int main2(int argc, char *argv[]) { #ifdef LOG4CXX InitializePZLOG(); #endif REAL Lx = 1.; REAL Ly = 1.; {// Checando funcoes TPZVec<REAL> pto(2,0.); TPZVec<STATE> disp(1,0.),solp(1,0.); pto[0]=0.200935; pto[1]=0.598129; TPZFMatrix<STATE>flux(3,1,0.); SolExata(pto, solp,flux); Forcing(pto, disp); solp.Print(std::cout); flux.Print(std::cout); disp.Print(std::cout); } // ofstream saidaerro("../ErroPoissonHdivMalhaQuad.txt",ios::app); ofstream saidaerro("../ErroPoissonHdivMalhaTriang.txt",ios::app); for(int p = 1; p<2; p++) { int pq = p; int pp; if(ftriang==true){ pp = pq-1; }else{ pp = pq; } int ndiv; saidaerro<<"\n CALCULO DO ERRO, COM ORDEM POLINOMIAL pq = " << pq << " e pp = "<< pp <<endl; for (ndiv = 1; ndiv< 2; ndiv++) { //std::cout << "p order " << p << " number of divisions " << ndiv << std::endl; saidaerro<<"\n<<<<<< Numero de divisoes uniforme ndiv = " << ndiv <<" >>>>>>>>>>> "<<endl; TPZGeoMesh *gmesh = GMesh(ftriang, Lx, Ly); ofstream arg("gmesh1.txt"); gmesh->Print(arg); UniformRefine(gmesh, ndiv); TPZCompMesh *cmesh1 = CMeshFlux(gmesh, pq); TPZCompMesh *cmesh2 = CMeshPressure(gmesh, pp); // ofstream arg1("cmeshflux.txt"); // cmesh1->Print(arg1); // // ofstream arg2("cmeshpressure.txt"); // cmesh2->Print(arg2); // // ofstream arg4("gmesh2.txt"); // gmesh->Print(arg4); //malha multifisica TPZVec<TPZCompMesh *> meshvec(2); meshvec[0] = cmesh1; meshvec[1] = cmesh2; TPZCompMesh * mphysics = CMeshMixed(gmesh,meshvec); std::cout << "Number of equations " << mphysics->NEquations() << std::endl; int numthreads = 8; std::cout << "Number of threads " << numthreads << std::endl; TPZAnalysis an(mphysics); SolveSyst(an, mphysics,numthreads); // ofstream arg5("cmeshmultiphysics.txt"); // mphysics->Print(arg5); //Calculo do erro TPZBuildMultiphysicsMesh::TransferFromMultiPhysics(meshvec, mphysics); TPZVec<REAL> erros; saidaerro << "Valor de epsilone " << EPSILON << std::endl; saidaerro << "Numero de threads " << numthreads << std::endl; saidaerro<<" \nErro da simulacao multifisica do fluxo (q)" <<endl; ErrorHDiv(cmesh1, saidaerro); saidaerro<<" Erro da simulacao multifisica da pressao (p)" <<endl; ErrorL2(cmesh2, saidaerro); std::cout << "Postprocessed\n"; //Plot da solucao aproximada // string plotfile("Solution_mphysics.vtk"); // PosProcessMultphysics(meshvec, mphysics, an, plotfile); } } return EXIT_SUCCESS; }
int main() { //malha geometrica TPZGeoMesh *firstmesh = new TPZGeoMesh; firstmesh->SetName("Malha Geometrica : Nós e Elementos"); firstmesh->NodeVec().Resize(10); TPZVec<REAL> coord(2); //,coordtrans(2); // REAL ct,st,PI=3.141592654; // cout << "\nEntre rotacao do eixo n1 (graus) -> "; // REAL g; // cin >> g; // g = g*PI/180.; // ct = cos(g); // st = sin(g); //ct = 1.; //st = 0.; //nos geometricos //no 0 coord[0] = 0; coord[1] = 0; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[0].Initialize(coord,*firstmesh); //no 1 coord[0] = 1.; coord[1] = 0; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[1].Initialize(coord,*firstmesh); //no 2 coord[0] = 2.; coord[1] = 0.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[2].Initialize(coord,*firstmesh); //no 3 coord[0] = 3.; coord[1] = 0.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[3].Initialize(coord,*firstmesh); //no 4 coord[0] = 4; coord[1] = 0.