int main (int argc, const char * argv[]) { //Create a new DTW instance, using the default parameters DTW dtw; //Load some training data to train the classifier - the DTW uses TimeSeriesClassificationData TimeSeriesClassificationData trainingData; if( !trainingData.load("DTWTrainingData.grt") ){ cout << "Failed to load training data!\n"; return EXIT_FAILURE; } //Use 20% of the training dataset to create a test dataset TimeSeriesClassificationData testData = trainingData.partition( 80 ); //Trim the training data for any sections of non-movement at the start or end of the recordings dtw.enableTrimTrainingData(true,0.1,90); //Train the classifier if( !dtw.train( trainingData ) ){ cout << "Failed to train classifier!\n"; return EXIT_FAILURE; } //Save the DTW model to a file if( !dtw.save("DTWModel.grt") ){ cout << "Failed to save the classifier model!\n"; return EXIT_FAILURE; } //Load the DTW model from a file if( !dtw.load("DTWModel.grt") ){ cout << "Failed to load the classifier model!\n"; return EXIT_FAILURE; } //Use the test dataset to test the DTW model double accuracy = 0; for(UINT i=0; i<testData.getNumSamples(); i++){ //Get the i'th test sample - this is a timeseries UINT classLabel = testData[i].getClassLabel(); MatrixDouble timeseries = testData[i].getData(); //Perform a prediction using the classifier if( !dtw.predict( timeseries ) ){ cout << "Failed to perform prediction for test sampel: " << i <<"\n"; return EXIT_FAILURE; } //Get the predicted class label UINT predictedClassLabel = dtw.getPredictedClassLabel(); double maximumLikelihood = dtw.getMaximumLikelihood(); VectorDouble classLikelihoods = dtw.getClassLikelihoods(); VectorDouble classDistances = dtw.getClassDistances(); //Update the accuracy if( classLabel == predictedClassLabel ) accuracy++; cout << "TestSample: " << i << "\tClassLabel: " << classLabel << "\tPredictedClassLabel: " << predictedClassLabel << "\tMaximumLikelihood: " << maximumLikelihood << endl; } cout << "Test Accuracy: " << accuracy/double(testData.getNumSamples())*100.0 << "%" << endl; return EXIT_SUCCESS; }
int main (int argc, const char * argv[]) { //Create a new instance of the TimeSeriesClassificationData TimeSeriesClassificationData trainingData; //Set the dimensionality of the data (you need to do this before you can add any samples) trainingData.setNumDimensions( 3 ); //You can also give the dataset a name (the name should have no spaces) trainingData.setDatasetName("DummyData"); //You can also add some info text about the data trainingData.setInfoText("This data contains some dummy timeseries data"); //Here you would record a time series, when you have finished recording the time series then add the training sample to the training data UINT gestureLabel = 1; MatrixDouble trainingSample; //For now we will just add 10 x 20 random walk data timeseries Random random; for(UINT k=0; k<10; k++){//For the number of classes gestureLabel = k+1; //Get the init random walk position for this gesture VectorDouble startPos( trainingData.getNumDimensions() ); for(UINT j=0; j<startPos.size(); j++){ startPos[j] = random.getRandomNumberUniform(-1.0,1.0); } //Generate the 20 time series for(UINT x=0; x<20; x++){ //Clear any previous timeseries trainingSample.clear(); //Generate the random walk UINT randomWalkLength = random.getRandomNumberInt(90, 110); VectorDouble sample = startPos; for(UINT i=0; i<randomWalkLength; i++){ for(UINT j=0; j<startPos.size(); j++){ sample[j] += random.getRandomNumberUniform(-0.1,0.1); } //Add the sample to the training sample trainingSample.push_back( sample ); } //Add the training sample to the dataset trainingData.addSample( gestureLabel, trainingSample ); } } //After recording your training data you can then save it to a file if( !trainingData.saveDatasetToFile( "TrainingData.txt" ) ){ cout << "Failed to save dataset to file!\n"; return EXIT_FAILURE; } //This can then be loaded later if( !trainingData.loadDatasetFromFile( "TrainingData.txt" ) ){ cout << "Failed to load dataset from file!