void VertEqImpl::upscale (const TwophaseState& fineScale, TwophaseState& coarseScale) { // dimension state object to the top grid coarseScale.init (*ts, pr->numPhases ()); // upscale pressure and saturation to find the initial state of // the two-dimensional domain. we only need to set the pressure // and saturation, the flux is an output field. these methods // are handled by the props class, since it already has access to // the densities and weights. pr->upscale_saturation (&fineScale.saturation ()[0], &coarseScale.saturation ()[0]); pr->upd_res_sat (&coarseScale.saturation ()[0]); pr->upscale_pressure (&coarseScale.saturation ()[0], &fineScale.pressure ()[0], &coarseScale.pressure ()[0]); // use the regular helper method to initialize the face pressure // since it is implemented in the header, we have access to it // even though it is in an anonymous namespace! const UnstructuredGrid& g = this->grid(); initFacePressure (UgGridHelpers::dimensions (g), UgGridHelpers::numFaces (g), UgGridHelpers::faceCells (g), UgGridHelpers::beginFaceCentroids (g), UgGridHelpers::beginCellCentroids (g), coarseScale); // update the properties from the initial state (the // simulation object won't call this method before the // first timestep; it assumes that the state is initialized // accordingly (which is what we do here now) notify (coarseScale); }
/// \page tutorial3 /// \section commentedsource1 Program walk-through. /// \details /// Main function /// \snippet tutorial3.cpp main /// \internal [main] int main () try { /// \internal [main] /// \endinternal /// \page tutorial3 /// \details /// We define the grid. A Cartesian grid with 400 cells, /// each being 10m along each side. Note that we treat the /// grid as 3-dimensional, but have a thickness of only one /// layer in the Z direction. /// /// The Opm::GridManager is responsible for creating and destroying the grid, /// the UnstructuredGrid data structure contains the actual grid topology /// and geometry. /// \snippet tutorial3.cpp grid /// \internal [grid] int nx = 20; int ny = 20; int nz = 1; double dx = 10.0; double dy = 10.0; double dz = 10.0; using namespace Opm; GridManager grid_manager(nx, ny, nz, dx, dy, dz); const UnstructuredGrid& grid = *grid_manager.c_grid(); int num_cells = grid.number_of_cells; /// \internal [grid] /// \endinternal /// \page tutorial3 /// \details /// We define the properties of the fluid.\n /// Number of phases, phase densities, phase viscosities, /// rock porosity and permeability. /// /// We always use SI units in the simulator. Many units are /// available for use, however. They are stored as constants in /// the Opm::unit namespace, while prefixes are in the Opm::prefix /// namespace. See Units.hpp for more. /// \snippet tutorial3.cpp set properties /// \internal [set properties] int num_phases = 2; using namespace Opm::unit; using namespace Opm::prefix; std::vector<double> density(num_phases, 1000.0); std::vector<double> viscosity(num_phases, 1.0*centi*Poise); double porosity = 0.5; double permeability = 10.0*milli*darcy; /// \internal [set properties] /// \endinternal /// \page tutorial3 /// \details We define the relative permeability function. We use a basic fluid /// description and set this function to be linear. For more realistic fluid, the /// saturation function may be interpolated from experimental data. /// \snippet tutorial3.cpp relperm /// \internal [relperm] SaturationPropsBasic::RelPermFunc rel_perm_func = SaturationPropsBasic::Linear; /// \internal [relperm] /// \endinternal /// \page tutorial3 /// \details We construct a basic fluid and rock property object /// with the properties we have defined above. Each property is /// constant and hold for all cells. /// \snippet tutorial3.cpp properties /// \internal [properties] IncompPropertiesBasic props(num_phases, rel_perm_func, density, viscosity, porosity, permeability, grid.dimensions, num_cells); /// \internal [properties] /// \endinternal /// \page tutorial3 /// \details Gravity parameters. Here, we set zero gravity. /// \snippet tutorial3.cpp gravity /// \internal [gravity] const double *grav = 0; std::vector<double> omega; /// \internal [gravity] /// \endinternal /// \page tutorial3 /// \details We set up the source term. Positive numbers indicate that the cell is a source, /// while