void Tensor::WeightedAdd(Tensor& t1, Tensor& t2, double weight_t1, double weight_t2) { assert(t1.NumElements() == t2.NumElements()); for (int i = 0; i < t1.NumElements(); ++i) { t1.Set(i, weight_t1 * t1.At(i) + weight_t2 * t2.At(i)); } }
// add two tensors, store result in result_tensor which is assumed // to be uninitialized void Tensor::Add(Tensor& t1, Tensor& t2) { assert(t1.NumElements() == t2.NumElements()); for (int i = 0; i < t1.NumElements(); ++i) { t1.Set(i, t1.At(i) + t2.At(i)); } }
// inner product among two tensors of the same size double Tensor::InnerProduct(Tensor& t1, Tensor& t2) { assert(t1.NumElements() == t2.NumElements()); double val = 0; for (int i = 0; i < t1.NumElements(); ++i) { val += t1.At(i) * t2.At(i); } return val; }
// add two tensors, store result in result_tensor which is assumed // to be uninitialized void Tensor::Add(Tensor& result_tensor, Tensor& t1, Tensor& t2) { assert(t1.NumElements() == t2.NumElements()); result_tensor.Initialize(t1.Dims()); for (int i = 0; i < result_tensor.NumElements(); ++i) { result_tensor.Set(i, t1.At(i) + t2.At(i)); } }
double Tensor::Diff(Tensor& A, Tensor& B) { assert(A.NumElements() == B.NumElements()); double diff = 0; for (int i = 0; i < A.NumElements(); ++i) { diff += abs(A.At(i) - B.At(i)); } return diff; }
bool Tensor::Equals(Tensor& A, Tensor& B) { assert(A.NumElements() == B.NumElements()); for (int i = 0; A.NumElements(); ++i) { if (A.At(i) != B.At(i)) return false; } return true; }
void Tensor::Slice(Tensor& result_tensor, int fixed_mode, int fixed_index) { vector<int> result_dims; vector<int> free_modes; vector<int> fixed_mode_vec = VectorPlus::CreateSingleton(fixed_mode); vector<int> fixed_index_vec = VectorPlus::CreateSingleton(fixed_index); VectorPlus::SetDiff(free_modes, *all_modes, fixed_mode_vec); VectorPlus::Subset(result_dims, *dims, free_modes); result_tensor.Initialize(result_dims); if (result_tensor.NumElements() == 1) { assert(fixed_mode == 1); result_tensor.Set(0, this->At(fixed_index)); return; } FastIndexer indexer(result_dims); int i = 0; while (indexer.HasNext()) // for (int i = 0; i < result_tensor.NumElements(); ++i) { vector<int>& indices = indexer.GetNext(); // vector<int> indices; vector<int> total_indices; // result_tensor.ComputeIndexArray(indices, i); MergeIndices(total_indices, free_modes, fixed_mode_vec, indices, fixed_index_vec); result_tensor.Set(i++, this->At(total_indices)); } }
void Tensor::Divide(Tensor& result_tensor, Tensor& t1, double val) { result_tensor.Initialize(t1.Dims()); for (int i = 0; i < t1.NumElements(); ++i) { result_tensor.Set(i, t1.At(i) / val); } }
int NumElements() {return prob_tensor->NumElements(); }
// multiply two tensors, store result in result_tensor which is assumed to be uninitialized void Tensor::Multiply(Tensor& result_tensor, Tensor& t1, Tensor& t2, vector<int>& mult_modes1, vector<int>& mult_modes2) { assert(mult_modes1.size() == mult_modes2.size()); if (t1.Order() == mult_modes1.size() && t2.Order() == mult_modes2.size()) { double val = InnerProduct(t1, t2); vector<int> fake_dims; result_tensor.Initialize(fake_dims); result_tensor.Set(0, val); return; } int numMultElements = 1; vector<int> mult_dims(mult_modes1.size(), 0); for (int i = 0; i < mult_modes1.size(); ++i) { assert(t1.Dim(mult_modes1[i]) == t2.Dim(mult_modes2[i])); mult_dims[i] = t1.Dim(mult_modes1[i]); numMultElements = numMultElements * mult_dims[i]; } vector<int> mult_offsets; ComputeOffsets(mult_offsets, mult_dims); int result_order = t1.Order() + t2.Order() - mult_modes1.size() - mult_modes2.size(); if (result_order == 0) assert(0); vector<int> result_dims; vector<int> free_modes1; vector<int> free_modes2; // find free indices