int getFramesLoop(const UndirectedTree & undirected_tree, const KDL::JntArray &q, const Traversal & traversal, std::vector<Frame> & X_base, KDL::Frame world2base) { for(int i=0; i < (int)traversal.getNrOfVisitedLinks(); i++) { double joint_pos; LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_nmbr = link_it->getLinkIndex(); if( i == 0 ) { assert( traversal.getParentLink(link_nmbr) == undirected_tree.getInvalidLinkIterator() ); X_base[link_nmbr] = world2base; } else { LinkMap::const_iterator parent_it = traversal.getParentLink(link_it); int parent_nmbr = parent_it->getLinkIndex(); if( link_it->getAdjacentJoint(parent_it)->getJoint().getType() != Joint::None ) { int dof_nr = link_it->getAdjacentJoint(parent_it)->getDOFIndex(); joint_pos = q(dof_nr); } else { joint_pos = 0.0; } KDL::Frame X_parent_son = link_it->pose(parent_it,joint_pos); X_base[link_nmbr] = X_base[parent_nmbr]*X_parent_son; } } return 0; }
void checkComputeTraversal(const Model & model) { Traversal traversal; bool ok = model.computeFullTreeTraversal(traversal); ASSERT_EQUAL_DOUBLE(ok,true); ASSERT_EQUAL_DOUBLE(traversal.getNrOfVisitedLinks(),model.getNrOfLinks()); }
void dynamicsRegressorLoop(const UndirectedTree & , const KDL::JntArray &q, const Traversal & traversal, const std::vector<Frame>& X_b, const std::vector<Twist>& v, const std::vector<Twist>& a, Eigen::MatrixXd & dynamics_regressor) { dynamics_regressor.setZero(); Eigen::Matrix<double, 6, 10> netWrenchRegressor_i; // Store the base_world translational transform in world orientation KDL::Frame world_base_X_world_world = KDL::Frame(-(X_b[traversal.getBaseLink()->getLinkIndex()].p)); for(int l =(int)traversal.getNrOfVisitedLinks()-1; l >= 0; l-- ) { LinkMap::const_iterator link = traversal.getOrderedLink(l); int i = link->getLinkIndex(); //Each link affects the dynamics of the joints from itself to the base netWrenchRegressor_i = netWrenchRegressor(v[i],a[i]); //Base dynamics // The base dynamics is expressed with the orientation of the world but // with respect to the base origin dynamics_regressor.block(0,(int)(10*i),6,10) = WrenchTransformationMatrix(world_base_X_world_world*X_b[i])*netWrenchRegressor_i; //dynamics_regressor.block(0,(int)(10*i),6,10) = WrenchTransformationMatrix(X_b[i])*netWrenchRegressor_i; LinkMap::const_iterator child_link = link; LinkMap::const_iterator parent_link=traversal.getParentLink(link); while( child_link != traversal.getOrderedLink(0) ) { if( child_link->getAdjacentJoint(parent_link)->getNrOfDOFs() == 1 ) { #ifndef NDEBUG //std::cerr << "Calculating regressor columns for link " << link->getName() << " and joint " << child_link->getAdjacentJoint(parent_link)->getName() << std::endl; #endif int dof_index = child_link->getAdjacentJoint(parent_link)->getDOFIndex(); int child_index = child_link->getLinkIndex(); Frame X_j_i = X_b[child_index].Inverse()*X_b[i]; dynamics_regressor.block(6+dof_index,10*i,1,10) = toEigen(parent_link->S(child_link,q(dof_index))).transpose()*WrenchTransformationMatrix(X_j_i)*netWrenchRegressor_i; } child_link = parent_link; #ifndef NDEBUG //std::cout << "Getting parent link of link of index " << child_link->getName() << " " << child_link->getLinkIndex() << std::endl; //std::cout << "Current base " << traversal.order[0]->getName() << " " << traversal.order[0]->getLinkIndex() << std::endl; #endif parent_link = traversal.getParentLink(child_link); } } }