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[4].Initialize(coord,*firstmesh); //no 5 coord[0] = 0; coord[1] = 1; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[5].Initialize(coord,*firstmesh); //no 6 coord[0] = 1.; coord[1] = 1.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[6].Initialize(coord,*firstmesh); //no 7 coord[0] = 2.; coord[1] = 1.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[7].Initialize(coord,*firstmesh); //no 8 coord[0] = 3.; coord[1] = 1; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[8].Initialize(coord,*firstmesh); //no 9 coord[0] = 4; coord[1] = 1; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[9].Initialize(coord,*firstmesh); /* TPZVec<int> nodeindexes(3); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; //elementos geometricos TPZGeoElT2d *elg0 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg1 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; TPZGeoElT2d *elg2 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg3 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); */ TPZVec<int> nodeindexes(4); //elementos geometricos TPZGeoEl *elg[4]; nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 6; nodeindexes[3] = 5; elg[0] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 1; nodeindexes[1] = 2; nodeindexes[2] = 7; nodeindexes[3] = 6; elg[1] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 2; nodeindexes[1] = 3; nodeindexes[2] = 8; nodeindexes[3] = 7; elg[2] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 3; nodeindexes[1] = 4; nodeindexes[2] = 9; nodeindexes[3] = 8; elg[3] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); //Arquivos de saida ofstream outgm1("outgm1.dat"); ofstream outcm1("outcm1.dat"); ofstream outcm2("outcm2.dat"); //montagem de conectividades entre elementos firstmesh->BuildConnectivity(); //malha computacional TPZCompMesh *secondmesh = new TPZCompMesh(firstmesh); secondmesh->SetName("Malha Computacional : Conectividades e Elementos"); //material TPZMaterial *pl = LerMaterial("flavio.dat"); secondmesh->InsertMaterialObject(pl); // pl = LerMaterial("placa2.dat"); // secondmesh->InsertMaterialObject(pl); // pl = LerMaterial("placa3.dat"); // secondmesh->InsertMaterialObject(pl); // carregamento hidrostatico no plano vertica xz pl->SetForcingFunction(PressaoHid); //CC : condicões de contorno TPZBndCond *bc; REAL big = 1.e12; TPZFMatrix val1(6,6,0.),val2(6,1,0.); // engastes nos lados 4 e 7 do elemento 0 TPZGeoElBC(elg[0],4,-2,*firstmesh); TPZGeoElBC(elg[0],7,-2,*firstmesh); // engaste no lado 4 do elemento 1 TPZGeoElBC(elg[1],4,-2,*firstmesh); // engaste no lado 4 do elemento 2 TPZGeoElBC(elg[2],4,-2,*firstmesh); // engaste no lado 4 do elemento 3 TPZGeoElBC(elg[3],4,-2,*firstmesh); // imposicao do valor zero associado a condicao -2 (engaste) bc = pl->CreateBC(-2,0,val1,val2); secondmesh->InsertMaterialObject(bc); // imposicao da condicao de simetria no lado 5 do elemento 4 val1(0,0)=big; val1(1,1)=0.; val1(2,2)=0.; val1(3,3)=0.; val1(4,4)=big; val1(5,5)=big; TPZGeoElBC(elg[3],5,-3,*firstmesh); bc = pl->CreateBC(-3,2,val1,val2); secondmesh->InsertMaterialObject(bc); //ordem de interpolacao int ord; cout << "Entre ordem 1,2,3,4,5 : "; cin >> ord; // TPZCompEl::gOrder = ord; firstmesh.SetDefaultOrder(order); //construção malha computacional TPZVec<int> csub(0); TPZManVector<TPZGeoEl *> pv(4); int n1=1,level=0; cout << "\nDividir ate nivel ? "; int resp; cin >> resp; int nelc = firstmesh->ElementVec().NElements(); int el; TPZGeoEl *cpel; for(el=0;el<firstmesh->ElementVec().NElements();el++) { cpel = firstmesh->ElementVec()[el]; if(cpel && cpel->Level() < resp) cpel->Divide(pv); } cout << "\nDividir o elemento esquerdo superior quantas vezes? "; cin >> resp; cpel = firstmesh->ElementVec()[0]; for(el=0; el<resp; el++) { cpel->Divide(pv); cpel = pv[3]; } //analysis secondmesh->AutoBuild(); firstmesh->Print(outgm1); outgm1.flush(); secondmesh->AdjustBoundaryElements(); secondmesh->InitializeBlock(); secondmesh->Print(outcm1); TPZAnalysis an(secondmesh,outcm1); int numeq = secondmesh->NEquations(); secondmesh->Print(outcm1); outcm1.flush(); TPZVec<int> skyline; secondmesh->Skyline(skyline); TPZSkylMatrix *stiff = new TPZSkylMatrix(numeq,skyline); an.SetMatrix(stiff); an.Solver().SetDirect(ECholesky); secondmesh->SetName("Malha Computacional : Connects e Elementos"); // Posprocessamento an.Run(outcm2); TPZVec<char *> scalnames(5); scalnames[0] = "Mn1"; scalnames[1] = "Mn2"; scalnames[2] = "Vn1"; scalnames[3] = "Vn2"; scalnames[4] = "Deslocz"; TPZVec<char *> vecnames(0); char plotfile[] = "placaPos.pos"; char pltfile[] = "placaView.plt"; an.DefineGraphMesh(2, scalnames, vecnames, plotfile); an.Print("FEM SOLUTION ",outcm1); an.PostProcess(3); an.DefineGraphMesh(2, scalnames, vecnames, pltfile); an.PostProcess(2); firstmesh->Print(outgm1); outgm1.flush(); delete secondmesh; delete firstmesh; return 0; }
int main() { //malha geometrica TPZGeoMesh *firstmesh = new TPZGeoMesh; firstmesh->SetName("Malha Geometrica : Nós e Elementos"); firstmesh->NodeVec().Resize(4); TPZVec<REAL> coord(2),coordtrans(2); REAL ct,st,PI=3.141592654; cout << "\nEntre rotacao do eixo n1 (graus) -> "; REAL g; cin >> g; g = g*PI/180.; ct = cos(g); st = sin(g); //ct = 1.; //st = 0.; coord[0] = 0; coord[1] = 0; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; //nos geometricos firstmesh->NodeVec()[0].Initialize(coordtrans,*firstmesh); coord[0] = 5; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[1].Initialize(coordtrans,*firstmesh); coord[0] = 5; coord[1] = 5; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[2].Initialize(coordtrans,*firstmesh); coord[0] = 0; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[3].Initialize(coordtrans,*firstmesh); /* TPZVec<int> nodeindexes(3); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; //elementos geometricos TPZGeoElT2d *elg0 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg1 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; TPZGeoElT2d *elg2 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg3 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); */ TPZVec<int> nodeindexes(4); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; nodeindexes[3] = 3; //elementos geometricos TPZGeoEl *elg0 = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); TPZGeoEl *elg1 = new TPZGeoElQ2d(nodeindexes,2,*firstmesh); TPZGeoEl *elg2 = new TPZGeoElQ2d(nodeindexes,3,*firstmesh); //Arquivos de saida ofstream outgm1("outgm1.dat"); ofstream outcm1("outcm1.dat"); ofstream outcm2("outcm2.dat"); //montagem de conectividades entre elementos firstmesh->BuildConnectivity(); //malha computacional TPZCompMesh *secondmesh = new TPZCompMesh(firstmesh); secondmesh->SetName("Malha Computacional : Conectividades