FString UK2Node_BaseMCDelegate::GetDocumentationLink() const
{
	UClass* ParentClass = NULL;
	if (DelegateReference.IsSelfContext())
	{
		if (HasValidBlueprint())
		{
			UField* Delegate = FindField<UField>(GetBlueprint()->GeneratedClass, DelegateReference.GetMemberName());
			if (Delegate != NULL)
			{
				ParentClass = Delegate->GetOwnerClass();
			}
		}		
	}
	else 
	{
		ParentClass = DelegateReference.GetMemberParentClass(this);
	}

	if ( ParentClass != NULL )
	{
		return FString( TEXT("Shared/") ) + ParentClass->GetName();
	}

	return TEXT("");
}
void FGatherConvertedClassDependencies::DependenciesForHeader()
{
	TArray<UObject*> ObjectsToCheck;
	GetObjectsWithOuter(OriginalStruct, ObjectsToCheck, true);

	TArray<UObject*> NeededObjects;
	FReferenceFinder HeaderReferenceFinder(NeededObjects, nullptr, false, false, true, false);

	auto ShouldIncludeHeaderFor = [&](UObject* InObj)->bool
	{
		if (InObj
			&& (InObj->IsA<UClass>() || InObj->IsA<UEnum>() || InObj->IsA<UScriptStruct>())
			&& !InObj->HasAnyFlags(RF_ClassDefaultObject))
		{
			auto ObjAsBPGC = Cast<UBlueprintGeneratedClass>(InObj);
			const bool bWillBeConvetedAsBPGC = ObjAsBPGC && WillClassBeConverted(ObjAsBPGC);
			const bool bRemainAsUnconvertedBPGC = ObjAsBPGC && !bWillBeConvetedAsBPGC;
			if (!bRemainAsUnconvertedBPGC && (InObj->GetOutermost() != OriginalStruct->GetOutermost()))
			{
				return true;
			}
		}
		return false;
	};

	for (auto Obj : ObjectsToCheck)
	{
		const UProperty* Property = Cast<const UProperty>(Obj);
		if (const UArrayProperty* ArrayProperty = Cast<UArrayProperty>(Property))
		{
			Property = ArrayProperty->Inner;
		}
		const UProperty* OwnerProperty = IsValid(Property) ? Property->GetOwnerProperty() : nullptr;
		const bool bIsParam = OwnerProperty && (0 != (OwnerProperty->PropertyFlags & CPF_Parm)) && OwnerProperty->IsIn(OriginalStruct);
		const bool bIsMemberVariable = OwnerProperty && (OwnerProperty->GetOuter() == OriginalStruct);
		if (bIsParam || bIsMemberVariable)
		{
			if (auto ObjectProperty = Cast<const UObjectPropertyBase>(Property))
			{
				DeclareInHeader.Add(GetFirstNativeOrConvertedClass(ObjectProperty->PropertyClass));
			}
			else if (auto InterfaceProperty = Cast<const UInterfaceProperty>(Property))
			{
				IncludeInHeader.Add(InterfaceProperty->InterfaceClass);
			}
			else if (auto DelegateProperty = Cast<const UDelegateProperty>(Property))
			{
				IncludeInHeader.Add(DelegateProperty->SignatureFunction ? DelegateProperty->SignatureFunction->GetOwnerStruct() : nullptr);
			}
			/* MC Delegate signatures are recreated in local scope anyway.
			else if (auto MulticastDelegateProperty = Cast<const UMulticastDelegateProperty>(Property))
			{
				IncludeInHeader.Add(MulticastDelegateProperty->SignatureFunction ? MulticastDelegateProperty->SignatureFunction->GetOwnerClass() : nullptr);
			}
			*/
			else if (const UByteProperty* ByteProperty = Cast<const UByteProperty>(Property))
			{ 
				// HeaderReferenceFinder.FindReferences(Obj); cannot find this enum..
				IncludeInHeader.Add(ByteProperty->Enum);
			}
			else
			{
				HeaderReferenceFinder.FindReferences(Obj);
			}
		}
	}

	if (auto SuperStruct = OriginalStruct->GetSuperStruct())
	{
		IncludeInHeader.Add(SuperStruct);
	}

	if (auto SourceClass = Cast<UClass>(OriginalStruct))
	{
		for (auto& ImplementedInterface : SourceClass->Interfaces)
		{
			IncludeInHeader.Add(ImplementedInterface.Class);
		}
	}

	for (auto Obj : NeededObjects)
	{
		if (ShouldIncludeHeaderFor(Obj))
		{
			IncludeInHeader.Add(CastChecked<UField>(Obj));
		}
	}

	// DEFAULT VALUES FROM UDS:
	UUserDefinedStruct* UDS = Cast<UUserDefinedStruct>(OriginalStruct);
	if (UDS)
	{
		FStructOnScope StructOnScope(UDS);
		UDS->InitializeDefaultValue(StructOnScope.GetStructMemory());
		for (TFieldIterator<UObjectPropertyBase> PropertyIt(UDS); PropertyIt; ++PropertyIt)
		{
			UObject* DefaultValueObject = ((UObjectPropertyBase*)*PropertyIt)->GetObjectPropertyValue_InContainer(StructOnScope.GetStructMemory());
			UField* ObjAsField = Cast<UField>(DefaultValueObject);
			UField* FieldForHeader = ObjAsField ? ObjAsField : (DefaultValueObject ? DefaultValueObject->GetClass() : nullptr);
			IncludeInHeader.Add(FieldForHeader);
		}
	}

