TInt pos=0;pos<iReceive.Length();pos++) { // Note that we've processed stuff iBytesRead++; // Byte to process byte=iReceive[pos]; switch(iParserState) { case EIOStateAtomWait: switch(byte) { case '(': case '[': case '<': { // Make a new current atom CImapAtom *newAtom=new (ELeave) CImapAtom(); iAtomArray.AppendL(newAtom); // Add it as a sibling to the current atom if (iNextIsChild) iAtom->AddChild(newAtom); else iAtom->AddNext(newAtom); // The next item should be a child iNextIsChild=ETrue; // Push current atom onto atom stack, make new current iAtom=newAtom; PushL(iAtom); // Store the open bracket in the buffer, so we can tell what it is TPtrC8 bufptr(iBuffer->Ptr()+iBuffer->Length(),1); BufferAppendL(byte); iAtom->Set(bufptr); break; } case ')': case ']': // End of this nesting level: pop last atom off stack and // make it the new current one iAtom=PopL(); // Any new atoms will be siblings, not children iNextIsChild=EFalse; break; case '{': // Start of a literal length iLiteralLength=0; iParserState=EIOStateLiteralLength; break; case ' ': // Whitespace. Ignore! This state only happens with whitespace // after a close )] or a endquote " break; case '\r': // Newline after a close )] or endquote " iParserState=EIOStateWaitLF; break; case '\"': // Quotes: we don't keep them, so the atom starts at the next // character. iAtomStart=iBuffer->Length(); iParserState=EIOStateInAtom; iParserQuoted=ETrue; iGotEscape=EFalse; break; default: // Start new atom in buffer iAtomStart=iBuffer->Length(); BufferAppendL(byte); iParserState=EIOStateInAtom; iParserQuoted=EFalse; break; } break; case EIOStateInAtom: if (iParserQuoted) { // Look for another quote if (byte=='\"') { // Just had an escape character? if (iGotEscape) { // Add the character BufferAppendL(byte); iGotEscape=EFalse; } else { // It's the terminator: Add the atom, minus the quotes AddAtomL(); iParserState=EIOStateAtomWait; } } // fix for INC51597 and DEF053082:if a " has been missed out by the server, this will end the atom at a \r else if(!iGotEscape && byte == '\r') { AddAtomL(); iParserState = EIOStateWaitLF; } else { // Escape character? if (!iGotEscape && byte=='\\') { // Got one iGotEscape=ETrue; } else { // Add to buffer BufferAppendL(byte); iGotEscape=EFalse; } } } else { if (byte==' ' || byte=='\r') { AddAtomL(); // Either go back to looking for an atom, or a LF iParserState=(byte=='\r')?EIOStateWaitLF:EIOStateAtomWait; } else if (byte=='(' || byte=='[') { // Add this atom AddAtomL(); // Make a new current atom CImapAtom *newAtom=new (ELeave) CImapAtom(); iAtomArray.AppendL(newAtom); // Add it as a sibling to the current atom if (iNextIsChild) iAtom->AddChild(newAtom); else iAtom->AddNext(newAtom); // The next item should be a child iNextIsChild=ETrue; // Push current atom onto atom stack, make new current iAtom=newAtom; PushL(iAtom); // Store the open bracket in the buffer, so we can tell what it is TPtrC8 bufptr(iBuffer->Ptr()+iBuffer->Length(),1); BufferAppendL(byte); iAtom->Set(bufptr); iParserState=EIOStateAtomWait; } else if (byte==')' || byte==']' || byte == '>') { // Although these bytes usually indicate the end of an atom, // they can also legitimately appear in a text field. // If this is the end of an atom, then it must be a child or // sibling atom in which case there will be an entry on the atom // stack. If there is no entry on the atom stack, then this must // be a text field so just add the byte to the buffer. if (iAtomStack.Count() > 0) { // Add this atom AddAtomL(); // End of this nesting level: pop last atom off stack and // make it the new current one iAtom=PopL(); // Any new atoms will be siblings, not children iNextIsChild=EFalse; iParserState=EIOStateAtomWait; } else { BufferAppendL(byte); } } else { // Add to buffer BufferAppendL(byte); } } break; case EIOStateWaitLF: // After LF, this is end of line, finish! if (byte=='\n') { // Remove everything from the buffer, we've finished iReceive.Delete(0,pos+1); // Reset bytes read count & complete iBytesRead=0; // Complete with KErrFoundEOL DBG((LogText(_L8("CImapIO::ProcessBuffer: Complete in EIOStateWaitLF")))); Complete(KErrFoundEOL); return; } break; case EIOStateLiteralLength: // Digit? if (byte.IsDigit()) { // Add it to the total iLiteralLength=(iLiteralLength*10)+(byte-(TChar)'0'); if (iLiteralLength <0) User::Leave(KErrCorrupt); } else if (byte=='}') { // Need to skip CR, LF iLiteralSkip=2; iParserState=EIOStateLiteralSkip; // Add the atom (with the length we know, but no data) to the // structure now, so that the partial structure can be parsed. iAtomStart=iBuffer->Length(); AddAtomL(iLiteralLength); } break; case EIOStateLiteralSkip: // Skipping... if (--iLiteralSkip==0) { // Is literal 0 bytes long? if (iLiteralLength==0) { // Nothing to follow iParserState=EIOStateAtomWait; } else { // Non-empty literal: go into fetch state iParserState=EIOStateLiteralFetch; } } break; case EIOStateLiteralFetch: // Fetching TInt fetchLength(0); if(KReceiveBuffer<iLiteralLength) { fetchLength = KReceiveBuffer; } else { fetchLength = iLiteralLength; } if(fetchLength > iReceive.Length()-pos) { fetchLength = iReceive.Length()-pos; } // need to extend buffer ? DBG((LogText(_L8(">>> CImapIO::ProcessBufferL(1):buflen=%d:buffsize=%d:litlen=%d:fetchlen=%d"), iBuffer->Length(),iBufferSize, iLiteralLength,fetchLength))); if (iBuffer->Length() + iLiteralLength > iBufferSize) { HBufC8 *oldbuffer=iBuffer; const TText8 *oldbufptr=iBuffer->Ptr(); // Extend by extra amount + round up by KIOBufferGranularity iBufferSize += iLiteralLength; iBufferSize += (KIOBufferGranularity - (iBufferSize % KIOBufferGranularity)); iBuffer=iBuffer->ReAllocL(iBufferSize); // Buffer moved? if (iBuffer!=oldbuffer) { // Fixup buffer tree pointers iRootAtom->FixupL(iBuffer,oldbufptr); } DBG((LogText(_L8(">>> CImapIO::ProcessBufferL(2):buflen=%d:buffsize=%d:litlen=%d:fetchlen=%d"), iBuffer->Length(),iBufferSize, iLiteralLength,fetchLength))); } iBuffer->Des().Append(iReceive.Mid(pos,fetchLength)); // adjust loop to account for data copy pos+=fetchLength-1; iLiteralLength-=fetchLength; DBG((LogText(_L8(">>> CImapIO::ProcessBufferL(3):buflen=%d:buffsize=%d:litlen=%d:fetchlen=%d"), iBuffer->Length(),iBufferSize, iLiteralLength,fetchLength))); if (iLiteralLength==0) { // Atom is already saved (we add literal atoms before they // are stored) iParserState=EIOStateAtomWait; } break; } } iReceive.Zero(); // At start of line, or if we're not doing a partial return, we need to // queue another read here if (iBytesRead==0 || !iReturnPartialLine) { // We've processed this buffer: queue a read. We only complete (above) // when we've had a whole reply, including terminating CRLF. DBG((LogText(_L8("CImapIO::ProcessBufferL(): queuing read, iBytesRead=%d, iReturnPartialLine is %d"), iBytesRead, iReturnPartialLine))); QueueRead(); } else { // Have we got 'enough' of the partial line? if (iBytesRead<iBytesToRead) { // Not enough yet: queue another partial read, for the remainder iBytesToRead-=iBytesRead; QueueRead(); } else { // Partial line parsed: return success (client will requeue) DBG((LogText(_L8("CImapIO::ProcessBuffer: Complete on partial line")))); Complete(KErrNone); } } }