negative numbers indicate a sink. /// \snippet tutorial3.cpp source /// \internal [source] std::vector<double> src(num_cells, 0.0); src[0] = 1.; src[num_cells-1] = -1.; /// \internal [source] /// \endinternal /// \page tutorial3 /// \details We set up the boundary conditions. Letting bcs be empty is equivalent /// to no-flow boundary conditions. /// \snippet tutorial3.cpp boundary /// \internal [boundary] FlowBCManager bcs; /// \internal [boundary] /// \endinternal /// \page tutorial3 /// \details We may now set up the pressure solver. At this point, /// unchanging parameters such as transmissibility are computed /// and stored internally by the IncompTpfa class. The null pointer /// constructor argument is for wells, which are not used in this tutorial. /// \snippet tutorial3.cpp pressure solver /// \internal [pressure solver] LinearSolverUmfpack linsolver; IncompTpfa psolver(grid, props, linsolver, grav, NULL, src, bcs.c_bcs()); /// \internal [pressure solver] /// \endinternal /// \page tutorial3 /// \details We set up a state object for the wells. Here, there are /// no wells and we let it remain empty. /// \snippet tutorial3.cpp well /// \internal [well] WellState well_state; /// \internal [well] /// \endinternal /// \page tutorial3 /// \details We compute the pore volume /// \snippet tutorial3.cpp pore volume /// \internal [pore volume] std::vector<double> porevol; Opm::computePorevolume(grid, props.porosity(), porevol); /// \internal [pore volume] /// \endinternal /// \page tutorial3 /// \details Set up the transport solver. This is a reordering implicit Euler transport solver. /// \snippet tutorial3.cpp transport solver /// \internal [transport solver] const double tolerance = 1e-9; const int max_iterations = 30; Opm::TransportSolverTwophaseReorder transport_solver(grid, props, NULL, tolerance, max_iterations); /// \internal [transport solver] /// \endinternal /// \page tutorial3 /// \details Time integration parameters /// \snippet tutorial3.cpp time parameters /// \internal [time parameters] const double dt = 0.1*day; const int num_time_steps = 20; /// \internal [time parameters] /// \endinternal /// \page tutorial3 /// \details We define a vector which contains all cell indexes. We use this /// vector to set up parameters on the whole domain. /// \snippet tutorial3.cpp cell indexes /// \internal [cell indexes] std::vector<int> allcells(num_cells); for (int cell = 0; cell < num_cells; ++cell) { allcells[cell] = cell; } /// \internal [cell indexes] /// \endinternal /// \page tutorial3 /// \details /// We set up a two-phase state object, and /// initialize water saturation to minimum everywhere. /// \snippet tutorial3.cpp two-phase state /// \internal [two-phase state] TwophaseState state; state.init(grid.number_of_cells , grid.number_of_faces, 2); initSaturation( allcells , props , state , MinSat ); /// \internal [two-phase state] /// \endinternal /// \page tutorial3 /// \details This string stream will be used to construct a new /// output filename at each timestep. /// \snippet tutorial3.cpp output stream /// \internal [output stream] std::ostringstream vtkfilename; /// \internal [output stream] /// \endinternal /// \page tutorial3 /// \details Loop over the time steps. /// \snippet tutorial3.cpp time loop /// \internal [time loop] for (int i = 0; i < num_time_steps; ++i) { /// \internal [time loop] /// \endinternal /// \page tutorial3 /// \details Solve the pressure equation /// \snippet tutorial3.cpp solve pressure /// \internal [solve pressure] psolver.solve(dt, state, well_state); /// \internal [solve pressure] /// \endinternal /// \page tutorial3 /// \details Solve the transport equation. /// \snippet tutorial3.cpp transport solve /// \internal [transport solve] transport_solver.solve(&porevol[0], &src[0], dt, state); /// \internal [transport solve] /// \endinternal /// \page tutorial3 /// \details Write the output to file. /// \snippet tutorial3.cpp write output /// \internal [write output] vtkfilename.str(""); vtkfilename << "tutorial3-" << std::setw(3) << std::setfill('0') << i << ".vtu"; std::ofstream vtkfile(vtkfilename.str().c_str()); Opm::DataMap dm; dm["saturation"] = &state.saturation(); dm["pressure"] = &state.pressure(); Opm::writeVtkData(grid, dm, vtkfile); } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }