/** * Compute loss and gradient of Huber hinge loss. * CAUTION: f is passed by reference and is changed within this * function. This is done for efficiency reasons, otherwise we would * have had to create a new copy of f. * * @param loss [write] loss value computed. * @param f [read/write] prediction vector. * @param l [write] partial derivative of loss function w.r.t. f */ void CHuberHingeLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { f.ElementWiseMult(_data->labels()); double* yf = f.Data(); double* Y = _data->labels().Data(); int len = f.Length(); loss = 0.0; l.Zero(); for(int i=0; i < len; i++) { double v = 1-yf[i]; if(h < v) { loss += v; l.Set(i,-Y[i]); } else if(-h > v) {} else { loss += (v+h)*(v+h)/4/h; l.Set(i, -Y[i]*(v+h)/2/h); } } }
/** * Compute loss and partial derivative of hinge loss w.r.t f * * @param loss [write] loss value computed. * @param f [r/w] = X*w * @param l [write] partial derivative of loss w.r.t. f */ void CLogisticLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { l.Zero(); // for gradient computation i.e. grad := l'*X f.ElementWiseMult(_data->labels()); double* f_array = f.Data(); // pointer to memory location of f (faster element access) int len = f.Length(); double exp_yf = 0.0; for(int i=0; i < len; i++) { if(fabs(f_array[i]) == 0.0) { loss += LN2; l.Set(i,-0.5); } else if (f_array[i] > 0.0) { exp_yf = exp(-f_array[i]); loss += log(1+exp_yf); l.Set(i,-exp_yf/(1+exp_yf)); } else { exp_yf = exp(f_array[i]); loss += log(1+exp_yf) - f_array[i]; l.Set(i,-1.0/(1+exp_yf)); } } l.ElementWiseMult(_data->labels()); }
/** The subgradient is chosen as sgn(w) */ void CL1N1::ComputeRegAndGradient(CModel& model, double& reg, TheMatrix& grad) { reg = 0; TheMatrix &w = model.GetW(); w.Norm1(reg); grad.Zero(); for(int i=0; i<w.Length(); i++) { double val = 0; w.Get(i,val); grad.Set(i,SML::sgn(val)); } }
/** * Compute loss and gradient of Least Absolute Deviation loss w.r.t f * * @param loss [write] loss value computed. * @param f [r/w] = X*w * @param l [write] partial derivative of loss w.r.t. f */ void CLeastAbsDevLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { loss = 0; l.Zero(); double *Y_array = _data->labels().Data(); double* f_array = f.Data(); int len = f.Length(); for(int i=0; i < len; i++) { double f_minus_y = f_array[i] - Y_array[i]; loss += fabs(f_minus_y); l.Set(i, SML::sgn(f_minus_y)); } }
/** * Compute loss and gradient of novelty detection loss. * CAUTION: f is passed by reference and is changed within this * function. This is done for efficiency reasons, otherwise we would * have had to create a new copy of f. * * @param loss [write] loss value computed. * @param f [read/write] prediction vector. * @param l [write] partial derivative of loss function w.r.t. f */ void CNoveltyLoss::LossAndGrad(double& loss, TheMatrix& f, TheMatrix& l) { double* f_array = f.Data(); // pointer to memory location of f (faster element access) int len = f.Length(); l.Zero(); // grad := l'*X for(int i=0; i < len; i++) { if(rho > f_array[i]) { loss += rho - f_array[i]; l.Set(i, -1.0); } } }
void CNDCGRankLoss::add(TheMatrix &l, int offset, int i, double value){ Scalar temp; l.Get(offset + current_ideal_pi[i], temp); l.Set(offset + current_ideal_pi[i], temp + value); }