PxrUsdTranslators_InstancerWriter::PxrUsdTranslators_InstancerWriter( const MFnDependencyNode& depNodeFn, const SdfPath& usdPath, UsdMayaWriteJobContext& jobCtx) : UsdMayaTransformWriter(depNodeFn, usdPath, jobCtx), _numPrototypes(0) { if (!TF_VERIFY(GetDagPath().isValid())) { return; } UsdGeomPointInstancer primSchema = UsdGeomPointInstancer::Define(GetUsdStage(), GetUsdPath()); if (!TF_VERIFY( primSchema, "Could not define UsdGeomPointInstancer at path '%s'\n", GetUsdPath().GetText())) { return; } _usdPrim = primSchema.GetPrim(); if (!TF_VERIFY( _usdPrim, "Could not get UsdPrim for UsdGeomPointInstancer at path '%s'\n", primSchema.GetPath().GetText())) { return; } // Note that the instancer is a model -- it's an assembly by default, though // the model kind writer is allowed to "fix" this up. UsdModelAPI(_usdPrim).SetKind(KindTokens->assembly); _modelPaths.push_back(_usdPrim.GetPath()); }
void PxrUsdKatanaReadPointInstancer( const UsdGeomPointInstancer& instancer, const PxrUsdKatanaUsdInPrivateData& data, PxrUsdKatanaAttrMap& instancerAttrMap, PxrUsdKatanaAttrMap& sourcesAttrMap, PxrUsdKatanaAttrMap& instancesAttrMap, PxrUsdKatanaAttrMap& inputAttrMap) { const double currentTime = data.GetCurrentTime(); PxrUsdKatanaReadXformable(instancer, data, instancerAttrMap); // Get primvars for setting later. Unfortunatley, the only way to get them // out of the attr map is to build it, which will cause its contents to be // cleared. We'll need to restore its contents before continuing. // FnKat::GroupAttribute instancerAttrs = instancerAttrMap.build(); FnKat::GroupAttribute primvarAttrs = instancerAttrs.getChildByName("geometry.arbitrary"); for (int64_t i = 0; i < instancerAttrs.getNumberOfChildren(); ++i) { instancerAttrMap.set(instancerAttrs.getChildName(i), instancerAttrs.getChildByIndex(i)); } instancerAttrMap.set("type", FnKat::StringAttribute("usd point instancer")); const std::string fileName = data.GetUsdInArgs()->GetFileName(); instancerAttrMap.set("info.usd.fileName", FnKat::StringAttribute(fileName)); FnKat::GroupAttribute inputAttrs = inputAttrMap.build(); const std::string katOutputPath = FnKat::StringAttribute( inputAttrs.getChildByName("outputLocationPath")).getValue("", false); if (katOutputPath.empty()) { _LogAndSetError(instancerAttrMap, "No output location path specified"); return; } // // Validate instancer data. // const std::string instancerPath = instancer.GetPath().GetString(); UsdStageWeakPtr stage = instancer.GetPrim().GetStage(); // Prototypes (required) // SdfPathVector protoPaths; instancer.GetPrototypesRel().GetTargets(&protoPaths); if (protoPaths.empty()) { _LogAndSetError(instancerAttrMap, "Instancer has no prototypes"); return; } _PathToPrimMap primCache; for (auto protoPath : protoPaths) { const UsdPrim &protoPrim = stage->GetPrimAtPath(protoPath); primCache[protoPath] = protoPrim; } // Indices (required) // VtIntArray protoIndices; if (!instancer.GetProtoIndicesAttr().Get(&protoIndices, currentTime)) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } const size_t numInstances = protoIndices.size(); if (numInstances == 0) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } for (auto protoIndex : protoIndices) { if (protoIndex < 0 || static_cast<size_t>(protoIndex) >= protoPaths.size()) { _LogAndSetError(instancerAttrMap, TfStringPrintf( "Out of range prototype index %d", protoIndex)); return; } } // Mask (optional) // std::vector<bool> pruneMaskValues = instancer.ComputeMaskAtTime(currentTime); if (!pruneMaskValues.empty() and pruneMaskValues.size() != numInstances) { _LogAndSetError(instancerAttrMap, "Mismatch in length of indices and mask"); return; } // Positions (required) // UsdAttribute positionsAttr = instancer.GetPositionsAttr(); if (!positionsAttr.HasValue()) { _LogAndSetError(instancerAttrMap, "Instancer