// Returns name to be used in generated assembly for a given node string ARBVar::GetNodeVarName(TIntermTyped* node) { TIntermSymbol* symbol = node->getAsSymbolNode(); if (symbol) { return string("symbol_") + symbol->getSymbol().c_str(); } TIntermConstantUnion* cu = node->getAsConstantUnion(); if (cu) { string ret = ""; if (cu->getBasicType() == EbtFloat) { if (cu->getNominalSize() == 1) { ret = "const_" + floattostr(cu->getUnionArrayPointer()[0].getFConst()); } else if (cu->isVector() && cu->getNominalSize() > 1 && cu->getNominalSize() <= 4) { ret = "const_vec" + inttostr(cu->getNominalSize()); for (int i = 0; i < cu->getNominalSize(); ++i) { ret += "_" + floattostr(cu->getUnionArrayPointer()[i].getFConst()); } } } if (ret != "") { for (unsigned int i = 0; i < ret.size(); ++i) { if (ret[i] == '.') { ret[i] = 'x'; } } return ret; } } failmsg() << "Unknown node in GetNodeVarName [" << node->getCompleteString() << "]\n"; return "{unknown node}"; }
// Returns textual ARB program declaration for a given variable, including initialization // Returns "" to indicate that the variable shouldn't be declared, "ATTRIB" and "PARAM" for input, "TEMP" for temporary and "OUTPUT" for output variables string ARBVar::getARBVarDeclaration() const { if (isSampler()) { return ""; } else if (node) { TQualifier qual = node->getQualifier(); switch(node->getQualifier()) { case EvqPosition: return "OUTPUT out" + getasm() + " = result.position;\nTEMP " + getasm() + ";"; case EvqFragColor: return "OUTPUT out" + getasm() + " = result.color;\nTEMP " + getasm() + ";"; case EvqAttribute: return "ATTRIB " + getasm() + " = vertex.attrib[" + inttostr(getAttribNum(getasm())) + "]; # FIXME: Change to correct index"; case EvqConst: { string value = "{ ??? }; # FIXME: Enter correct values"; TIntermConstantUnion* cu = node->getAsConstantUnion(); if (cu && cu->getBasicType() == EbtFloat) { if (cu->getNominalSize() == 1) { value = floattostr(cu->getUnionArrayPointer()[0].getFConst()); value = "{ " + value + ", " + value + ", " + value + ", " + value + " };"; } else if (cu->isVector() && cu->getNominalSize() >= 1 && cu->getNominalSize() <= 4) { value = "{ "; for (int i = 0; i < 4; ++i) { if (i) { value += ", "; } if (i < cu->getNominalSize()) { value += floattostr(cu->getUnionArrayPointer()[i].getFConst()); } else { value += "0.0"; } } value += " };"; } } return "PARAM " + getasm() + " = " + value; } case EvqVaryingOut: return "OUTPUT out" + getasm() + " = result.texcoord[" + inttostr(getTexcoordNum(getasm())) + "]; # FIXME: Change to correct index;\nTEMP " + getasm() + ";"; case EvqVaryingIn: return "ATTRIB " + getasm() + " = fragment.texcoord[" + inttostr(getTexcoordNum(getasm())) + "]; # FIXME: Change to correct index"; case EvqTemporary: return "TEMP " + getasm() + ";"; case EvqUniform: return "PARAM " + getasm() + " = program.env[" + inttostr(getUniformNum(getasm())) + "]; # FIXME: Change to correct index"; default: return string("UNKNOWN NODE ") + getasm() + " - " + node->getQualifierString(); } } else { if (hardcodedName != "") { return ""; } else { return "TEMP " + getasm() + ";"; } } }
// // Do size checking for an array type's size. // // Returns true if there was an error. // bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size) { TIntermConstantUnion* constant = expr->getAsConstantUnion(); if (constant == 0 || constant->getBasicType() != EbtInt) { error(line, "array size must be a constant integer expression", "", ""); return true; } size = constant->getUnionArrayPointer()->getIConst(); if (size <= 0) { error(line, "array size must be a positive integer", "", ""); size = 1; return true; } return false; }
bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary* node) { bool visitChildren = true; TInfoSinkBase& out = objSink(); switch (node->getOp()) { case EOpInitialize: if (visit == InVisit) { out << " = "; // RHS of initialize is not being declared. mDeclaringVariables = false; } break; case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break; case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break; case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break; case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break; // Notice the fall-through. case EOpMulAssign: case EOpVectorTimesMatrixAssign: case EOpVectorTimesScalarAssign: case EOpMatrixTimesScalarAssign: case EOpMatrixTimesMatrixAssign: writeTriplet(visit, "(", " *= ", ")"); break; case EOpIndexDirect: case EOpIndexIndirect: writeTriplet(visit, NULL, "[", "]"); break; case EOpIndexDirectStruct: if (visit == InVisit) { out << "."; // TODO(alokp): ASSERT out << node->getType().getFieldName(); visitChildren = false; } break; case EOpVectorSwizzle: if (visit == InVisit) { out << "."; TIntermAggregate* rightChild = node->getRight()->getAsAggregate(); TIntermSequence& sequence = rightChild->getSequence(); for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit) { TIntermConstantUnion* element = (*sit)->getAsConstantUnion(); ASSERT(element->getBasicType() == EbtInt); ASSERT(element->getNominalSize() == 1); const ConstantUnion& data = element->getUnionArrayPointer()[0]; ASSERT(data.getType() == EbtInt); switch (data.getIConst()) { case 0: out << "x"; break; case 1: out << "y"; break; case 2: out << "z"; break; case 3: out << "w"; break; default: UNREACHABLE(); break; } } visitChildren = false; } break; case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break; case EOpSub: writeTriplet(visit, "(", " - ", ")"); break; case EOpMul: writeTriplet(visit, "(", " * ", ")"); break; case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break; case EOpMod: UNIMPLEMENTED(); break; case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break; case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break; case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break; case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break; case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break; case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break; // Notice the fall-through. case EOpVectorTimesScalar: case EOpVectorTimesMatrix: case EOpMatrixTimesVector: case EOpMatrixTimesScalar: case EOpMatrixTimesMatrix: writeTriplet(visit, "(", " * ", ")"); break; case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break; case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break; case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break; default: UNREACHABLE(); break; } return visitChildren; }
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink) { ConstantUnion *unionArray = getUnionArrayPointer(); int objectSize = getType().getObjectSize(); if (constantNode) { // binary operations TIntermConstantUnion *node = constantNode->getAsConstantUnion(); ConstantUnion *rightUnionArray = node->getUnionArrayPointer(); TType returnType = getType(); // for a case like float f = 1.2 + vec4(2,3,4,5); if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) { rightUnionArray = new ConstantUnion[objectSize]; for (int i = 0; i < objectSize; ++i) rightUnionArray[i] = *node->getUnionArrayPointer(); returnType = getType(); } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) { // for a case like float f = vec4(2,3,4,5) + 1.2; unionArray = new ConstantUnion[constantNode->getType().getObjectSize()]; for (int i = 0; i < constantNode->getType().getObjectSize(); ++i) unionArray[i] = *getUnionArrayPointer(); returnType = node->getType(); objectSize = constantNode->getType().getObjectSize(); } ConstantUnion* tempConstArray = 0; TIntermConstantUnion *tempNode; bool boolNodeFlag = false; switch(op) { case EOpAdd: tempConstArray = new ConstantUnion[objectSize]; {// support MSVC++6.0 for (int i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] + rightUnionArray[i]; } break; case EOpSub: tempConstArray = new ConstantUnion[objectSize]; {// support MSVC++6.0 for (int i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] - rightUnionArray[i]; } break; case EOpMul: case EOpVectorTimesScalar: case EOpMatrixTimesScalar: tempConstArray = new ConstantUnion[objectSize]; {// support MSVC++6.0 for (int i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] * rightUnionArray[i]; } break; case EOpMatrixTimesMatrix: if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) { infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine()); return 0; } {// support MSVC++6.0 int size = getNominalSize(); tempConstArray = new ConstantUnion[size*size]; for (int row = 0; row < size; row++) { for (int column = 0; column < size; column++) { tempConstArray[size * column + row].setFConst(0.0f); for (int i = 0; i < size; i++) { tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst())); } } } } break; case EOpDiv: tempConstArray = new ConstantUnion[objectSize]; {// support MSVC++6.0 for (int i = 0; i < objectSize; i++) { switch (getType().getBasicType()) { case EbtFloat: if (rightUnionArray[i] == 0.0f) { infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine()); tempConstArray[i].setFConst(FLT_MAX); } else tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst()); break; case EbtInt: if (rightUnionArray[i] == 0) { infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine()); tempConstArray[i].setIConst(INT_MAX); } else tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst()); break; default: infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine()); return 0; } } } break; case EOpMatrixTimesVector: if (node->getBasicType() != EbtFloat) { infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine()); return 0; } tempConstArray = new