from t1 for (int i = 0; i < t1.Order(); ++i) { if (!VectorPlus::Contains(mult_modes1, i)) { result_dims.push_back(t1.Dim(i)); free_modes1.push_back(i); } } // find free indices from t2 for (int i = 0; i < t2.Order(); ++i) { if (!VectorPlus::Contains(mult_modes2, i)) { result_dims.push_back(t2.Dim(i)); free_modes2.push_back(i); } } // initialize result_tensor result_tensor.Initialize(result_dims); // fill in elements from result tensor FastIndexer result_indexer(result_dims); for (int n = 0; n < result_tensor.NumElements(); ++n) { vector<int>& indices = result_indexer.GetNext(); vector<int> free_indices1; vector<int> free_indices2; // result_tensor.ComputeIndexArray(indices, n); for (int i = 0; i < result_tensor.Order(); ++i) { if (i < free_modes1.size()) free_indices1.push_back(indices[i]); else free_indices2.push_back(indices[i]); } // sum over elementwise products of mult-mode elements double temp_sum = 0; FastIndexer mult_indexer(mult_dims); for (int k = 0; k < numMultElements; ++k) { vector<int>& mult_indices = mult_indexer.GetNext(); // ComputeIndexArray(mult_indices, mult_offsets, k); vector<int> indices1; vector<int> indices2; MergeIndices(indices1, mult_modes1, free_modes1, mult_indices, free_indices1); MergeIndices(indices2, mult_modes2, free_modes2, mult_indices, free_indices2); temp_sum += t1.At(indices1) * t2.At(indices2); } result_tensor.Set(n, temp_sum); } }
void Tensor::CreateLinearSystem(vector<double>& B_vec, Matrix& A_matrix, Tensor& X, Tensor& A, Tensor& B, vector<int>& mult_modesX, vector<int>& mult_modesA) { // fake multiply x and A together to create B, creating the linear system in the process assert(mult_modesX.size() == mult_modesA.size()); if (X.Order() == mult_modesX.size() && A.Order() == mult_modesA.size()) { assert(0); } int numMultElements = 1; vector<int> mult_dims(mult_modesX.size(), 0); for (int i = 0; i < mult_modesX.size(); ++i) { assert(X.Dim(mult_modesX[i]) == A.Dim(mult_modesA[i])); mult_dims[i] = X.Dim(mult_modesX[i]); numMultElements = numMultElements * mult_dims[i]; } vector<int> mult_offsets; ComputeOffsets(mult_offsets, mult_dims); int result_order = X.Order() + A.Order() - mult_modesX.size() - mult_modesA.size(); if (result_order == 0) assert(0); vector<int> result_dims; vector<int> free_modesX; vector<int> free_modesA; // find free indices from X for (int i = 0; i < X.Order(); ++i) { if (!VectorPlus::Contains(mult_modesX, i)) { free_modesX.push_back(i); } } // find free indices from A for (int i = 0; i < A.Order(); ++i) { if (!VectorPlus::Contains(mult_modesA, i)) { free_modesA.push_back(i); } } vector<int> a_mat_dims = VectorPlus::CreatePair(B.NumElements(), X.NumElements()); A_matrix.Initialize(a_mat_dims); B_vec.reserve(B.NumElements()); // fill in elements from result tensor FastIndexer B_indexer(B.Dims()); for (int n = 0; n < B.NumElements(); ++n) { B_vec.push_back(B.At(n)); vector<int>& indices = B_indexer.GetNext(); vector<int> free_indicesX; vector<int> free_indicesA; // B.ComputeIndexArray(indices, n); for (int i = 0; i < B.Order(); ++i) { if (!VectorPlus::Contains(mult_modesX, i)) free_indicesX.push_back(indices[i]); else free_indicesA.push_back(indices[i]); } // sum over elementwise products of mult-mode elements double temp_sum = 0; FastIndexer mult_indexer(mult_dims); for (int k = 0; k < numMultElements; ++k) { vector<int>& mult_indices = mult_indexer.GetNext(); // ComputeIndexArray(mult_indices, mult_offsets, k); vector<int> indicesX; vector<int> indicesA; MergeIndices(indicesX, mult_modesX, free_modesX, mult_indices, free_indicesX); MergeIndices(indicesA, mult_modesA, free_modesA, mult_indices, free_indicesA); A_matrix.Set(n, X.ComputeIndex(indicesX), A.At(indicesA)); } } }