\n"; return EXIT_FAILURE; } //This is how you can get some stats from the training data string datasetName = trainingData.getDatasetName(); string infoText = trainingData.getInfoText(); UINT numSamples = trainingData.getNumSamples(); UINT numDimensions = trainingData.getNumDimensions(); UINT numClasses = trainingData.getNumClasses(); cout << "Dataset Name: " << datasetName << endl; cout << "InfoText: " << infoText << endl; cout << "NumberOfSamples: " << numSamples << endl; cout << "NumberOfDimensions: " << numDimensions << endl; cout << "NumberOfClasses: " << numClasses << endl; //You can also get the minimum and maximum ranges of the data vector< MinMax > ranges = trainingData.getRanges(); cout << "The ranges of the dataset are: \n"; for(UINT j=0; j<ranges.size(); j++){ cout << "Dimension: " << j << " Min: " << ranges[j].minValue << " Max: " << ranges[j].maxValue << endl; } //If you want to partition the dataset into a training dataset and a test dataset then you can use the partition function //A value of 80 means that 80% of the original data will remain in the training dataset and 20% will be returned as the test dataset TimeSeriesClassificationData testData = trainingData.partition( 80 ); //If you have multiple datasets that you want to merge together then use the merge function if( !trainingData.merge( testData ) ){ cout << "Failed to merge datasets!\n"; return EXIT_FAILURE; } //If you want to run K-Fold cross validation using the dataset then you should first spilt the dataset into K-Folds //A value of 10 splits the dataset into 10 folds and the true parameter signals that stratified sampling should be used if( !trainingData.spiltDataIntoKFolds( 10, true ) ){ cout << "Failed to spiltDataIntoKFolds!\n"; return EXIT_FAILURE; } //After you have called the spilt function you can then get the training and test sets for each fold for(UINT foldIndex=0; foldIndex<10; foldIndex++){ TimeSeriesClassificationData foldTrainingData = trainingData.getTrainingFoldData( foldIndex ); TimeSeriesClassificationData foldTestingData = trainingData.getTestFoldData( foldIndex ); } //If need you can clear any training data that you have recorded trainingData.clear(); return EXIT_SUCCESS; }
int main(int argc, const char * argv[]){ //Load the training data TimeSeriesClassificationData trainingData; if( !trainingData.loadDatasetFromFile("HMMTrainingData.grt") ){ cout << "ERROR: Failed to load training data!\n"; return false; } //Remove 20% of the training data to use as test data TimeSeriesClassificationData testData = trainingData.partition( 80 ); //The input to the HMM must be a quantized discrete value //We therefore use a KMeansQuantizer to covert the N-dimensional continuous data into 1-dimensional discrete data const UINT NUM_SYMBOLS = 10; KMeansQuantizer quantizer( NUM_SYMBOLS ); //Train the quantizer using the training data if( !quantizer.train( trainingData ) ){ cout << "ERROR: Failed to train quantizer!\n"; return false; } //Quantize the training data TimeSeriesClassificationData quantizedTrainingData( 1 ); for(UINT i=0; i<trainingData.getNumSamples(); i++){ UINT classLabel = trainingData[i].getClassLabel(); MatrixDouble quantizedSample; for(UINT j=0; j<trainingData[i].getLength(); j++){ quantizer.quantize( trainingData[i].getData().getRowVector(j) ); quantizedSample.push_back( quantizer.getFeatureVector() ); } if( !quantizedTrainingData.addSample(classLabel, quantizedSample) ){ cout << "ERROR: Failed to quantize training data!\n"; return false; } } //Create a new HMM instance HMM hmm; //Set the number of states in each model hmm.setNumStates( 4 ); //Set the number of symbols in each model, this must match the number of symbols in the quantizer hmm.setNumSymbols( NUM_SYMBOLS ); //Set the HMM model type to LEFTRIGHT with a delta of 1 hmm.setModelType( HiddenMarkovModel::LEFTRIGHT ); hmm.setDelta( 1 ); //Set the training parameters hmm.setMinImprovement( 1.0e-5 ); hmm.setMaxNumIterations( 100 ); hmm.setNumRandomTrainingIterations( 20 ); //Train the HMM model if( !hmm.train( quantizedTrainingData ) ){ cout << "ERROR: Failed to train the HMM model!\n"; return false; } //Save the HMM model to a file if( !hmm.save( "HMMModel.grt" ) ){ cout << "ERROR: Failed to save the model to a file!