ConstantUnion[getNominalSize()]; {// support MSVC++6.0 for (int size = getNominalSize(), i = 0; i < size; i++) { tempConstArray[i].setFConst(0.0f); for (int j = 0; j < size; j++) { tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst())); } } } tempNode = new TIntermConstantUnion(tempConstArray, node->getType()); tempNode->setLine(getLine()); return tempNode; case EOpVectorTimesMatrix: if (getType().getBasicType() != EbtFloat) { infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine()); return 0; } tempConstArray = new ConstantUnion[getNominalSize()]; {// support MSVC++6.0 for (int size = getNominalSize(), i = 0; i < size; i++) { tempConstArray[i].setFConst(0.0f); for (int j = 0; j < size; j++) { tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst())); } } } break; case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently tempConstArray = new ConstantUnion[objectSize]; {// support MSVC++6.0 for (int i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] && rightUnionArray[i]; } break; case EOpLogicalOr: // this code is written for possible future use, will not get executed currently tempConstArray = new ConstantUnion[objectSize]; {// support MSVC++6.0 for (int i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] || rightUnionArray[i]; } break; case EOpLogicalXor: tempConstArray = new ConstantUnion[objectSize]; {// support MSVC++6.0 for (int i = 0; i < objectSize; i++) switch (getType().getBasicType()) { case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break; default: assert(false && "Default missing"); } } break; case EOpLessThan: assert(objectSize == 1); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(*unionArray < *rightUnionArray); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; case EOpGreaterThan: assert(objectSize == 1); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(*unionArray > *rightUnionArray); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; case EOpLessThanEqual: { assert(objectSize == 1); ConstantUnion constant; constant.setBConst(*unionArray > *rightUnionArray); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(!constant.getBConst()); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; } case EOpGreaterThanEqual: { assert(objectSize == 1); ConstantUnion constant; constant.setBConst(*unionArray < *rightUnionArray); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(!constant.getBConst()); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; } case EOpEqual: if (getType().getBasicType() == EbtStruct) { if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray)) boolNodeFlag = true; } else { for (int i = 0; i < objectSize; i++) { if (unionArray[i] != rightUnionArray[i]) { boolNodeFlag = true; break; // break out of for loop } } } tempConstArray = new ConstantUnion[1]; if (!boolNodeFlag) { tempConstArray->setBConst(true); } else { tempConstArray->setBConst(false); } tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst)); tempNode->setLine(getLine()); return tempNode; case EOpNotEqual: if (getType().getBasicType() == EbtStruct) { if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray)) boolNodeFlag = true; } else { for (int i = 0; i < objectSize; i++) { if (unionArray[i] == rightUnionArray[i]) { boolNodeFlag = true; break; // break out of for loop } } } tempConstArray = new ConstantUnion[1]; if (!boolNodeFlag) { tempConstArray->setBConst(true); } else { tempConstArray->setBConst(false); } tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst)); tempNode->setLine(getLine()); return tempNode; default: infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine()); return 0; } tempNode = new TIntermConstantUnion(tempConstArray, returnType); tempNode->setLine(getLine()); return tempNode; } else { // // Do unary operations // TIntermConstantUnion *newNode = 0; ConstantUnion* tempConstArray = new ConstantUnion[objectSize]; for (int i = 0; i < objectSize; i++) { switch(op) { case EOpNegative: switch (getType().getBasicType()) { case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break; case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break; default: infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine()); return 0; } break; case EOpLogicalNot: // this code is written for possible future use, will not get executed currently switch (getType().getBasicType()) { case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break; default: infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine()); return 0; } break; default: return 0; } } newNode = new TIntermConstantUnion(tempConstArray, getType()); newNode->setLine(getLine()); return newNode; } }
bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary* node) { bool visitChildren = true; TInfoSinkBase& out = objSink(); switch (node->getOp()) { case EOpInitialize: if (visit == InVisit) { out << " = "; // RHS of initialize is not being declared. mDeclaringVariables = false; } break; case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break; case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break; case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break; case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break; // Notice the fall-through. case EOpMulAssign: case EOpVectorTimesMatrixAssign: case EOpVectorTimesScalarAssign: case EOpMatrixTimesScalarAssign: case EOpMatrixTimesMatrixAssign: writeTriplet(visit, "(", " *= ", ")"); break; case EOpIndexDirect: writeTriplet(visit, NULL, "[", "]"); break; case EOpIndexIndirect: if (node->getAddIndexClamp()) { if (visit == InVisit) { if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) { out << "[int(clamp(float("; } else { out << "[webgl_int_clamp("; } } else if (visit == PostVisit) { int maxSize; TIntermTyped *left = node->getLeft(); TType leftType = left->getType(); if (left->isArray()) { // The shader will fail validation if the array length is not > 0. maxSize = leftType.getArraySize() - 1; } else { maxSize = leftType.getNominalSize() - 1; } if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) { out << "), 0.0, float(" << maxSize << ")))]"; } else { out << ", 0, " << maxSize << ")]"; } } } else { writeTriplet(visit, NULL, "[", "]"); } break; case EOpIndexDirectStruct: if (visit == InVisit) { out << "."; // TODO(alokp): ASSERT TString fieldName = node->getType().getFieldName(); const TType& structType = node->getLeft()->getType(); if (!mSymbolTable.findBuiltIn(structType.getTypeName())) fieldName = hashName(fieldName); out << fieldName; visitChildren = false; } break; case EOpVectorSwizzle: if (visit == InVisit) { out << "."; TIntermAggregate* rightChild = node->getRight()->getAsAggregate(); TIntermSequence& sequence = rightChild->getSequence(); for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit) { TIntermConstantUnion* element = (*sit)->getAsConstantUnion(); ASSERT(element->getBasicType() == EbtInt); ASSERT(element->getNominalSize() == 1); const ConstantUnion& data = element->getUnionArrayPointer()[0]; ASSERT(data.getType() == EbtInt); switch (data.getIConst()) { case 0: out << "x"; break; case 1: out << "y"; break; case 2: out << "z"; break; case 3: out << "w"; break; default: UNREACHABLE(); break; } } visitChildren = false; } break; case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break; case EOpSub: writeTriplet(visit, "(", " - ", ")"); break; case EOpMul: writeTriplet(visit, "(", " * ", ")"); break; case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break; case EOpMod: UNIMPLEMENTED(); break; case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break; case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break; case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break; case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break; case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break; case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break; // Notice the fall-through. case EOpVectorTimesScalar: case EOpVectorTimesMatrix: case EOpMatrixTimesVector: case EOpMatrixTimesScalar: case EOpMatrixTimesMatrix: writeTriplet(visit, "(", " * ", ")"); break; case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break; case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break; case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break; default: UNREACHABLE(); break; } return visitChildren; }
bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary *node) { bool visitChildren = true; TInfoSinkBase &out = objSink(); switch (node->getOp()) { case EOpInitialize: if (visit == InVisit) { out << " = "; // RHS of initialize is not being declared. mDeclaringVariables = false; } break; case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break; case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break; case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break; case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break; case EOpIModAssign: writeTriplet(visit, "(", " %= ", ")"); break; // Notice the fall-through. case EOpMulAssign: case EOpVectorTimesMatrixAssign: case EOpVectorTimesScalarAssign: case EOpMatrixTimesScalarAssign: case EOpMatrixTimesMatrixAssign: writeTriplet(visit, "(", " *= ", ")"); break; case EOpBitShiftLeftAssign: writeTriplet(visit, "(", " <<= ", ")"); break; case EOpBitShiftRightAssign: writeTriplet(visit, "(", " >>= ", ")"); break; case EOpBitwiseAndAssign: writeTriplet(visit, "(", " &= ", ")"); break; case EOpBitwiseXorAssign: writeTriplet(visit, "(", " ^= ", ")"); break; case EOpBitwiseOrAssign: writeTriplet(visit, "(", " |= ", ")"); break; case EOpIndexDirect: writeTriplet(visit, NULL, "[", "]"); break; case EOpIndexIndirect: if (node->getAddIndexClamp()) { if (visit == InVisit) { if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) out << "[int(clamp(float("; else out << "[webgl_int_clamp("; } else if (visit == PostVisit) { int maxSize; TIntermTyped *left = node->getLeft(); TType leftType = left->getType(); if (left->isArray()) { // The shader will fail validation if the array length is not > 0. maxSize = leftType.getArraySize() - 1; } else { maxSize = leftType.getNominalSize() - 1; } if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) out << "), 0.0, float(" << maxSize << ")))]"; else out << ", 0, " << maxSize << ")]"; } } else { writeTriplet(visit, NULL, "[", "]"); } break; case EOpIndexDirectStruct: if (visit == InVisit) { // Here we are writing out "foo.bar", where "foo" is struct // and "bar" is field. In AST, it is represented as a binary // node, where left child represents "foo" and right child "bar". // The node itself represents ".". The struct field "bar" is // actually stored as an index into TStructure::fields. out << "."; const TStructure *structure = node->getLeft()->getType().getStruct(); const TIntermConstantUnion *index = node->getRight()->getAsConstantUnion(); const TField *field = structure->fields()[index->getIConst(0)]; TString fieldName = field->name(); if (!mSymbolTable.findBuiltIn(structure->name(), mShaderVersion)) fieldName = hashName(fieldName); out << fieldName; visitChildren = false; } break; case EOpIndexDirectInterfaceBlock: if (visit == InVisit) { out << "."; const TInterfaceBlock *interfaceBlock = node->getLeft()->getType().getInterfaceBlock(); const TIntermConstantUnion *index = node->getRight()->getAsConstantUnion(); const TField *field = interfaceBlock->fields()[index->getIConst(0)]; TString fieldName = field->name(); ASSERT(!mSymbolTable.findBuiltIn(interfaceBlock->name(), mShaderVersion)); fieldName = hashName(fieldName); out << fieldName; visitChildren = false; } break; case EOpVectorSwizzle: if (visit == InVisit) { out << "."; TIntermAggregate *rightChild = node->getRight()->getAsAggregate(); TIntermSequence *sequence = rightChild->getSequence(); for (TIntermSequence::iterator sit = sequence->begin(); sit != sequence->end(); ++sit) { TIntermConstantUnion *element = (*sit)->getAsConstantUnion(); ASSERT(element->getBasicType() == EbtInt); ASSERT(element->getNominalSize() == 1); const TConstantUnion& data = element->getUnionArrayPointer()[0]; ASSERT(data.getType() == EbtInt); switch (data.getIConst()) { case 0: out << "x"; break; case 1: out << "y"; break; case 2: out << "z"; break; case 3: out << "w"; break; default: UNREACHABLE(); } } visitChildren = false; } break; case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break; case EOpSub: writeTriplet(visit, "(", " - ", ")"); break; case EOpMul: writeTriplet(visit, "(", " * ", ")"); break; case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break; case EOpIMod: writeTriplet(visit, "(", " % ", ")"); break; case EOpBitShiftLeft: writeTriplet(visit, "(", " << ", ")"); break; case EOpBitShiftRight: writeTriplet(visit, "(", " >> ", ")"); break; case EOpBitwiseAnd: writeTriplet(visit, "(", " & ", ")"); break; case EOpBitwiseXor: writeTriplet(visit, "(", " ^ ", ")"); break; case EOpBitwiseOr: writeTriplet(visit, "(", " | ", ")"); break; case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break; case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break; case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break; case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break; case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break; case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break; // Notice the fall-through. case EOpVectorTimesScalar: case EOpVectorTimesMatrix: case EOpMatrixTimesVector: case EOpMatrixTimesScalar: case EOpMatrixTimesMatrix: writeTriplet(visit, "(", " * ", ")"); break; case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break; case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break; case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break; default: UNREACHABLE(); } return visitChildren; }