	// REMOVE UNNECESSARY HEADERS
	UClass* AsBPGC = Cast<UBlueprintGeneratedClass>(OriginalStruct);
	UClass* OriginalClassFromOriginalPackage = AsBPGC ? FindOriginalClass(AsBPGC) : nullptr;
	const UPackage* OriginalStructPackage = OriginalStruct ? OriginalStruct->GetOutermost() : nullptr;
	for (auto Iter = IncludeInHeader.CreateIterator(); Iter; ++Iter)
	{
		UField* CurrentField = *Iter;
		if (CurrentField)
		{
			if (CurrentField->GetOutermost() == OriginalStructPackage)
			{
				Iter.RemoveCurrent();
			}
			else if (CurrentField == OriginalStruct)
			{
				Iter.RemoveCurrent();
			}
			else if (OriginalClassFromOriginalPackage && (CurrentField == OriginalClassFromOriginalPackage))
			{
				Iter.RemoveCurrent();
			}
		}
	}
}
예제 #3
0
void UCollisionProfile::LoadProfileConfig(bool bForceInit)
{
	/** 
	 * This function loads all config data to memory
	 * 
	 * 1. First it fixes the meta data for each custom channel name since those meta data is used for #2
	 * 2. Load Default Profile so that it can be used later
	 * 3. Second it sets up Correct ResponseToChannel for all profiles
	 * 4. It loads profile redirect data 
	 **/
	// read "EngineTraceChanne" and "GameTraceChanne" and set meta data
	FConfigSection* Configs = GConfig->GetSectionPrivate( TEXT("/Script/Engine.CollisionProfile"), false, true, GEngineIni );

	// before any op, verify if profiles contains invalid name - such as Custom profile name - remove all of them
	for (auto Iter=Profiles.CreateConstIterator(); Iter; ++Iter)
	{
		// make sure it doens't have any 
		if (Iter->Name == CustomCollisionProfileName)
		{
			UE_LOG(LogCollisionProfile, Error, TEXT("Profiles contain invalid name : %s is reserved for internal use"), *CustomCollisionProfileName.ToString());
			Profiles.RemoveAt(Iter.GetIndex());
		}
	}
	// 1. First loads all meta data for custom channels
	// this can be used in #2, so had to fix up first

	// this is to replace ECollisionChannel's DisplayName to be defined by users
	FString EngineTraceChannel	= TEXT("EngineTraceChannel");
	FString GameTraceChannel	= TEXT("GameTraceChannel");

	// find the enum
	UEnum* Enum = FindObject<UEnum>(ANY_PACKAGE, TEXT("ECollisionChannel"), true);
	// we need this Enum
	check (Enum);
	UStruct* Struct = FCollisionResponseContainer::StaticStruct(); 
	check (Struct);
	const FString KeyName = TEXT("DisplayName");
	const FString TraceType = TEXT("TraceQuery");
	const FString TraceValue = TEXT("1");
	const FString HiddenMeta = TEXT("Hidden");

	// need to initialize displaynames separate
	int32 NumEnum = Enum->NumEnums();
	ChannelDisplayNames.Empty(NumEnum);
	ChannelDisplayNames.AddZeroed(NumEnum);
	TraceTypeMapping.Empty();
	ObjectTypeMapping.Empty();

	// first go through enum entry, and add suffix to displaynames
	int32 PrefixLen = FString(TEXT("ECC_")).Len();

	// need to have mapping table between ECollisionChannel and EObjectTypeQuery/ETraceTypeQuery
	UEnum* ObjectTypeEnum = FindObject<UEnum>(ANY_PACKAGE, TEXT("EObjectTypeQuery"), true);
	UEnum* TraceTypeEnum = FindObject<UEnum>(ANY_PACKAGE, TEXT("ETraceTypeQuery"), true);
	check (ObjectTypeEnum && TraceTypeEnum);

	for ( int32 EnumIndex=0; EnumIndex<NumEnum; ++EnumIndex )
	{
		FString EnumName = Enum->GetEnumName(EnumIndex);
		EnumName = EnumName.RightChop(PrefixLen);
		FName DisplayName = FName(*EnumName);

		if ( IS_VALID_COLLISIONCHANNEL(EnumIndex) )
		{
			// verify if the Struct name matches
			// this is to avoid situations where they mismatch and causes random bugs
			UField* Field = FindField<UField>(Struct, DisplayName);

			if (!Field)
			{
				// error - this is bad. This means somebody changed variable name without changing channel enum
				UE_LOG(LogCollisionProfile, Error, TEXT("Variable (%s) isn't found for Channel (%s). \nPlease make sure you name matches between ECollisionChannel and FCollisionResponseContainer."), *DisplayName.ToString(), *EnumName);
			}

#if WITH_EDITOR
			// clear displayname since we're setting it in below
			Enum->RemoveMetaData(*KeyName, EnumIndex);
			if (Enum->HasMetaData(*HiddenMeta, EnumIndex) == false)
			{
				Enum->SetMetaData(*HiddenMeta, NULL, EnumIndex);
			}
#endif			
		}
		else
		{
			// fix up FCollisionQueryFlag AllObjects flag, if trace type=1
			ECollisionChannel CollisionChannel = (ECollisionChannel)EnumIndex;
			// for any engine level collision profile, we hard coded here
			// meta data doesn't work in cooked build, so we'll have to manually handle them
			if ((CollisionChannel == ECC_Visibility) || (CollisionChannel == ECC_Camera))
			{
				// remove from object query flags
				FCollisionQueryFlag::Get().RemoveFromAllObjectsQueryFlag(CollisionChannel);
				TraceTypeMapping.Add(CollisionChannel);
			}
			else if ( CollisionChannel < ECC_OverlapAll_Deprecated )
			{
				ObjectTypeMapping.Add(CollisionChannel);
			}
		}