e Elementos"); //material TPZMaterial *pl = LerMaterial("placa1.dat"); secondmesh->InsertMaterialObject(pl); pl = LerMaterial("placa2.dat"); secondmesh->InsertMaterialObject(pl); pl = LerMaterial("placa3.dat"); secondmesh->InsertMaterialObject(pl); //CC : condicões de contorno TPZBndCond *bc; REAL big = 1.e12; TPZFMatrix val1(6,6,0.),val2(6,1,0.); val1(0,0)=big; val1(1,1)=big; val1(2,2)=big; val1(3,3)=0.; val1(4,4)=0.; val1(5,5)=0.; TPZGeoElBC(elg0,5,-2,*firstmesh); bc = pl->CreateBC(-2,2,val1,val2); secondmesh->InsertMaterialObject(bc); TPZGeoElBC(elg0,6,-3,*firstmesh); bc = pl->CreateBC(-3,2,val1,val2); secondmesh->InsertMaterialObject(bc); val1(0,0)=0.; val1(1,1)=big; val1(2,2)=0.; val1(3,3)=big; val1(4,4)=0.; val1(5,5)=0.; TPZGeoElBC(elg0,4,-1,*firstmesh); bc = pl->CreateBC(-1,2,val1,val2); secondmesh->InsertMaterialObject(bc); val1(0,0)=big; val1(1,1)=0.; val1(2,2)=0.; val1(3,3)=0.; val1(4,4)=big; val1(5,5)=0.; TPZGeoElBC(elg0,7,-4,*firstmesh); bc = pl->CreateBC(-4,2,val1,val2); secondmesh->InsertMaterialObject(bc); //ordem de interpolacao int ord; cout << "Entre ordem 1,2,3,4,5 : "; cin >> ord; // TPZCompEl::gOrder = ord; cmesh.SetDefaultOrder(ord); //construção malha computacional TPZVec<int> csub(0); TPZManVector<TPZGeoEl *> pv(4); int n1=1,level=0; cout << "\nDividir ate nivel ? "; int resp; cin >> resp; int nelc = firstmesh->ElementVec().NElements(); int el; TPZGeoEl *cpel; for(el=0;el<firstmesh->ElementVec().NElements();el++) { cpel = firstmesh->ElementVec()[el]; if(cpel && cpel->Level() < resp) cpel->Divide(pv); } //analysis secondmesh->AutoBuild(); secondmesh->AdjustBoundaryElements(); secondmesh->InitializeBlock(); secondmesh->Print(outcm1); TPZAnalysis an(secondmesh,outcm1); int numeq = secondmesh->NEquations(); secondmesh->Print(outcm1); outcm1.flush(); TPZVec<int> skyline; secondmesh->Skyline(skyline); TPZSkylMatrix *stiff = new TPZSkylMatrix(numeq,skyline); an.SetMatrix(stiff); an.Solver().SetDirect(ECholesky); secondmesh->SetName("Malha Computacional : Connects e Elementos"); // Posprocessamento an.Run(outcm2); TPZVec<char *> scalnames(5); scalnames[0] = "Mn1"; scalnames[1] = "Mn2"; scalnames[2] = "Sign1"; scalnames[3] = "Sign2"; scalnames[4] = "Deslocz"; TPZVec<char *> vecnames(0); char plotfile[] = "placaPos.pos"; char pltfile[] = "placaView.plt"; an.DefineGraphMesh(2, scalnames, vecnames, plotfile); an.Print("FEM SOLUTION ",outcm1); an.PostProcess(2); an.DefineGraphMesh(2, scalnames, vecnames, pltfile); an.PostProcess(2); firstmesh->Print(outgm1); outgm1.flush(); delete secondmesh; delete firstmesh; return 0; }
int main2() { #ifdef LOG4CXX { InitializePZLOG(); std::stringstream sout; sout<< "Testando p adaptatividade"<<endl; LOGPZ_DEBUG(logger, sout.str().c_str()); } #endif //std::ofstream erro("TaxaArcTanQuadUni.txt"); // std::ofstream erro("TaxaArcTanTriangNaoUni.txt"); //std::ofstream erro("TaxaProbJuan.txt"); //std::ofstream erro("TaxaCNMACQuadUni.txt"); // std::ofstream erro("TaxaCNMACQuadNaoUni.txt"); std::ofstream erro("TaxaCNMACTriangUni.txt"); //bool ftriang=false; bool prefine=false; // bool nouniform=false;//false para ref uniforme // REAL Lx=1; // REAL Ly=1; //TPZGeoMesh *gmesh = GMesh(ftriang, Lx, Ly); //UniformRefine(gmesh, 1); //RefiningNearCircunference(2,gmesh,1,1); //std::ofstream filemesh2("MalhaGeoIni.vtk"); //PrintGMeshVTK( gmesh, filemesh2); // TPZGeoMesh *gmesh =GMesh(ftriang, Lx, Ly);//MalhaGeoT(h,hrefine); TPZGeoMesh *gmesh =MalhaGeo2(1); ofstream arg("gmeshInicial.txt"); gmesh->Print(arg); TPZVec<REAL> calcErro; for (int porder=1; porder<2; porder++) { // TPZCompMesh *cmesh = CompMeshPAdap(*gmesh,porder,prefine); // ofstream arg2("CmeshInicial.txt"); // cmesh->Print(arg2); // // SetDifferentOrderP(cmesh,porder); // ofstream arg22("CmeshDifOrder.txt"); // cmesh->Print(arg22); erro<<"ordem "<<porder <<std::endl; for(int h=1;h<4;h++){ // erro << "NRef " << h << std::endl; erro<<std::endl; //1. Criacao da malha geom. e computacional // bool hrefine=true;//true nao uniforme // TPZGeoMesh *gmesh =MalhaGeo2(h);//MalhaGeoT(h,nouniform);//MalhaGeo(h,nouniform);//GMesh(ftriang, Lx, Ly);//MalhaGeo(h,nonuniform); // UniformRefine(gmesh, h); // ofstream arg3("gmeshRefinada.txt"); // gmesh->Print(arg3); // NoUniformRefine(gmesh, h); // std::ofstream filemesh("MalhaGeoNaoUniT.vtk"); // std::ofstream filemesh("MalhaGeoUniQCNMAC.vtk"); //std::ofstream filemesh("MalhaGeoNaoUniQCNMAC.vtk"); std::ofstream filemesh("MalhaGeo4ElCNMAC.vtk"); PrintGMeshVTK( gmesh, filemesh); // RefiningNearCircunference(2,gmesh,h,1); // std::ofstream filemesh2("MalhaGeoQArcTanRefeineNearCirc.vtk"); // PrintGMeshVTK( gmesh, filemesh2); TPZCompMesh *cmesh = CompMeshPAdap(*gmesh,porder,prefine);//CompMeshPAdapJuan(*gmesh,porder,prefine); ofstream arg2("CmeshInicial.txt"); cmesh->Print(arg2); SetDifferentOrderPMesh4Elem(cmesh,porder); ofstream arg22("CmeshDifOrder.txt"); cmesh->Print(arg22); int nDofs; nDofs=cmesh->NEquations(); erro<< "\nNRefinamento "<<h<< " NDofs "<<nDofs<<std::endl; std::cout << "Neq = " << nDofs << std::endl; //2. Resolve o problema TPZAnalysis analysis(cmesh); int numthreads = 1; SolveSyst(analysis, cmesh, numthreads); // SolveLU ( analysis ); //3. Calcula o erro // TPZVec<REAL> calcErro; // analysis.SetExact(*SolExata); // analysis.PostProcess(calcErro,erro); ErrorHDiv(cmesh, erro); UniformRefine(gmesh, h); ofstream arg3("gmeshRefinada.txt"); gmesh->Print(arg3); /*4. visualizacao grafica usando vtk TPZVec<std::string> scalnames(5), vecnames(2); scalnames[0] = "Divergence"; scalnames[1] = "ExactDiv"; scalnames[2] = "Pressure";//"Solution";// scalnames[3] = "ExactPressure"; scalnames[4] = "ExactDiv"; vecnames[0] = "ExactFlux"; vecnames[1] = "Flux";//"Derivative";// const int dim = 2; int div = 2; char buf[256] ; //sprintf(buf,"ArcTanPhilUniMeshQ_porder%d_h%d.vtk",porder,h); // sprintf(buf,"ProblemaJuan_porder%d_h%d.vtk",porder,h); sprintf(buf,"ProblemaCNAMC_porder%d_h%d.vtk",porder,h); analysis.DefineGraphMesh(dim,scalnames,vecnames,buf); analysis.PostProcess(div); #ifdef LOG4CXX if (logger->isDebugEnabled()) { std::stringstream sout; cmesh->Print(sout); LOGPZ_DEBUG(logger, sout.str()) } #endif */ // std::string plotfile("GraficArcTanHpAdaptivity.vtk"); // const int dim = 2; // int div = 2; // analysis.DefineGraphMesh(dim,scalnames,vecnames,plotfile); // analysis.PostProcess(div); // // UniformRefine(gmesh, 1); // std::ofstream filemesh2("MalhaGeoDepois.vtk"); // PrintGMeshVTK( gmesh, filemesh2); // delete cmesh; // delete gmesh; } } return 0; }