/** * Extracts the real phone number from a contacts phone number field. * This method strips away any DTMF strings or extended services. An empty * descriptor is returned in aRawNumber if the field doesn't have a valid phone * number. * * @param aTextualNumber Descriptor containing a contacts model phone number field * @param aRawNumber Descriptor to write the raw number to (loaned by caller) */ void CContactDefaultPhoneNumberParser::ExtractRawNumber(const TDesC& aTextualNumber, TDes& aRawNumber) { aRawNumber.Zero(); TInt length = aTextualNumber.Length(); if (length==0) { return; } TPtrC numberPtr( aTextualNumber ); TUint firstChar = numberPtr[0]; //gobble spaces while (TChar(firstChar).IsSpace()) { --length; if (length==0) { return; } numberPtr.Set(numberPtr.Right(length)); firstChar = numberPtr[0]; } // Get left hand side if ( firstChar == KSymbolAsterisk || firstChar == KSymbolHash ) { //Check if there is plus on first five chars: TInt newStartPlace = numberPtr.Locate( KSymbolPlus ); if ( newStartPlace>=KPlusWithinChars || newStartPlace==KErrNotFound ) { // There is always star or hash... newStartPlace = Max( numberPtr.LocateReverse(KSymbolAsterisk ) ,numberPtr.LocateReverse( KSymbolHash) ); } length = length - newStartPlace -1; if ( length <= 0 ) { return; } numberPtr.Set( numberPtr.Right( length ) ); firstChar = numberPtr[0]; } //test condition to satisfy the removal of '(' the next if //statement removes the '+' if needed if ( firstChar == KSymbolOpenBrace ) { length--; numberPtr.Set( numberPtr.Right( length ) ); // This may be the only character in the descriptor so only access if // 1 or more characters left. if (length > 0 ) { firstChar = numberPtr[0]; } } if ( firstChar == KSymbolPlus ) { length--; numberPtr.Set( numberPtr.Right( length ) ); } if (length==0) { return; } // Find right hand side TLex numberLexer( numberPtr ); for ( ; ; ) { TChar nextChar = numberLexer.Peek(); if ( !nextChar ) { break; } if ( nextChar.IsDigit() ) { aRawNumber.Append( nextChar ); numberLexer.Inc(); } else if ( nextChar == KSymbolAsterisk || nextChar == KSymbolHash ) { aRawNumber.Zero(); return; } else { nextChar.LowerCase(); if ( nextChar == KSymbolPause || nextChar == KSymbolWait || nextChar == KSymbolPlus) { break; } numberLexer.Inc(); } } }
void CActiveConsole::ProcessKeyPressL(TChar aChar) { if (aChar == EKeyEscape) { PRINT(_L("CActiveConsole: ESC key pressed -> stopping active scheduler...\n")); CActiveScheduler::Stop(); return; } aChar.UpperCase(); if (iCmdGetValue != 0 && aChar == '\r') { if (iLastChar == 'K') { iValue *= iGetHexValue ? 0x400 : 1000; } if (iLastChar == 'M') { iValue *= iGetHexValue ? 0x10000 : 1000000; } PRINT1(_L("CActiveConsole: Value %d\n"),iValue); ProcessValue(); } if (iCmdGetValue != 0 ) { if (iGetHexValue) { if (aChar.IsDigit()) { iValue = iValue * 16 + aChar.GetNumericValue(); } else { if (aChar.IsHexDigit()) { iValue = iValue * 16 + (TUint)aChar - 'A' + 10; } else { if (aChar != 'K' && aChar != 'M') { PRINT(_L("Illegal hexadecimal character - Enter command\n")); iCmdGetValue = 0; } } } } else { if (aChar.IsDigit()) { iValue = iValue * 10 + aChar.GetNumericValue(); } else { if ((aChar == 'X') && (iLastChar == '0') && (iValue == 0)) iGetHexValue = ETrue; else { if (aChar != 'K' && aChar != 'M') { test.Printf(_L("Illegal decimal character - Enter command\n")); iCmdGetValue = 0; } } } } } else { switch (aChar) { case 'F' : TESTNEXT(_L("Flushing Cache")); test_KErrNone(DPTest::FlushCache()); ShowMemoryUse(); iPrompt = ETrue; break; case 'I' : CacheSize(0,0); ShowMemoryUse(); iPrompt = ETrue; break; case 'Q' : gQuiet = ETrue; iPrompt = ETrue; break; case 'V' : gQuiet = EFalse; iPrompt = ETrue; break; case '?' : ShowHelp(); break; case '=' : iCmdGetValue = iLastChar; iGetHexValue = EFalse; iValue = 0; break; default : if (aChar.IsDigit()) { if (iLastChar == 'R') { if (aChar.GetNumericValue() < (TInt)gNextChunk) { ReadChunk (&gChunk[aChar.GetNumericValue()]); } else { for (TUint i = 0; i < gNextChunk; i++) ReadChunk (&gChunk[i]); } iPrompt = ETrue; } if (iLastChar == 'W') { if (aChar.GetNumericValue() < (TInt)gNextChunk) { WriteChunk (&gChunk[aChar.GetNumericValue()]); } else { for (TUint i = 0; i < gNextChunk; i++) WriteChunk (&gChunk[i]); } iPrompt = ETrue; } if (iLastChar == 'M') { if (aChar.GetNumericValue() == 0) { iActions = (TUint16)(iPeriod < KFlushQuietLimit ? EFlushQuiet : EFlush); } else { iActions = (TUint16)(aChar.GetNumericValue() << 4); } iPrompt = ETrue; } } break; } } iLastChar = aChar; GetCharacter(); return; }