		ChannelDisplayNames[EnumIndex] = DisplayName;
	}

	// Now Load Channel setups, and set display names if customized
	// also initialize DefaultResposneContainer with default response for each channel
	FCollisionResponseContainer::DefaultResponseContainer.SetAllChannels(ECR_Block);

	for (auto Iter=DefaultChannelResponses.CreateConstIterator(); Iter; ++Iter)
	{
		const FCustomChannelSetup& CustomChannel = *Iter;
		int32 EnumIndex = CustomChannel.Channel;
		// make sure it is the range of channels we allow to change
		if ( IS_VALID_COLLISIONCHANNEL(EnumIndex) )
		{
			if ( CustomChannel.Name != NAME_None )
			{
				// before you set meta data, you'll have to save this value to modify 
				// ECollisionResponseContainer variables meta data
				FString VariableName = ChannelDisplayNames[EnumIndex].ToString();
				FString DisplayValue = CustomChannel.Name.ToString();

				// also has to set this for internal use
				ChannelDisplayNames[EnumIndex] = FName(*DisplayValue);

#if WITH_EDITOR
				// set displayvalue for this enum entry
				Enum->SetMetaData(*KeyName, *DisplayValue, EnumIndex);
				// also need to remove "Hidden"
				Enum->RemoveMetaData(*HiddenMeta, EnumIndex);
#endif 
				// now add MetaData type for trace type if it does
				if (CustomChannel.bTraceType)
				{
#if WITH_EDITOR
					// add to enum
					Enum->SetMetaData(*TraceType, *TraceValue, EnumIndex);
#endif
					// remove from all object queries
					FCollisionQueryFlag::Get().RemoveFromAllObjectsQueryFlag(CustomChannel.Channel);
					TraceTypeMapping.Add(CustomChannel.Channel);
				}
				// if it has display value
				else 
				{
#if WITH_EDITOR
					// add to enum
					Enum->RemoveMetaData(*TraceType, EnumIndex);
#endif
					ObjectTypeMapping.Add(CustomChannel.Channel);

					if (CustomChannel.bStaticObject)
					{
						// add to static object 
						FCollisionQueryFlag::Get().AddToAllStaticObjectsQueryFlag(CustomChannel.Channel);
					}
				}
#if WITH_EDITOR
				// now enum is fixed, so find member variable for the field
				UField* Field = FindField<UField>(Struct, FName(*VariableName));
				// I verified up in the class, this can't happen
				check (Field);
				Field->SetMetaData(*KeyName, *DisplayValue);
#endif
			}
			else
			{
				// missing name
				UE_LOG(LogCollisionProfile, Warning, TEXT("Name can't be empty for Channel (%d) "), EnumIndex );
			}

			// allow it to set default response
			FCollisionResponseContainer::DefaultResponseContainer.SetResponse((ECollisionChannel) EnumIndex, CustomChannel.DefaultResponse);
		}
		else
		{
			// you can't customize those channels
			UE_LOG(LogCollisionProfile, Warning, TEXT("Default Setup doesn't allow for predefined engine channels (%d) "), EnumIndex);
		}
	}

#if WITH_EDITOR
	// now propagate all changes to the channels to EObjectTypeQuery and ETraceTypeQuery for blueprint accessibility
	// this code is to show in editor more friendly, so it doesn't have to be set if it's not for editor
	int32 ObjectTypeEnumIndex = 0;
	int32 TraceTypeEnumIndex = 0;

	// first go through fill up ObjectType Enum
	for ( int32 EnumIndex=0; EnumIndex<NumEnum; ++EnumIndex )
	{
		// if not hidden
		const FString& Hidden = Enum->GetMetaData(*HiddenMeta, EnumIndex);
		if ( Hidden.IsEmpty() )
		{
			const FString& DisplayName = Enum->GetMetaData(*KeyName, EnumIndex);
			if ( !DisplayName.IsEmpty() )
			{
				// find out trace type or object type
				if (Enum->GetMetaData(*TraceType, EnumIndex) == TraceValue)
				{
					TraceTypeEnum->RemoveMetaData(*HiddenMeta, TraceTypeEnumIndex);
					TraceTypeEnum->SetMetaData(*KeyName, *DisplayName, TraceTypeEnumIndex);
					++TraceTypeEnumIndex;
				}
				else
				{
					ObjectTypeEnum->RemoveMetaData(*HiddenMeta, ObjectTypeEnumIndex);
					ObjectTypeEnum->SetMetaData(*KeyName, *DisplayName, ObjectTypeEnumIndex);
					++ObjectTypeEnumIndex;
				}
			}
		}
	}

	// make sure TraceTypeEnumIndex matches TraceTypeMapping
	check (TraceTypeMapping.Num() == TraceTypeEnumIndex);
	check (ObjectTypeMapping.Num() == ObjectTypeEnumIndex);
#endif

	// collision redirector has to be loaded before profile
	CollisionChannelRedirectsMap.Empty();

	for(auto Iter = CollisionChannelRedirects.CreateConstIterator(); Iter; ++Iter)
	{
		FName OldName = Iter->OldName;
		FName NewName = Iter->NewName;

		// at least we need to have OldName
		if(OldName!= NAME_None && NewName != NAME_None)
		{
			// add to pair
			CollisionChannelRedirectsMap.Add(OldName, NewName);
		}
		else
		{
			// print error 
			UE_LOG(LogCollisionProfile, Warning, TEXT("CollisionChannel Redirects : Name Can't be none (%s: %s)"), *OldName.ToString(), *NewName.ToString());
		}
	}

	// 2. Second loads all set up back to ResponseToChannels
	// this does a lot of iteration, but this only happens once loaded, so it's better to be convenient than efficient
	// fill up Profiles data
	FillProfileData(Profiles, Enum, KeyName, EditProfiles);

	// 3. It loads redirect data  - now time to load profile redirect
	ProfileRedirectsMap.Empty();