bool Model::computeFullTreeTraversal(Traversal & traversal, const LinkIndex traversalBase) const { if( traversalBase < 0 || traversalBase >= (LinkIndex)this->getNrOfLinks() ) { reportError("Model","computeFullTreeTraversal","requested traversalBase is out of bounds"); return false; } // Resetting the traversal for populating it traversal.reset(*this); // A link is considered visit when all its child (given the traversalBase) // have been added to the traversal std::deque<stackEl> linkToVisit; // We add as first link the requested traversalBase addBaseLinkToTraversal(*this,traversal,traversalBase,linkToVisit); // while there is some link still to visit while( linkToVisit.size() > 0 ) { assert(linkToVisit.size() <= this->getNrOfLinks()); // DPS : we use linkToVisit as a stack LinkConstPtr visitedLink = linkToVisit.back().link; LinkConstPtr visitedLinkParent = linkToVisit.back().parent; LinkIndex visitedLinkIndex = visitedLink->getIndex(); linkToVisit.pop_back(); for(unsigned int neigh_i=0; neigh_i < this->getNrOfNeighbors(visitedLinkIndex); neigh_i++ ) { // add to the stack all the neighbors, except for parent link // (if the visited link is the base one, add all the neighbors) // the visited link is already in the Traversal, so we can use it // to check for its parent Neighbor neighb = this->getNeighbor(visitedLinkIndex,neigh_i); if( visitedLinkParent == 0 || neighb.neighborLink != visitedLinkParent->getIndex() ) { addLinkToTraversal(*this,traversal,neighb.neighborLink, neighb.neighborJoint,visitedLink->getIndex(),linkToVisit); } } } // At this point the traversal should contain all the links // of the model assert(traversal.getNrOfVisitedLinks() == this->getNrOfLinks()); return true; }
void dynamicsRegressorFixedBaseLoop(const UndirectedTree & , const KDL::JntArray &q, const Traversal & traversal, const std::vector<Frame>& X_b, const std::vector<Twist>& v, const std::vector<Twist>& a, Eigen::MatrixXd & dynamics_regressor) { dynamics_regressor.setZero(); Eigen::Matrix<double, 6, 10> netWrenchRegressor_i; for(int l =(int)traversal.getNrOfVisitedLinks()-1; l >= 0; l-- ) { LinkMap::const_iterator link = traversal.getOrderedLink(l); int i = link->getLinkIndex(); //Each link affects the dynamics of the joints from itself to the base netWrenchRegressor_i = netWrenchRegressor(v[i],a[i]); //dynamics_regressor.block(0,(int)(10*i),6,10) = WrenchTransformationMatrix(X_b[i])*netWrenchRegressor_i; LinkMap::const_iterator child_link = link; LinkMap::const_iterator parent_link=traversal.getParentLink(link); while( child_link != traversal.getOrderedLink(0) ) { if( child_link->getAdjacentJoint(parent_link)->getNrOfDOFs() == 1 ) { int dof_index = child_link->getAdjacentJoint(parent_link)->getDOFIndex(); int child_index = child_link->getLinkIndex(); Frame X_j_i = X_b[child_index].Inverse()*X_b[i]; dynamics_regressor.block(dof_index,10*i,1,10) = toEigen(parent_link->S(child_link,q(dof_index))).transpose()*WrenchTransformationMatrix(X_j_i)*netWrenchRegressor_i; } child_link = parent_link; parent_link = traversal.getParentLink(child_link); } } }
int crba_momentum_jacobian_loop(const UndirectedTree & undirected_tree, const Traversal & traversal, const JntArray & q, std::vector<RigidBodyInertia> & Ic, MomentumJacobian & H, RigidBodyInertia & InertiaCOM ) { #ifndef NDEBUG if( undirected_tree.getNrOfLinks() != traversal.getNrOfVisitedLinks() || undirected_tree.getNrOfDOFs() != q.rows() || Ic.size() != undirected_tree.getNrOfLinks() || H.columns() != (undirected_tree.getNrOfDOFs() + 6) ) { std::cerr << "crba_momentum_jacobian_loop: input data error" << std::endl; return -1; } #endif double q_; Wrench F = Wrench::Zero(); //Sweep from root to leaf for(int i=0; i<(int)traversal.getNrOfVisitedLinks(); i++) { LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); //Collect RigidBodyInertia Ic[link_index]=link_it->getInertia(); } for(int i=(int)traversal.getNrOfVisitedLinks()-1; i >= 1; i-- ) { int dof_id; LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); LinkMap::const_iterator parent_it = traversal.getParentLink(link_index); int parent_index = parent_it->getLinkIndex(); if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { dof_id = link_it->getAdjacentJoint(parent_it)->getDOFIndex(); q_ = q(dof_id); } else { q_ = 0.0; dof_id = -1; } Ic[parent_index] = Ic[parent_index]+link_it->pose(parent_it,q_)*Ic[link_index]; if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { KDL::Twist S_link_parent = parent_it->S(link_it,q_); F = Ic[link_index]*S_link_parent; if( traversal.getParentLink(link_it) != undirected_tree.getInvalidLinkIterator() ) { double q__; int dof_id_; LinkMap::const_iterator predecessor_it = traversal.getParentLink(link_it); LinkMap::const_iterator successor_it = link_it; while(true) { if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { q__ = q( predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex()); } else { q__ = 0.0; } F = successor_it->pose(predecessor_it,q__)*F; successor_it = predecessor_it; predecessor_it = traversal.getParentLink(predecessor_it); if( predecessor_it == undirected_tree.getInvalidLinkIterator() ) { break; } if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { dof_id_ = predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex(); q__ = q(dof_id_); } else { q__ = 0.0; dof_id_ = -1; } } if( dof_id >= 0 ) { H.data.block(0,6+dof_id,6,1) = toEigen(F); } //The first 6x6 submatrix of the Momentum Jacobian are simply the spatial inertia //of all the structure expressed in the base reference frame H.data.block(0,0,6,6) = toEigen(Ic[traversal.getBaseLink()->getLinkIndex()]); } } } //We have then to translate the reference point of the obtained jacobian to the com //The Ic[traversal.order[0]->getLink(index)] contain the spatial inertial of all the tree //expressed in link coordite frames Vector com = Ic[traversal.getBaseLink()->getLinkIndex()].getCOG(); H.changeRefPoint(com); InertiaCOM = Frame(com)*Ic[traversal.getBaseLink()->getLinkIndex()]; return 0; }
int crba_fixed_base_loop(const UndirectedTree & undirected_tree, const Traversal & traversal, const JntArray & q, std::vector<RigidBodyInertia> & Ic, JntSpaceInertiaMatrix & H) { double q_; Wrench F; //Sweep from root to leaf for(int i=0; i<(int)traversal.getNrOfVisitedLinks(); i++) { LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); //Collect RigidBodyInertia Ic[link_index] = link_it->getInertia(); } for(int i=(int)traversal.getNrOfVisitedLinks()-1; i >= 1; i-- ) { int dof_id; LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); LinkMap::const_iterator parent_it = traversal.getParentLink(link_index); int parent_index = parent_it->getLinkIndex(); if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { dof_id = link_it->getAdjacentJoint(parent_it)->getDOFIndex(); q_ = q(dof_id); } else { q_ = 0.0; dof_id = -1; } Ic[parent_index] = Ic[parent_index]+link_it->pose(parent_it,q_)*Ic[link_index]; if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { KDL::Twist S_link_parent = parent_it->S(link_it,q_); F = Ic[link_index]*S_link_parent; H(dof_id,dof_id) = dot(S_link_parent,F); { assert(parent_it != undirected_tree.getInvalidLinkIterator()); double q__; int dof_id_; LinkMap::const_iterator predecessor_it = traversal.getParentLink(link_it); LinkMap::const_iterator successor_it = link_it; while( true ) { if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { q__ = q( predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex()); } else { q__ = 0.0; } F = successor_it->pose(predecessor_it,q__)*F; successor_it = predecessor_it; predecessor_it = traversal.getParentLink(predecessor_it); if( predecessor_it == undirected_tree.getInvalidLinkIterator() ) { break; } if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { dof_id_ = predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex(); q__ = q(dof_id_); } else { q__ = 0.0; dof_id_ = -1; } Twist S_successor_predecessor = predecessor_it->S(successor_it,q__); if( dof_id_ >= 0 ) { H(dof_id_,dof_id) = dot(S_successor_predecessor,F); H(dof_id,dof_id_) = H(dof_id_,dof_id); } } } } } return 0; }