has no positions"); return; } // // Compute instance transform matrices. // const double timeCodesPerSecond = stage->GetTimeCodesPerSecond(); // Gather frame-relative sample times and add them to the current time to // generate absolute sample times. // const std::vector<double> &motionSampleTimes = data.GetMotionSampleTimes(positionsAttr); const size_t sampleCount = motionSampleTimes.size(); std::vector<UsdTimeCode> sampleTimes(sampleCount); for (size_t a = 0; a < sampleCount; ++a) { sampleTimes[a] = UsdTimeCode(currentTime + motionSampleTimes[a]); } // Get velocityScale from the opArgs. // float velocityScale = FnKat::FloatAttribute( inputAttrs.getChildByName("opArgs.velocityScale")).getValue(1.0f, false); // XXX Replace with UsdGeomPointInstancer::ComputeInstanceTransformsAtTime. // std::vector<std::vector<GfMatrix4d>> xformSamples(sampleCount); const size_t numXformSamples = _ComputeInstanceTransformsAtTime(xformSamples, instancer, sampleTimes, UsdTimeCode(currentTime), timeCodesPerSecond, numInstances, positionsAttr, velocityScale); if (numXformSamples == 0) { _LogAndSetError(instancerAttrMap, "Could not compute " "sample/topology-invarying instance " "transform matrix"); return; } // // Compute prototype bounds. // bool aggregateBoundsValid = false; std::vector<double> aggregateBounds; // XXX Replace with UsdGeomPointInstancer::ComputeExtentAtTime. // VtVec3fArray aggregateExtent; if (_ComputeExtentAtTime( aggregateExtent, data.GetUsdInArgs(), xformSamples, motionSampleTimes, protoIndices, protoPaths, primCache, pruneMaskValues)) { aggregateBoundsValid = true; aggregateBounds.resize(6); aggregateBounds[0] = aggregateExtent[0][0]; // min x aggregateBounds[1] = aggregateExtent[1][0]; // max x aggregateBounds[2] = aggregateExtent[0][1]; // min y aggregateBounds[3] = aggregateExtent[1][1]; // max y aggregateBounds[4] = aggregateExtent[0][2]; // min z aggregateBounds[5] = aggregateExtent[1][2]; // max z } // // Build sources. Keep track of which instances use them. // FnGeolibServices::StaticSceneCreateOpArgsBuilder sourcesBldr(false); std::vector<int> instanceIndices; instanceIndices.reserve(numInstances); std::vector<std::string> instanceSources; instanceSources.reserve(protoPaths.size()); std::map<std::string, int> instanceSourceIndexMap; std::vector<int> omitList; omitList.reserve(numInstances); std::map<SdfPath, std::string> protoPathsToKatPaths; for (size_t i = 0; i < numInstances; ++i) { int index = protoIndices[i]; // Check to see if we are pruned. // bool isPruned = (!pruneMaskValues.empty() and pruneMaskValues[i] == false); if (isPruned) { omitList.push_back(i); } const SdfPath &protoPath = protoPaths[index]; // Compute the full (Katana) path to this prototype. // std::string fullProtoPath; std::map<SdfPath, std::string>::const_iterator pptkpIt = protoPathsToKatPaths.find(protoPath); if (pptkpIt != protoPathsToKatPaths.end()) { fullProtoPath = pptkpIt->second; } else { _PathToPrimMap::const_iterator pcIt = primCache.find(protoPath); const UsdPrim &protoPrim = pcIt->second; if (!protoPrim) { continue; } // Determine where (what path) to start building the prototype prim // such that its material bindings will be preserved. This could be // the prototype path itself or an ancestor path. // SdfPathVector commonPrefixes; UsdRelationship materialBindingsRel = UsdShadeMaterial::GetBindingRel(protoPrim); auto assetAPI = UsdModelAPI(protoPrim); std::string assetName; bool isReferencedModelPrim = assetAPI.IsModel() and assetAPI.GetAssetName(&assetName); if (!materialBindingsRel or isReferencedModelPrim) { // The prim has no material bindings or is a referenced model // prim (meaning that materials are defined below it); start // building at the prototype