	// handle profile redirect here
	for(auto Iter = ProfileRedirects.CreateConstIterator(); Iter; ++Iter)
	{
		FName OldName = Iter->OldName;
		FName NewName = Iter->NewName;

		// at least we need to have OldName
		if(OldName!= NAME_None && NewName != NAME_None)
		{
			FCollisionResponseTemplate Template;

			// make sure the template exists
			if(FindProfileData(Profiles, NewName, Template))
			{
				// add to pair
				ProfileRedirectsMap.Add(OldName, NewName);
			}
			else
			{
				// print error
				UE_LOG(LogCollisionProfile, Warning, TEXT("ProfileRedirect (%s : %s) - New Name (\'%s\') isn't found "),
					*OldName.ToString(), *NewName.ToString(), *NewName.ToString());
			}
		}
	}

#if WITH_EDITOR
	if (bForceInit)
	{
		// go through objects, and see if we can reinitialize profile
		for(TObjectIterator<UPrimitiveComponent> PrimIt; PrimIt; ++PrimIt)
		{
			PrimIt->UpdateCollisionProfile();
		}
	}
#endif
}
예제 #4
0
void FKismetBytecodeDisassembler::ProcessCommon(int32& ScriptIndex, EExprToken Opcode)
{
	switch (Opcode)
	{
	case EX_PrimitiveCast:
		{
			// A type conversion.
			uint8 ConversionType = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: PrimitiveCast of type %d"), *Indents, (int32)Opcode, ConversionType);
			AddIndent();

			Ar.Logf(TEXT("%s Argument:"), *Indents);
			ProcessCastByte(ConversionType, ScriptIndex);

			//@TODO:
			//Ar.Logf(TEXT("%s Expression:"), *Indents);
			//SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ObjToInterfaceCast:
		{
			// A conversion from an object variable to a native interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: ObjToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_CrossInterfaceCast:
		{
			// A conversion from one interface variable to a different interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_InterfaceToObjCast:
		{
			// A conversion from an interface variable to a object variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* ObjectClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToObjCast to %s"), *Indents, (int32)Opcode, *ObjectClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Let:
		{
			Ar.Logf(TEXT("%s $%X: Let (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetObj:
	case EX_LetWeakObjPtr:
		{
			if( Opcode == EX_LetObj )
			{
				Ar.Logf(TEXT("%s $%X: Let Obj (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			else
			{
				Ar.Logf(TEXT("%s $%X: Let WeakObjPtr (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetBool:
		{
			Ar.Logf(TEXT("%s $%X: LetBool (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case Ex_LetValueOnPersistentFrame:
		{
			Ar.Logf(TEXT("%s $%X: LetValueOnPersistentFrame"), *Indents, (int32)Opcode);
			AddIndent();

			auto Prop = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s Destination variable: %s, offset: %d"), *Indents, *GetNameSafe(Prop), 
				Prop ? Prop->GetOffset_ForDebug() : 0);
			
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr(ScriptIndex);

			DropIndent();

			break;
		}
	case EX_StructMemberContext:
		{
			Ar.Logf(TEXT("%s $%X: Struct member context "), *Indents, (int32)Opcode);
			AddIndent();

			UProperty* Prop = ReadPointer<UProperty>(ScriptIndex);

			Ar.Logf(TEXT("%s Expression within struct %s, offset %d"), *Indents, *(Prop->GetName()), 
				Prop->GetOffset_ForDebug()); // although that isn't a UFunction, we are not going to indirect the props of a struct, so this should be fine

			Ar.Logf(TEXT("%s Expression to struct:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();

			break;
		}
	case EX_LetDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetMulticastDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}

	case EX_ComputedJump:
		{
			Ar.Logf(TEXT("%s $%X: Computed Jump, offset specified by expression:"), *Indents, (int32)Opcode);

			AddIndent();
			SerializeExpr( ScriptIndex );
			DropIndent();

			break;
		}

	case EX_Jump:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_LocalVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InstanceVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Instance variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_LocalOutVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local out variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InterfaceContext:
		{
			Ar.Logf(TEXT("%s $%X: EX_InterfaceContext:"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
			break;
		}
	case EX_DeprecatedOp4A:
		{
			Ar.Logf(TEXT("%s $%X: This opcode has been removed and does nothing."), *Indents, (int32)Opcode);
			break;
		}
	case EX_Nothing:
		{
			Ar.Logf(TEXT("%s $%X: EX_Nothing"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndOfScript:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndOfScript"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndFunctionParms:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndFunctionParms"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndStructConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndStructConst"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndArray:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndArray"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntZero:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntZero"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntOne:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntOne"), *Indents, (int32)Opcode);
			break;
		}
	case EX_True:
		{
			Ar.Logf(TEXT("%s $%X: EX_True"), *Indents, (int32)Opcode);
			break;
		}
	case EX_False:
		{
			Ar.Logf(TEXT("%s $%X: EX_False"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoObject:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoInterface:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Self:
		{
			Ar.Logf(TEXT("%s $%X: EX_Self"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndParmValue:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndParmValue"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Return:
		{
			Ar.Logf(TEXT("%s $%X: Return expression"), *Indents, (int32)Opcode);

			SerializeExpr( ScriptIndex ); // Return expression.
			break;
		}
	case EX_FinalFunction:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Final Function (stack node %s::%s)"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));

			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_CallMulticastDelegate:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: CallMulticastDelegate (signature %s::%s) delegate:"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));
			SerializeExpr( ScriptIndex );
			Ar.Logf(TEXT("Params:"));
			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_VirtualFunction:
		{
			FString FunctionName = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Virtual Function named %s"), *Indents, (int32)Opcode, *FunctionName);

			while (SerializeExpr(ScriptIndex) != EX_EndFunctionParms)
			{
			}
			break;
		}
	case EX_Context:
	case EX_Context_FailSilent:
		{
			Ar.Logf(TEXT("%s $%X: %s"), *Indents, (int32)Opcode, TEXT("Context"));
			AddIndent();