int main() { //malha geometrica TPZGeoMesh *firstmesh = new TPZGeoMesh; firstmesh->NodeVec().Resize(3); TPZVec<REAL> coord(2); coord[0] = 0.; coord[1] = 0.; //nos geometricos firstmesh->NodeVec()[0].Initialize(coord,*firstmesh); coord[0] = 1.0; firstmesh->NodeVec()[1].Initialize(coord,*firstmesh); coord[1] = 1.0; firstmesh->NodeVec()[2].Initialize(coord,*firstmesh); // coord[0] = 0.0; // firstmesh->NodeVec()[3].Initialize(coord,*firstmesh); TPZVec<int> nodeindexes(3);//triangulo nodeindexes[0] = 0;//local[i] = global[i] , i=0,1,2,3 nodeindexes[1] = 1; nodeindexes[2] = 2; //elementos geometricos TPZGeoElT2d *elq1 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); //orientacao local de um segundo elemento superposto int i,sen;; cout<<"Sentido local antihorario/horario : 0/1 ? "; cin>>sen; cout<<"Entre primeiro no = 0,1,2 : "; cin>>i; if(sen==0) {//direito nodeindexes[0] = (0+i)%3;//local[i] = global[j] , i,j em {0,1,2} nodeindexes[1] = (1+i)%3; nodeindexes[2] = (2+i)%3; } else {//inverso nodeindexes[0] = (0+i)%3;//local[i] = global[j] , i,j em {0,1,2} nodeindexes[1] = (2+i)%3; nodeindexes[2] = (1+i)%3; } /* nodeindexes[0] = 1;//local[i] = global[i] , i=0,1,2,3 nodeindexes[1] = 2; nodeindexes[2] = 3;*/ TPZGeoElT2d *elq2 = new TPZGeoElT2d(nodeindexes,1,*firstmesh);//segundo elemento superposto ao primeiro /* coord[1] = 0.0; coord[0] = 2.0; firstmesh->NodeVec()[4].Initialize(coord,*firstmesh); coord[1] = 1.0; firstmesh->NodeVec()[5].Initialize(coord,*firstmesh); nodeindexes[0] = 1;//local[i] = global[i] , i=0,1,2,3 nodeindexes[1] = 4; nodeindexes[2] = 5; nodeindexes[3] = 2; TPZGeoElT2d *elq2 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); */ //Arquivos de saida ofstream outgm1("outgm1.dat"); ofstream outcm1("outcm1.dat"); ofstream outcm2("outcm2.dat"); //montagem de conectividades entre elementos firstmesh->BuildConnectivity(); firstmesh->Print(outgm1); outgm1.flush(); //teste de divisao geometrica : 1 elemento TPZVec<TPZGeoEl *> vecsub,vecsub1; elq1->Divide(vecsub);//divide 0 elq2->Divide(vecsub);//divide 1 /* vecsub[2]->Divide(vecsub1);// vecsub1[3]->Divide(vecsub1); vecsub[0]->Divide(vecsub1);//divide 1 vecsub1[2]->Divide(vecsub1); */ firstmesh->Print(outgm1); outgm1.flush(); //malha computacional TPZCompMesh *secondmesh = new TPZCompMesh(firstmesh); //material int matindex = secondmesh->MaterialVec().AllocateNewElement(); TPZFMatrix k(1,1,1.),f(1,1,0.),c(1,2,1.); TPZMat2dLin * mat = new TPZMat2dLin(1); mat->SetMaterial(k,c,f); //mat->SetForcingFunction(force); mat->SetForcingFunction(derivforce); secondmesh->MaterialVec()[matindex] = mat; //CC : condicao de contorno //ordem de interpolacao // TPZCompEl::gOrder = 3; cmesh.SetDefaultOrder(3); //constroe a malha computacional secondmesh->AutoBuild(); secondmesh->InitializeBlock(); secondmesh->ComputeConnectSequence(); secondmesh->Print(outcm1); outcm1.flush(); //Resolucao do sistema TPZFMatrix Rhs(secondmesh->NEquations(),1),Stiff(secondmesh->NEquations(),secondmesh->NEquations()),U; Stiff.Zero(); Rhs.Zero(); secondmesh->Assemble(Stiff,Rhs); Rhs.Print("Rhs teste",outcm2); Stiff.Print("Bloco teste",outcm2); Rhs.Print("Computational Mesh -> fBlock",outcm2); TPZMatrixSolver solver(&Stiff); solver.SetDirect(ELU); solver.Solve(Rhs,U); U.Print("Resultado",outcm2); secondmesh->LoadSolution(U); secondmesh->Solution().Print("Mesh solution ",outcm2); // TPZElementMatrix ek,ef; // secondmesh->ElementVec()[0]->CalcStiff(ek,ef); // ek.fMat->Print(); // ef.fMat->Print(); delete secondmesh; delete firstmesh; return 0; }