path. // commonPrefixes.push_back(protoPath); } else { SdfPathVector materialPaths; materialBindingsRel.GetForwardedTargets(&materialPaths); for (auto materialPath : materialPaths) { const SdfPath &commonPrefix = protoPath.GetCommonPrefix(materialPath); if (commonPrefix.GetString() == "/") { // XXX Unhandled case. // The prototype prim and its material are not under the // same parent; start building at the prototype path // (although it is likely that bindings will be broken). // commonPrefixes.push_back(protoPath); } else { // Start building at the common ancestor between the // prototype prim and its material. // commonPrefixes.push_back(commonPrefix); } } } // XXX Unhandled case. // We'll use the first common ancestor even if there is more than // one (which shouldn't appen if the prototype prim and its bindings // are under the same parent). // SdfPath::RemoveDescendentPaths(&commonPrefixes); const std::string buildPath = commonPrefixes[0].GetString(); // See if the path is a child of the point instancer. If so, we'll // match its hierarchy. If not, we'll put it under a 'prototypes' // group. // std::string relBuildPath; if (pystring::startswith(buildPath, instancerPath + "/")) { relBuildPath = pystring::replace( buildPath, instancerPath + "/", ""); } else { relBuildPath = "prototypes/" + FnGeolibUtil::Path::GetLeafName(buildPath); } // Start generating the full path to the prototype. // fullProtoPath = katOutputPath + "/" + relBuildPath; // Make the common ancestor our instance source. // sourcesBldr.setAttrAtLocation(relBuildPath, "type", FnKat::StringAttribute("instance source")); // Author a tracking attr. // sourcesBldr.setAttrAtLocation(relBuildPath, "info.usd.sourceUsdPath", FnKat::StringAttribute(buildPath)); // Tell the BuildIntermediate op to start building at the common // ancestor. // sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimPath", FnKat::StringAttribute(buildPath)); sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimName", FnKat::StringAttribute("geo")); if (protoPath.GetString() != buildPath) { // Finish generating the full path to the prototype. // fullProtoPath = fullProtoPath + "/geo" + pystring::replace( protoPath.GetString(), buildPath, ""); } // Create a mapping that will link the instance's index to its // prototype's full path. // instanceSourceIndexMap[fullProtoPath] = instanceSources.size(); instanceSources.push_back(fullProtoPath); // Finally, store the full path in the map so we won't have to do // this work again. // protoPathsToKatPaths[protoPath] = fullProtoPath; } instanceIndices.push_back(instanceSourceIndexMap[fullProtoPath]); } // // Build instances. // FnGeolibServices::StaticSceneCreateOpArgsBuilder instancesBldr(false); instancesBldr.createEmptyLocation("instances", "instance array"); instancesBldr.setAttrAtLocation("instances", "geometry.instanceSource", FnKat::StringAttribute(instanceSources, 1)); instancesBldr.setAttrAtLocation("instances", "geometry.instanceIndex", FnKat::IntAttribute(&instanceIndices[0], instanceIndices.size(), 1)); FnKat::DoubleBuilder instanceMatrixBldr(16); for (size_t a = 0; a < numXformSamples; ++a) { double relSampleTime = motionSampleTimes[a]; // Shove samples into the builder at the frame-relative sample time. If // motion is backwards, make sure to reverse time samples. std::vector<double> &matVec = instanceMatrixBldr.get( data.IsMotionBackward() ? PxrUsdKatanaUtils::ReverseTimeSample(relSampleTime) : relSampleTime); matVec.reserve(16 * numInstances); for (size_t i = 0; i < numInstances; ++i) { GfMatrix4d instanceXform = xformSamples[a][i]; const double *matArray = instanceXform.GetArray(); for (int j = 0; j < 16; ++j) { matVec.push_back(matArray[j]); } } } instancesBldr.setAttrAtLocation("instances", "geometry.instanceMatrix", instanceMatrixBldr.build()); if (!omitList.empty()) { instancesBldr.setAttrAtLocation("instances", "geometry.omitList", FnKat::IntAttribute(&omitList[0], omitList.size(), 1)); } instancesBldr.setAttrAtLocation("instances", "geometry.pointInstancerId", FnKat::StringAttribute(katOutputPath)); // // Transfer primvars. // FnKat::GroupBuilder instancerPrimvarsBldr; FnKat::GroupBuilder instancesPrimvarsBldr; for (int64_t i = 0; i < primvarAttrs.getNumberOfChildren(); ++i) { const std::string primvarName = primvarAttrs.getChildName(i); // Use "point" scope for the instancer. instancerPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancerPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("point")); // User "primitive" scope for the instances. instancesPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancesPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("primitive")); } instancerAttrMap.set("geometry.arbitrary", instancerPrimvarsBldr.build()); instancesBldr.setAttrAtLocation("instances", "geometry.arbitrary", instancesPrimvarsBldr.build()); // // Set the final aggregate bounds. // if (aggregateBoundsValid) { instancerAttrMap.set("bound", FnKat::DoubleAttribute(&aggregateBounds[0], 6, 2)); } // // Set proxy attrs. // instancerAttrMap.set("proxies", PxrUsdKatanaUtils::GetViewerProxyAttr(data)); // // Transfer builder results to our attr maps. // FnKat::GroupAttribute sourcesAttrs = sourcesBldr.build(); for (int64_t i = 0; i < sourcesAttrs.getNumberOfChildren(); ++i) { sourcesAttrMap.set( sourcesAttrs.getChildName(i), sourcesAttrs.getChildByIndex(i)); } FnKat::GroupAttribute instancesAttrs = instancesBldr.build(); for (int64_t i = 0; i < instancesAttrs.getNumberOfChildren(); ++i) { instancesAttrMap.set( instancesAttrs.getChildName(i), instancesAttrs.getChildByIndex(i)); } }
bool PxrUsdTranslators_InstancerWriter::writeInstancerAttrs( const UsdTimeCode& usdTime, const UsdGeomPointInstancer& instancer) { MStatus status = MS::kSuccess; MFnDagNode dagNode(GetDagPath(), &status); CHECK_MSTATUS_AND_RETURN(status, false); // Note: In this function, we don't read instances using the provided // MFnInstancer API. One reason is that it breaks up prototypes into their // constituent shapes, and there's no way to figure out which hierarchy // they came from. Another reason is that it only provides computed matrices // and not separate position, rotation, scale attrs. const SdfPath prototypesGroupPath = instancer.GetPrim().GetPath().AppendChild(_tokens->Prototypes); // At the default time, setup all the prototype instances. if (usdTime.IsDefault()) { const MPlug inputHierarchy = dagNode.findPlug("inputHierarchy", true, &status); CHECK_MSTATUS_AND_RETURN(status, false); // Note that the "Prototypes" prim needs to be a model group to ensure // contiguous model hierarchy. const UsdPrim prototypesGroupPrim = GetUsdStage()->DefinePrim( prototypesGroupPath); UsdModelAPI(prototypesGroupPrim).SetKind(KindTokens->group); _modelPaths.push_back(prototypesGroupPath); UsdRelationship prototypesRel = instancer.CreatePrototypesRel(); const unsigned int numElements = inputHierarchy.numElements(); for (unsigned int i = 0; i < numElements; ++i) { const MPlug plug = inputHierarchy[i]; const MPlug source(UsdMayaUtil::GetConnected(plug)); if (source.isNull()) { TF_WARN("Cannot read prototype: the source plug %s was null", plug.name().asChar()); return false; } MFnDagNode sourceNode(source.node(), &status); CHECK_MSTATUS_AND_RETURN(status, false); MDagPath prototypeDagPath; sourceNode.getPath(prototypeDagPath); // Prototype names are guaranteed unique by virtue of having a // unique numerical suffix _# indicating the prototype index. const TfToken prototypeName( TfStringPrintf("%s_%d", sourceNode.name().asChar(), i)); const SdfPath