			// Object expression.
			Ar.Logf(TEXT("%s ObjectExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			if (Opcode == EX_Context_FailSilent)
			{
				Ar.Logf(TEXT(" Can fail silently on access none "));
			}

			// Code offset for NULL expressions.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s Skip Bytes: 0x%X"), *Indents, SkipCount);

			// Property corresponding to the r-value data, in case the l-value needs to be mem-zero'd
			UField* Field = ReadPointer<UField>(ScriptIndex);
			Ar.Logf(TEXT("%s R-Value Property: %s"), *Indents, Field ? *Field->GetName() : TEXT("(null)"));

			// Property type, in case the r-value is a non-property such as dynamic array length
			uint8 PropType = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s PropertyTypeIfNeeded: %d"), *Indents, PropType);

			// Context expression.
			Ar.Logf(TEXT("%s ContextExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_IntConst:
		{
			int32 ConstValue = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int32 %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_SkipOffsetConst:
		{
			CodeSkipSizeType ConstValue = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal CodeSkipSizeType 0x%X"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_FloatConst:
		{
			float ConstValue = ReadFLOAT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal float %f"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_StringConst:
		{
			FString ConstValue = ReadString8(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal ansi string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_UnicodeStringConst:
		{
			FString ConstValue = ReadString16(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal unicode string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_TextConst:
		{
			Ar.Logf(TEXT("%s $%X: literal text"), *Indents, (int32)Opcode);
			break;
		}
	case EX_ObjectConst:
		{
			UObject* Pointer = ReadPointer<UObject>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: EX_ObjectConst (%p:%s)"), *Indents, (int32)Opcode, Pointer, *Pointer->GetFullName());
			break;
		}
	case EX_NameConst:
		{
			FString ConstValue = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal name %s"), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_RotationConst:
		{
			float Pitch = ReadFLOAT(ScriptIndex);
			float Yaw = ReadFLOAT(ScriptIndex);
			float Roll = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal rotation (%f,%f,%f)"), *Indents, (int32)Opcode, Pitch, Yaw, Roll);
			break;
		}
	case EX_VectorConst:
		{
			float X = ReadFLOAT(ScriptIndex);
			float Y = ReadFLOAT(ScriptIndex);
			float Z = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal vector (%f,%f,%f)"), *Indents, (int32)Opcode, X, Y, Z);
			break;
		}
	case EX_TransformConst:
		{

			float RotX = ReadFLOAT(ScriptIndex);
			float RotY = ReadFLOAT(ScriptIndex);
			float RotZ = ReadFLOAT(ScriptIndex);
			float RotW = ReadFLOAT(ScriptIndex);

			float TransX = ReadFLOAT(ScriptIndex);
			float TransY = ReadFLOAT(ScriptIndex);
			float TransZ = ReadFLOAT(ScriptIndex);

			float ScaleX = ReadFLOAT(ScriptIndex);
			float ScaleY = ReadFLOAT(ScriptIndex);
			float ScaleZ = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal transform R(%f,%f,%f,%f) T(%f,%f,%f) S(%f,%f,%f)"), *Indents, (int32)Opcode, TransX, TransY, TransZ, RotX, RotY, RotZ, RotW, ScaleX, ScaleY, ScaleZ);
			break;
		}
	case EX_StructConst:
		{
			UScriptStruct* Struct = ReadPointer<UScriptStruct>(ScriptIndex);
			int32 SerializedSize = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal struct %s (serialized size: %d)"), *Indents, (int32)Opcode, *Struct->GetName(), SerializedSize);
			while( SerializeExpr(ScriptIndex) != EX_EndStructConst )
			{
				// struct contents
			}
			break;
		}
	case EX_SetArray:
		{
 			Ar.Logf(TEXT("%s $%X: set array"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
 			while( SerializeExpr(ScriptIndex) != EX_EndArray)
 			{
 				// Array contents
 			}
 			break;
		}
	case EX_ByteConst:
		{
			uint8 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal byte %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_IntConstByte:
		{
			int32 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_MetaCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: MetaCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_DynamicCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: DynamicCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_JumpIfNot:
		{
			// Code offset.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
				
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X if not expr:"), *Indents, (int32)Opcode, SkipCount);

			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Assert:
		{
			uint16 LineNumber = ReadWORD(ScriptIndex);
			uint8 InDebugMode = ReadBYTE(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: assert at line %d, in debug mode = %d with expr:"), *Indents, (int32)Opcode, LineNumber, InDebugMode);
			SerializeExpr( ScriptIndex ); // Assert expr.
			break;
		}
	case EX_Skip:
		{
			CodeSkipSizeType W = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: possibly skip 0x%X bytes of expr:"), *Indents, (int32)Opcode, W);

			// Expression to possibly skip.
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_InstanceDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: instance delegate function named %s"), *Indents, (int32)Opcode, *FuncName);
			break;
		}
	case EX_AddMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Add MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_RemoveMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Remove MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ClearMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Clear MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_BindDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: BindDelegate '%s' "), *Indents, (int32)Opcode, *FuncName);

			Ar.Logf(TEXT("%s Delegate:"), *Indents);
			SerializeExpr( ScriptIndex );