// // The fold functions see if an operation on a constant can be done in place, // without generating run-time code. // // Returns the node to keep using, which may or may not be the node passed in. // TIntermTyped *TIntermConstantUnion::fold( TOperator op, TIntermTyped *constantNode, TInfoSink &infoSink) { ConstantUnion *unionArray = getUnionArrayPointer(); if (!unionArray) return NULL; size_t objectSize = getType().getObjectSize(); if (constantNode) { // binary operations TIntermConstantUnion *node = constantNode->getAsConstantUnion(); ConstantUnion *rightUnionArray = node->getUnionArrayPointer(); TType returnType = getType(); if (!rightUnionArray) return NULL; // for a case like float f = 1.2 + vec4(2,3,4,5); if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) { rightUnionArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; ++i) { rightUnionArray[i] = *node->getUnionArrayPointer(); } returnType = getType(); } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) { // for a case like float f = vec4(2,3,4,5) + 1.2; unionArray = new ConstantUnion[constantNode->getType().getObjectSize()]; for (size_t i = 0; i < constantNode->getType().getObjectSize(); ++i) { unionArray[i] = *getUnionArrayPointer(); } returnType = node->getType(); objectSize = constantNode->getType().getObjectSize(); } ConstantUnion *tempConstArray = NULL; TIntermConstantUnion *tempNode; bool boolNodeFlag = false; switch(op) { case EOpAdd: tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] + rightUnionArray[i]; break; case EOpSub: tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] - rightUnionArray[i]; break; case EOpMul: case EOpVectorTimesScalar: case EOpMatrixTimesScalar: tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) tempConstArray[i] = unionArray[i] * rightUnionArray[i]; break; case EOpMatrixTimesMatrix: { if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) { infoSink.info.message( EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix multiply"); return NULL; } const int leftCols = getCols(); const int leftRows = getRows(); const int rightCols = constantNode->getType().getCols(); const int rightRows = constantNode->getType().getRows(); const int resultCols = rightCols; const int resultRows = leftRows; tempConstArray = new ConstantUnion[resultCols*resultRows]; for (int row = 0; row < resultRows; row++) { for (int column = 0; column < resultCols; column++) { tempConstArray[resultRows * column + row].setFConst(0.0f); for (int i = 0; i < leftCols; i++) { tempConstArray[resultRows * column + row].setFConst( tempConstArray[resultRows * column + row].getFConst() + unionArray[i * leftRows + row].getFConst() * rightUnionArray[column * rightRows + i].getFConst()); } } } // update return type for matrix product returnType.setPrimarySize(resultCols); returnType.setSecondarySize(resultRows); } break; case EOpDiv: { tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) { switch (getType().getBasicType()) { case EbtFloat: if (rightUnionArray[i] == 0.0f) { infoSink.info.message( EPrefixWarning, getLine(), "Divide by zero error during constant folding"); tempConstArray[i].setFConst( unionArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX); } else { tempConstArray[i].setFConst( unionArray[i].getFConst() / rightUnionArray[i].getFConst()); } break; case EbtInt: if (rightUnionArray[i] == 0) { infoSink.info.message( EPrefixWarning, getLine(), "Divide by zero error during constant folding"); tempConstArray[i].setIConst(INT_MAX); } else { tempConstArray[i].setIConst( unionArray[i].getIConst() / rightUnionArray[i].getIConst()); } break; case EbtUInt: if (rightUnionArray[i] == 0) { infoSink.info.message( EPrefixWarning, getLine(), "Divide by zero error during constant folding"); tempConstArray[i].setUConst(UINT_MAX); } else { tempConstArray[i].setUConst( unionArray[i].getUConst() / rightUnionArray[i].getUConst()); } break; default: infoSink.info.message( EPrefixInternalError, getLine(), "Constant folding cannot be done for \"/\""); return NULL; } } } break; case EOpMatrixTimesVector: { if (node->getBasicType() != EbtFloat) { infoSink.info.message( EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix times vector"); return NULL; } const int matrixCols = getCols(); const int matrixRows = getRows(); tempConstArray = new ConstantUnion[matrixRows]; for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++) { tempConstArray[matrixRow].setFConst(0.0f); for (int col = 0; col < matrixCols; col++) { tempConstArray[matrixRow].setFConst( tempConstArray[matrixRow].getFConst() + unionArray[col * matrixRows + matrixRow].getFConst() * rightUnionArray[col].getFConst()); } } returnType = node->getType(); returnType.setPrimarySize(matrixRows); tempNode = new TIntermConstantUnion(tempConstArray, returnType); tempNode->setLine(getLine()); return tempNode; } case EOpVectorTimesMatrix: { if (getType().getBasicType() != EbtFloat) { infoSink.info.message( EPrefixInternalError, getLine(), "Constant Folding cannot be done for vector times matrix"); return NULL; } const int matrixCols = constantNode->getType().getCols(); const int matrixRows = constantNode->getType().getRows(); tempConstArray = new ConstantUnion[matrixCols]; for (int matrixCol = 0; matrixCol < matrixCols; matrixCol++) { tempConstArray[matrixCol].setFConst(0.0f); for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++) { tempConstArray[matrixCol].setFConst( tempConstArray[matrixCol].getFConst() + unionArray[matrixRow].getFConst() * rightUnionArray[matrixCol * matrixRows + matrixRow].getFConst()); } } returnType.setPrimarySize(matrixCols); } break; case EOpLogicalAnd: // this code is written for possible future use, // will not get executed currently { tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) { tempConstArray[i] = unionArray[i] && rightUnionArray[i]; } } break; case EOpLogicalOr: // this code is written for possible future use, // will not get executed currently { tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) { tempConstArray[i] = unionArray[i] || rightUnionArray[i]; } } break; case EOpLogicalXor: { tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) { switch (getType().getBasicType()) { case EbtBool: tempConstArray[i].setBConst( unionArray[i] == rightUnionArray[i] ? false : true); break; default: UNREACHABLE(); break; } } } break; case EOpLessThan: ASSERT(objectSize == 1); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(*unionArray < *rightUnionArray); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; case EOpGreaterThan: ASSERT(objectSize == 1); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(*unionArray > *rightUnionArray); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; case EOpLessThanEqual: { ASSERT(objectSize == 1); ConstantUnion constant; constant.setBConst(*unionArray > *rightUnionArray); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(!constant.getBConst()); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; } case EOpGreaterThanEqual: { ASSERT(objectSize == 1); ConstantUnion constant; constant.setBConst(*unionArray < *rightUnionArray); tempConstArray = new ConstantUnion[1]; tempConstArray->setBConst(!constant.getBConst()); returnType = TType(EbtBool, EbpUndefined, EvqConst); break; } case EOpEqual: if (getType().getBasicType() == EbtStruct) { if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray)) { boolNodeFlag = true; } } else { for (size_t i = 0; i < objectSize; i++) { if (unionArray[i] != rightUnionArray[i]) { boolNodeFlag = true; break; // break out of for loop } } } tempConstArray = new ConstantUnion[1]; if (!boolNodeFlag) { tempConstArray->setBConst(true); } else { tempConstArray->setBConst(false); } tempNode = new TIntermConstantUnion( tempConstArray, TType(EbtBool, EbpUndefined, EvqConst)); tempNode->setLine(getLine()); return tempNode; case EOpNotEqual: if (getType().getBasicType() == EbtStruct) { if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray)) { boolNodeFlag = true; } } else { for (size_t i = 0; i < objectSize; i++) { if (unionArray[i] == rightUnionArray[i]) { boolNodeFlag = true; break; // break out of for loop } } } tempConstArray = new ConstantUnion[1]; if (!boolNodeFlag) { tempConstArray->setBConst(true); } else { tempConstArray->setBConst(false); } tempNode = new TIntermConstantUnion( tempConstArray, TType(EbtBool, EbpUndefined, EvqConst)); tempNode->setLine(getLine()); return tempNode; default: infoSink.info.message( EPrefixInternalError, getLine(), "Invalid operator for constant folding"); return NULL; } tempNode = new TIntermConstantUnion(tempConstArray, returnType); tempNode->setLine(getLine()); return tempNode; } else { // // Do unary operations // TIntermConstantUnion *newNode = 0; ConstantUnion* tempConstArray = new ConstantUnion[objectSize]; for (size_t i = 0; i < objectSize; i++) { switch(op) { case EOpNegative: switch (getType().getBasicType()) { case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break; case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break; case EbtUInt: tempConstArray[i].setUConst(static_cast<unsigned int>( -static_cast<int>(unionArray[i].getUConst()))); break; default: infoSink.info.message( EPrefixInternalError, getLine(), "Unary operation not folded into constant"); return NULL; } break; case EOpPositive: switch (getType().getBasicType()) { case EbtFloat: tempConstArray[i].setFConst(unionArray[i].getFConst()); break; case EbtInt: tempConstArray[i].setIConst(unionArray[i].getIConst()); break; case EbtUInt: tempConstArray[i].setUConst(static_cast<unsigned int>( static_cast<int>(unionArray[i].getUConst()))); break; default: infoSink.info.message( EPrefixInternalError, getLine(), "Unary operation not folded into constant"); return NULL; } break; case EOpLogicalNot: // this code is written for possible future use, // will not get executed currently switch (getType().getBasicType()) { case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break; default: infoSink.info.message( EPrefixInternalError, getLine(), "Unary operation not folded into constant"); return NULL; } break; default: return NULL; } } newNode = new TIntermConstantUnion(tempConstArray, getType()); newNode->setLine(getLine()); return newNode; } }