///Generate sequence from Power law void TAGMUtil::GenPLSeq(TIntV& SzSeq, const int& SeqLen, const double& Alpha, TRnd& Rnd, const int& Min, const int& Max) { SzSeq.Gen(SeqLen, 0); while (SzSeq.Len() < SeqLen) { int Sz = (int) TMath::Round(Rnd.GetPowerDev(Alpha)); if (Sz >= Min && Sz <= Max) { SzSeq.Add(Sz); } } }
/// Generates a random scale-free graph with power-law degree distribution with /// exponent PowerExp. The method uses either the Configuration model (fast but /// the result is approximate) or the Edge Rewiring method (slow but exact). PUNGraph GenRndPowerLaw(const int& Nodes, const double& PowerExp, const bool& ConfModel, TRnd& Rnd) { TIntV DegSeqV; uint DegSum=0; for (int n = 0; n < Nodes; n++) { const int Val = (int) TMath::Round(Rnd.GetPowerDev(PowerExp)); if (! (Val >= 1 && Val < Nodes/2)) { n--; continue; } // skip nodes with too large degree DegSeqV.Add(Val); DegSum += Val; } printf("%d nodes, %u edges\n", Nodes, DegSum); if (DegSum % 2 == 1) { DegSeqV[0] += 1; } if (ConfModel) { // use configuration model -- fast but does not exactly obey the degree sequence return GenConfModel(DegSeqV, Rnd); } else { PUNGraph G = TSnap::GenDegSeq(DegSeqV, Rnd); return TSnap::GenRewire(G, 10, Rnd); } }