			Ar.Logf(TEXT("%s Object:"), *Indents);
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_PushExecutionFlow:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: FlowStack.Push(0x%X);"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_PopExecutionFlow:
		{
			Ar.Logf(TEXT("%s $%X: if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! }"), *Indents, (int32)Opcode);
			break;
		}
	case EX_PopExecutionFlowIfNot:
		{
			Ar.Logf(TEXT("%s $%X: if (!condition) { if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! } }"), *Indents, (int32)Opcode);
			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Breakpoint:
		{
			Ar.Logf(TEXT("%s $%X: <<< BREAKPOINT >>>"), *Indents, (int32)Opcode);
			break;
		}
	case EX_WireTracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. wire debug site .."), *Indents, (int32)Opcode);
			break;
		}
	case EX_Tracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. debug site .."), *Indents, (int32)Opcode);
			break;
		}
	default:
		{
			// This should never occur.
			UE_LOG(LogScriptDisassembler, Warning, TEXT("Unknown bytecode 0x%02X; ignoring it"), (uint8)Opcode );
			break;
		}
	}
}
void FKismetBytecodeDisassembler::ProcessCommon(int32& ScriptIndex, EExprToken Opcode)
{
	switch (Opcode)
	{
	case EX_PrimitiveCast:
		{
			// A type conversion.
			uint8 ConversionType = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: PrimitiveCast of type %d"), *Indents, (int32)Opcode, ConversionType);
			AddIndent();

			Ar.Logf(TEXT("%s Argument:"), *Indents);
			ProcessCastByte(ConversionType, ScriptIndex);

			//@TODO:
			//Ar.Logf(TEXT("%s Expression:"), *Indents);
			//SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ObjToInterfaceCast:
		{
			// A conversion from an object variable to a native interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: ObjToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_CrossInterfaceCast:
		{
			// A conversion from one interface variable to a different interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_InterfaceToObjCast:
		{
			// A conversion from an interface variable to a object variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* ObjectClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToObjCast to %s"), *Indents, (int32)Opcode, *ObjectClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Let:
		{
			Ar.Logf(TEXT("%s $%X: Let (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			ReadPointer<UProperty>(ScriptIndex);

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetObj:
	case EX_LetWeakObjPtr:
		{
			if( Opcode == EX_LetObj )
			{
				Ar.Logf(TEXT("%s $%X: Let Obj (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			else
			{
				Ar.Logf(TEXT("%s $%X: Let WeakObjPtr (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetBool:
		{
			Ar.Logf(TEXT("%s $%X: LetBool (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetValueOnPersistentFrame:
		{
			Ar.Logf(TEXT("%s $%X: LetValueOnPersistentFrame"), *Indents, (int32)Opcode);
			AddIndent();

			auto Prop = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s Destination variable: %s, offset: %d"), *Indents, *GetNameSafe(Prop), 
				Prop ? Prop->GetOffset_ForDebug() : 0);
			
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr(ScriptIndex);

			DropIndent();

			break;
		}
	case EX_StructMemberContext:
		{
			Ar.Logf(TEXT("%s $%X: Struct member context "), *Indents, (int32)Opcode);
			AddIndent();

			UProperty* Prop = ReadPointer<UProperty>(ScriptIndex);

			Ar.Logf(TEXT("%s Expression within struct %s, offset %d"), *Indents, *(Prop->GetName()), 
				Prop->GetOffset_ForDebug()); // although that isn't a UFunction, we are not going to indirect the props of a struct, so this should be fine

			Ar.Logf(TEXT("%s Expression to struct:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();

			break;
		}
	case EX_LetDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetMulticastDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}

	case EX_ComputedJump:
		{
			Ar.Logf(TEXT("%s $%X: Computed Jump, offset specified by expression:"), *Indents, (int32)Opcode);

			AddIndent();
			SerializeExpr( ScriptIndex );
			DropIndent();

			break;
		}

	case EX_Jump:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_LocalVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_DefaultVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Default variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InstanceVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Instance variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_LocalOutVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local out variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InterfaceContext:
		{
			Ar.Logf(TEXT("%s $%X: EX_InterfaceContext:"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
			break;
		}
	case EX_DeprecatedOp4A:
		{
			Ar.Logf(TEXT("%s $%X: This opcode has been removed and does nothing."), *Indents, (int32)Opcode);
			break;
		}
	case EX_Nothing:
		{
			Ar.Logf(TEXT("%s $%X: EX_Nothing"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndOfScript:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndOfScript"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndFunctionParms:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndFunctionParms"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndStructConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndStructConst"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndArray:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndArray"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndArrayConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndArrayConst"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntZero:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntZero"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntOne:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntOne"), *Indents, (int32)Opcode);
			break;
		}
	case EX_True:
		{
			Ar.Logf(TEXT("%s $%X: EX_True"), *Indents, (int32)Opcode);
			break;
		}
	case EX_False:
		{
			Ar.Logf(TEXT("%s $%X: EX_False"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoObject:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoInterface:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Self:
		{
			Ar.Logf(TEXT("%s $%X: EX_Self"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndParmValue:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndParmValue"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Return:
		{
			Ar.Logf(TEXT("%s $%X: Return expression"), *Indents, (int32)Opcode);

			SerializeExpr( ScriptIndex ); // Return expression.
			break;
		}
	case EX_CallMath:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Call Math (stack node %s::%s)"), *Indents, (int32)Opcode, *GetNameSafe(StackNode ? StackNode->GetOuter() : nullptr), *GetNameSafe(StackNode));

			while (SerializeExpr(ScriptIndex) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_FinalFunction:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Final Function (stack node %s::%s)"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));

			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_CallMulticastDelegate:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: CallMulticastDelegate (signature %s::%s) delegate:"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));
			SerializeExpr( ScriptIndex );
			Ar.Logf(TEXT("Params:"));
			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_VirtualFunction:
		{
			FString FunctionName = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Virtual Function named %s"), *Indents, (int32)Opcode, *FunctionName);

			while (SerializeExpr(ScriptIndex) != EX_EndFunctionParms)
			{
			}
			break;
		}
	case EX_ClassContext:
	case EX_Context:
	case EX_Context_FailSilent:
		{
			Ar.Logf(TEXT("%s $%X: %s"), *Indents, (int32)Opcode, Opcode == EX_ClassContext ? TEXT("Class Context") : TEXT("Context"));
			AddIndent();

			// Object expression.
			Ar.Logf(TEXT("%s ObjectExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			if (Opcode == EX_Context_FailSilent)
			{
				Ar.Logf(TEXT(" Can fail silently on access none "));
			}

			// Code offset for NULL expressions.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s Skip Bytes: 0x%X"), *Indents, SkipCount);

			// Property corresponding to the r-value data, in case the l-value needs to be mem-zero'd
			UField* Field = ReadPointer<UField>(ScriptIndex);
			Ar.Logf(TEXT("%s R-Value Property: %s"), *Indents, Field ? *Field->GetName() : TEXT("(null)"));

			// Context expression.
			Ar.Logf(TEXT("%s ContextExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_IntConst:
		{
			int32 ConstValue = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int32 %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_SkipOffsetConst:
		{
			CodeSkipSizeType ConstValue = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal CodeSkipSizeType 0x%X"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_FloatConst:
		{
			float ConstValue = ReadFLOAT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal float %f"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_StringConst:
		{
			FString ConstValue = ReadString8(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal ansi string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_UnicodeStringConst:
		{
			FString ConstValue = ReadString16(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal unicode string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_TextConst:
		{
			// What kind of text are we dealing with?
			const EBlueprintTextLiteralType TextLiteralType = (EBlueprintTextLiteralType)Script[ScriptIndex++];

			switch (TextLiteralType)
			{
			case EBlueprintTextLiteralType::Empty:
				{
					Ar.Logf(TEXT("%s $%X: literal text - empty"), *Indents, (int32)Opcode);
				}
				break;

			case EBlueprintTextLiteralType::LocalizedText:
				{
					const FString SourceString = ReadString(ScriptIndex);
					const FString KeyString = ReadString(ScriptIndex);
					const FString Namespace = ReadString(ScriptIndex);
					Ar.Logf(TEXT("%s $%X: literal text - localized text { namespace: \"%s\", key: \"%s\", source: \"%s\" }"), *Indents, (int32)Opcode, *Namespace, *KeyString, *SourceString);
				}
				break;

			case EBlueprintTextLiteralType::InvariantText:
				{
					const FString SourceString = ReadString(ScriptIndex);
					Ar.Logf(TEXT("%s $%X: literal text - invariant text: \"%s\""), *Indents, (int32)Opcode, *SourceString);
				}
				break;

			case EBlueprintTextLiteralType::LiteralString:
				{
					const FString SourceString = ReadString(ScriptIndex);
					Ar.Logf(TEXT("%s $%X: literal text - literal string: \"%s\""), *Indents, (int32)Opcode, *SourceString);
				}
				break;

			default:
				checkf(false, TEXT("Unknown EBlueprintTextLiteralType! Please update FKismetBytecodeDisassembler::ProcessCommon to handle this type of text."));
				break;
			}
			break;
		}
	case EX_ObjectConst:
		{
			UObject* Pointer = ReadPointer<UObject>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: EX_ObjectConst (%p:%s)"), *Indents, (int32)Opcode, Pointer, *Pointer->GetFullName());
			break;
		}
	case EX_AssetConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_AssetConst"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
			break;
		}
	case EX_NameConst:
		{
			FString ConstValue = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal name %s"), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_RotationConst:
		{
			float Pitch = ReadFLOAT(ScriptIndex);
			float Yaw = ReadFLOAT(ScriptIndex);
			float Roll = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal rotation (%f,%f,%f)"), *Indents, (int32)Opcode, Pitch, Yaw, Roll);
			break;
		}
	case EX_VectorConst:
		{
			float X = ReadFLOAT(ScriptIndex);
			float Y = ReadFLOAT(ScriptIndex);
			float Z = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal vector (%f,%f,%f)"), *Indents, (int32)Opcode, X, Y, Z);
			break;
		}
	case EX_TransformConst:
		{

			float RotX = ReadFLOAT(ScriptIndex);
			float RotY = ReadFLOAT(ScriptIndex);
			float RotZ = ReadFLOAT(ScriptIndex);
			float RotW = ReadFLOAT(ScriptIndex);

			float TransX = ReadFLOAT(ScriptIndex);
			float TransY = ReadFLOAT(ScriptIndex);
			float TransZ = ReadFLOAT(ScriptIndex);

			float ScaleX = ReadFLOAT(ScriptIndex);
			float ScaleY = ReadFLOAT(ScriptIndex);
			float ScaleZ = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal transform R(%f,%f,%f,%f) T(%f,%f,%f) S(%f,%f,%f)"), *Indents, (int32)Opcode, TransX, TransY, TransZ, RotX, RotY, RotZ, RotW, ScaleX, ScaleY, ScaleZ);
			break;
		}
	case EX_StructConst:
		{
			UScriptStruct* Struct = ReadPointer<UScriptStruct>(ScriptIndex);
			int32 SerializedSize = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal struct %s (serialized size: %d)"), *Indents, (int32)Opcode, *Struct->GetName(), SerializedSize);
			while( SerializeExpr(ScriptIndex) != EX_EndStructConst )
			{
				// struct contents
			}
			break;
		}
	case EX_SetArray:
		{
 			Ar.Logf(TEXT("%s $%X: set array"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
 			while( SerializeExpr(ScriptIndex) != EX_EndArray)
 			{
 				// Array contents
 			}
 			break;
		}
	case EX_ArrayConst:
		{
			UProperty* InnerProp = ReadPointer<UProperty>(ScriptIndex);
			int32 Num = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: set array const - elements number: %d, inner property: %s"), *Indents, (int32)Opcode, Num, *GetNameSafe(InnerProp));
			while (SerializeExpr(ScriptIndex) != EX_EndArrayConst)
			{
				// Array contents
			}
			break;
		}
	case EX_ByteConst:
		{
			uint8 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal byte %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_IntConstByte:
		{
			int32 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_MetaCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: MetaCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_DynamicCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: DynamicCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_JumpIfNot:
		{
			// Code offset.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
				