EXPORT_C CSTBencode* CSTBencode::ParseL(const TDesC8& aBuffer) { TBencodeParserState parserState = EParsingInProgress; TLex8 lex(aBuffer); TChar c; TBool itemParsed = EFalse; // state flag, used to indicate that a bencoded // item has been parsed //TBool keyOnStack = EFalse; // used to indicate that there is a dictionary entry key on the stack CSTSimpleStack<CSTBencode>* parserStack = new (ELeave) CSTSimpleStack<CSTBencode>; CleanupStack::PushL(parserStack); while ( (c = lex.Peek()) && (parserState == EParsingInProgress)) { // bencoded string if (c.IsDigit()) { TInt stringLength = 0; if ((lex.Val(stringLength) == KErrNone) && (stringLength >= 0)) { while (c && (c != ':')) c = lex.Get(); if (!c || ((lex.Offset() + stringLength) > aBuffer.Length())) { parserState = EParsingFailed; continue; } lex.Mark(); lex.Inc(stringLength); CSTBencodedString* string = CSTBencodedString::NewLC(lex.MarkedToken()); parserStack->PushL(string); CleanupStack::Pop(); c = lex.Peek(); itemParsed = ETrue; } else { parserState = EParsingFailed; continue; } } else // bencoded integer if (c == 'i') { lex.Inc(); TInt64 value = 0; if (lex.Val(value) == KErrNone) { c = lex.Peek(); while (c && (c != 'e')) { lex.Inc(); c = lex.Peek(); } if (c == 'e') { CSTBencodedInteger* bencodedInteger = new (ELeave) CSTBencodedInteger(value); CleanupStack::PushL(bencodedInteger); parserStack->PushL(bencodedInteger); CleanupStack::Pop(); // bencodedInteger } } else { parserState = EParsingFailed; continue; } } else // bencoded list if (c == 'l') { lex.Inc(); CSTBencodedList* bencodedList = new (ELeave) CSTBencodedList; CleanupStack::PushL(bencodedList); parserStack->PushL(bencodedList); CleanupStack::Pop(); // bencodedList } else // bencoded dictionary if (c == 'd') { lex.Inc(); CSTBencodedDictionary* bencodedDictionary = new (ELeave) CSTBencodedDictionary; CleanupStack::PushL(bencodedDictionary); parserStack->PushL(bencodedDictionary); CleanupStack::Pop(); // bencodedDictionary } else // end of bencoded integer/list/dictionary if (c == 'e') { lex.Inc(); itemParsed = ETrue; } else parserState = EParsingFailed; if (itemParsed) { itemParsed = EFalse; if (parserStack->Count() == 1) parserState = EParsingSucceeded; else { switch (parserStack->FromTop(1)->Type()) { case EBencodedList: { CSTBencode* item = parserStack->Pop(); CleanupStack::PushL(item); static_cast<CSTBencodedList*>(parserStack->Top())->AppendL(item); CleanupStack::Pop(); // item } break; case EBencodedString: { if (parserStack->FromTop(2)->Type() == EBencodedDictionary) { CSTBencode* value = parserStack->Pop(); CSTBencodedString* key = static_cast<CSTBencodedString*>(parserStack->Pop()); CleanupStack::PushL(value); CleanupStack::PushL(key); static_cast<CSTBencodedDictionary*>(parserStack->Top())->AddEntryL(key, value); CleanupStack::Pop(); // key CleanupStack::Pop(); // value } else parserState = EParsingFailed; } break; case EBencodedDictionary: break; default: { parserState = EParsingFailed; } break; } } } // if (itemparsed) } // while CSTBencode* parsedItem = NULL; if (parserState == EParsingSucceeded) parsedItem = parserStack->Pop(); CleanupStack::PopAndDestroy(); // parserStack return parsedItem; }