int crba_floating_base_loop(const UndirectedTree & undirected_tree, const Traversal & traversal, const GeneralizedJntPositions & q, std::vector<RigidBodyInertia> & Ic, FloatingJntSpaceInertiaMatrix & H) { Wrench F = Wrench::Zero(); Wrench buffer_F = F; //Sweep from root to leaf for(int i=0; i<(int)traversal.getNrOfVisitedLinks(); i++) { LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); //Collect RigidBodyInertia Ic[link_index]=link_it->getInertia(); } for(int i=(int)traversal.getNrOfVisitedLinks()-1; i >= 1; i-- ) { double row_dof_position; int row_dof_id; LinkMap::const_iterator link_it = traversal.getOrderedLink(i); int link_index = link_it->getLinkIndex(); LinkMap::const_iterator parent_it = traversal.getParentLink(link_index); int parent_index = parent_it->getLinkIndex(); if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { row_dof_id = link_it->getAdjacentJoint(parent_it)->getDOFIndex(); row_dof_position = q.jnt_pos(row_dof_id); } else { row_dof_position = 0.0; row_dof_id = -1; } RigidBodyInertia buf; buf = Ic[parent_index]+link_it->pose(parent_it,row_dof_position)*Ic[link_index]; Ic[parent_index] = buf; if( link_it->getAdjacentJoint(parent_it)->getNrOfDOFs() == 1 ) { KDL::Twist S_link_parent = parent_it->S(link_it,row_dof_position); F = Ic[link_index]*S_link_parent; H(6+row_dof_id,6+row_dof_id) = dot(S_link_parent,F); if( traversal.getParentLink(link_it) != undirected_tree.getInvalidLinkIterator() ) { double column_dof_position; int column_dof_id; LinkMap::const_iterator predecessor_it = traversal.getParentLink(link_it); LinkMap::const_iterator successor_it = link_it; while(true) { if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { column_dof_position = q.jnt_pos( predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex()); } else { column_dof_position = 0.0; } #ifndef NDEBUG //std::cout << "F migrated from frame " << successor_it->getLinkIndex() << " to frame " << successor_it->getLinkIndex() << std::endl; #endif buffer_F = successor_it->pose(predecessor_it,column_dof_position)*F; F = buffer_F; successor_it = predecessor_it; predecessor_it = traversal.getParentLink(predecessor_it); if( predecessor_it == undirected_tree.getInvalidLinkIterator() ) { break; } if( predecessor_it->getAdjacentJoint(successor_it)->getNrOfDOFs() == 1 ) { column_dof_id = predecessor_it->getAdjacentJoint(successor_it)->getDOFIndex(); column_dof_position = q.jnt_pos(column_dof_id); } else { column_dof_position = 0.0; column_dof_id = -1; } Twist S_successor_predecessor = predecessor_it->S(successor_it,column_dof_position); if( column_dof_id >= 0 ) { H(6+column_dof_id,6+row_dof_id) = dot(S_successor_predecessor,F); H(6+row_dof_id,6+column_dof_id) = H(6+column_dof_id,6+row_dof_id); } } if( row_dof_id >= 0 ) { buffer_F = q.base_pos.M*F; F = buffer_F; H.data.block(0,6+row_dof_id,6,1) = toEigen(F); H.data.block(6+row_dof_id,0,1,6) = toEigen(F).transpose(); } } } } //The first 6x6 submatrix of the FlotingBase Inertia Matrix are simply the spatial inertia //of all the structure expressed in the base reference frame H.data.block(0,0,6,6) = toEigen(q.base_pos.M*Ic[traversal.getBaseLink()->getLinkIndex()]); return 0; }