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X if not expr:"), *Indents, (int32)Opcode, SkipCount);

			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Assert:
		{
			uint16 LineNumber = ReadWORD(ScriptIndex);
			uint8 InDebugMode = ReadBYTE(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: assert at line %d, in debug mode = %d with expr:"), *Indents, (int32)Opcode, LineNumber, InDebugMode);
			SerializeExpr( ScriptIndex ); // Assert expr.
			break;
		}
	case EX_Skip:
		{
			CodeSkipSizeType W = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: possibly skip 0x%X bytes of expr:"), *Indents, (int32)Opcode, W);

			// Expression to possibly skip.
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_InstanceDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: instance delegate function named %s"), *Indents, (int32)Opcode, *FuncName);
			break;
		}
	case EX_AddMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Add MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_RemoveMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Remove MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ClearMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Clear MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_BindDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: BindDelegate '%s' "), *Indents, (int32)Opcode, *FuncName);

			Ar.Logf(TEXT("%s Delegate:"), *Indents);
			SerializeExpr( ScriptIndex );

			Ar.Logf(TEXT("%s Object:"), *Indents);
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_PushExecutionFlow:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: FlowStack.Push(0x%X);"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_PopExecutionFlow:
		{
			Ar.Logf(TEXT("%s $%X: if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! }"), *Indents, (int32)Opcode);
			break;
		}
	case EX_PopExecutionFlowIfNot:
		{
			Ar.Logf(TEXT("%s $%X: if (!condition) { if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! } }"), *Indents, (int32)Opcode);
			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Breakpoint:
		{
			Ar.Logf(TEXT("%s $%X: <<< BREAKPOINT >>>"), *Indents, (int32)Opcode);
			break;
		}
	case EX_WireTracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. wire debug site .."), *Indents, (int32)Opcode);
			break;
		}
	case EX_InstrumentationEvent:
		{
			const uint8 EventType = ReadBYTE(ScriptIndex);
			switch (EventType)
			{
				case EScriptInstrumentation::InlineEvent:
					Ar.Logf(TEXT("%s $%X: .. instrumented inline event .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::Stop:
					Ar.Logf(TEXT("%s $%X: .. instrumented event stop .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::PureNodeEntry:
					Ar.Logf(TEXT("%s $%X: .. instrumented pure node entry site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::NodeDebugSite:
					Ar.Logf(TEXT("%s $%X: .. instrumented debug site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::NodeEntry:
					Ar.Logf(TEXT("%s $%X: .. instrumented wire entry site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::NodeExit:
					Ar.Logf(TEXT("%s $%X: .. instrumented wire exit site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::PushState:
					Ar.Logf(TEXT("%s $%X: .. push execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::RestoreState:
					Ar.Logf(TEXT("%s $%X: .. restore execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::ResetState:
					Ar.Logf(TEXT("%s $%X: .. reset execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::SuspendState:
					Ar.Logf(TEXT("%s $%X: .. suspend execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::PopState:
					Ar.Logf(TEXT("%s $%X: .. pop execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::TunnelEndOfThread:
					Ar.Logf(TEXT("%s $%X: .. tunnel end of thread .."), *Indents, (int32)Opcode);
					break;
			}
			break;
		}
	case EX_Tracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. debug site .."), *Indents, (int32)Opcode);
			break;
		}
	case EX_SwitchValue:
		{
			const auto NumCases = ReadWORD(ScriptIndex);
			const auto AfterSkip = ReadSkipCount(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: Switch Value %d cases, end in 0x%X"), *Indents, (int32)Opcode, NumCases, AfterSkip);
			AddIndent();
			Ar.Logf(TEXT("%s Index:"), *Indents);
			SerializeExpr(ScriptIndex);

			for (uint16 CaseIndex = 0; CaseIndex < NumCases; ++CaseIndex)
			{
				Ar.Logf(TEXT("%s [%d] Case Index (label: 0x%X):"), *Indents, CaseIndex, ScriptIndex);
				SerializeExpr(ScriptIndex);	// case index value term
				const auto OffsetToNextCase = ReadSkipCount(ScriptIndex);
				Ar.Logf(TEXT("%s [%d] Offset to the next case: 0x%X"), *Indents, CaseIndex, OffsetToNextCase);
				Ar.Logf(TEXT("%s [%d] Case Result:"), *Indents, CaseIndex);
				SerializeExpr(ScriptIndex);	// case term
			}

			Ar.Logf(TEXT("%s Default result (label: 0x%X):"), *Indents, ScriptIndex);
			SerializeExpr(ScriptIndex);
			Ar.Logf(TEXT("%s (label: 0x%X)"), *Indents, ScriptIndex);
			DropIndent();
			break;
		}
	case EX_ArrayGetByRef:
		{
			Ar.Logf(TEXT("%s $%X: Array Get-by-Ref Index"), *Indents, (int32)Opcode);
			AddIndent();
			SerializeExpr(ScriptIndex);
			SerializeExpr(ScriptIndex);
			DropIndent();
			break;
		}
	default:
		{
			// This should never occur.
			UE_LOG(LogScriptDisassembler, Warning, TEXT("Unknown bytecode 0x%02X; ignoring it"), (uint8)Opcode );
			break;
		}
	}
}