\n"; return false; } //Load the HMM model from a file if( !hmm.load( "HMMModel.grt" ) ){ cout << "ERROR: Failed to load the model from a file!\n"; return false; } //Quantize the test data TimeSeriesClassificationData quantizedTestData( 1 ); for(UINT i=0; i<testData.getNumSamples(); i++){ UINT classLabel = testData[i].getClassLabel(); MatrixDouble quantizedSample; for(UINT j=0; j<testData[i].getLength(); j++){ quantizer.quantize( testData[i].getData().getRowVector(j) ); quantizedSample.push_back( quantizer.getFeatureVector() ); } if( !quantizedTestData.addSample(classLabel, quantizedSample) ){ cout << "ERROR: Failed to quantize training data!\n"; return false; } } //Compute the accuracy of the HMM models using the test data double numCorrect = 0; double numTests = 0; for(UINT i=0; i<quantizedTestData.getNumSamples(); i++){ UINT classLabel = quantizedTestData[i].getClassLabel(); hmm.predict( quantizedTestData[i].getData() ); if( classLabel == hmm.getPredictedClassLabel() ) numCorrect++; numTests++; VectorDouble classLikelihoods = hmm.getClassLikelihoods(); VectorDouble classDistances = hmm.getClassDistances(); cout << "ClassLabel: " << classLabel; cout << " PredictedClassLabel: " << hmm.getPredictedClassLabel(); cout << " MaxLikelihood: " << hmm.getMaximumLikelihood(); cout << " ClassLikelihoods: "; for(UINT k=0; k<classLikelihoods.size(); k++){ cout << classLikelihoods[k] << "\t"; } cout << "ClassDistances: "; for(UINT k=0; k<classDistances.size(); k++){ cout << classDistances[k] << "\t"; } cout << endl; } cout << "Test Accuracy: " << numCorrect/numTests*100.0 << endl; return true; }
int main(int argc, const char * argv[]){ //Load the training data TimeSeriesClassificationData trainingData; if( !trainingData.load("HMMTrainingData.grt") ){ cout << "ERROR: Failed to load training data!\n"; return false; } //Remove 20% of the training data to use as test data TimeSeriesClassificationData testData = trainingData.partition( 80 ); //Create a new HMM instance HMM hmm; //Set the HMM as a Continuous HMM hmm.setHMMType( HMM_CONTINUOUS ); //Set the downsample factor, a higher downsample factor will speed up the prediction time, but might reduce the classification accuracy hmm.setDownsampleFactor( 5 ); //Set the committee size, this sets the (top) number of models that will be used to make a prediction hmm.setCommitteeSize( 10 ); //Tell the hmm algorithm that we want it to estimate sigma from the training data hmm.setAutoEstimateSigma( true ); //Set the minimum value for sigma, you might need to adjust this based on the range of your data //If you set setAutoEstimateSigma to false, then all sigma values will use the value below hmm.setSigma( 20.0 ); //Set the HMM model type to LEFTRIGHT with a delta of 1, this means the HMM can only move from the left-most state to the right-most state //in steps of 1 hmm.setModelType( HMM_LEFTRIGHT ); hmm.setDelta( 1 ); //Train the HMM model if( !hmm.train( trainingData ) ){ cout << "ERROR: Failed to train the HMM model!\n"; return false; } //Save the HMM model to a file if( !hmm.save( "HMMModel.grt" ) ){ cout << "ERROR: Failed to save the model to a file!\n"; return false; } //Load the HMM model from a file if( !hmm.load( "HMMModel.grt" ) ){ cout << "ERROR: Failed to load the model from a file!\n"; return false; } //Compute the accuracy of the HMM models using the test data double numCorrect = 0; double numTests = 0; for(UINT i=0; i<testData.getNumSamples(); i++){ UINT classLabel = testData[i].getClassLabel(); hmm.predict( testData[i].getData() ); if( classLabel == hmm.getPredictedClassLabel() ) numCorrect++; numTests++; VectorFloat classLikelihoods = hmm.getClassLikelihoods(); VectorFloat classDistances = hmm.getClassDistances(); cout << "ClassLabel: " << classLabel; cout << " PredictedClassLabel: " << hmm.getPredictedClassLabel(); cout << " MaxLikelihood: " << hmm.getMaximumLikelihood(); cout << " ClassLikelihoods: "; for(UINT k=0; k<classLikelihoods.size(); k++){ cout << classLikelihoods[k] << "\t"; } cout << "ClassDistances: "; for(UINT k=0; k<classDistances.size(); k++){ cout << classDistances[k] << "\t"; } cout << endl; } cout << "Test Accuracy: " << numCorrect/numTests*100.0 << endl; return true; }