prototypeUsdPath = prototypesGroupPrim.GetPath() .AppendChild(prototypeName); UsdPrim prototypePrim = GetUsdStage()->DefinePrim( prototypeUsdPath); _modelPaths.push_back(prototypeUsdPath); // Try to be conservative and only create an intermediary xformOp // with the instancerTranslate if we can ensure that we don't need // to compensate for the translation on the prototype root. // // XXX: instancerTranslate does not behave well when added to a // reference that has an existing transform on the far side of the // reference. However, its behavior at least matches the // behavior in UsdMayaTranslatorModelAssembly. If we fix the // behavior there, we need to make sure that this is also // fixed to match. bool instancerTranslateAnimated = false; if (_NeedsExtraInstancerTranslate( prototypeDagPath, &instancerTranslateAnimated)) { UsdGeomXformable xformable(prototypePrim); UsdGeomXformOp newOp = xformable.AddTranslateOp( UsdGeomXformOp::PrecisionDouble, _tokens->instancerTranslate); _instancerTranslateOps.push_back( {prototypeDagPath, newOp, instancerTranslateAnimated}); } // Two notes: // (1) We don't un-instance here, because it's OK for the prototype // to just be a reference to an instance master if the prototype // participates in Maya native instancing. // (2) The prototype root must be visible to match Maya's behavior, // which always vis'es the prototype root, even if it is marked // hidden. _writeJobCtx.CreatePrimWriterHierarchy( prototypeDagPath, prototypeUsdPath, /*forceUninstance*/ false, /*exportRootVisibility*/ false, &_prototypeWriters); prototypesRel.AddTarget(prototypeUsdPath); } _numPrototypes = numElements; } // If there aren't any prototypes, fail and don't export on subsequent // time-sampled exports. if (_numPrototypes == 0) { return false; } // Actual write of prototypes (@ both default time and animated time). for (UsdMayaPrimWriterSharedPtr& writer : _prototypeWriters) { writer->Write(usdTime); if (usdTime.IsDefault()) { // Prototype roots should have kind component or derived. // Calling Write() above may have populated kinds, so don't stomp // over existing component-derived kinds. // (Note that ModelKindWriter's fix-up stage might change this.) if (writer->GetUsdPath().GetParentPath() == prototypesGroupPath) { if (const UsdPrim writerPrim = writer->GetUsdPrim()) { UsdModelAPI primModelAPI(writerPrim); TfToken kind; primModelAPI.GetKind(&kind); if (!KindRegistry::IsA(kind, KindTokens->component)) { primModelAPI.SetKind(KindTokens->component); } } } } } // Write the instancerTranslate xformOp for all prims that need it. // (This should happen @ default time or animated time depending on whether // the xform is animated.) for (const _TranslateOpData& opData : _instancerTranslateOps) { if (opData.isAnimated != usdTime.IsDefault()) { GfVec3d origin; if (_GetTransformedOriginInLocalSpace(opData.mayaPath, &origin)) { UsdGeomXformOp translateOp = opData.op; _SetAttribute(translateOp.GetAttr(), -origin, usdTime); } } } // Grab the inputPoints data from the source plug. // (This attribute's value must come from a source plug; it isn't // directly writeable. Thus reading it directly may not give the right // value depending on Maya's execution behavior.) MPlug inputPointsDest = dagNode.findPlug("inputPoints", true, &status); CHECK_MSTATUS_AND_RETURN(status, false); MPlug inputPointsSrc = UsdMayaUtil::GetConnected(inputPointsDest); if (inputPointsSrc.isNull()) { TF_WARN("inputPoints not connected on instancer '%s'", GetDagPath().fullPathName().asChar()); return false; } auto holder = UsdMayaUtil::GetPlugDataHandle(inputPointsSrc); if (!holder) { TF_WARN("Unable to read inputPoints data handle for instancer '%s'", GetDagPath().fullPathName().asChar()); return false; } MFnArrayAttrsData inputPointsData(holder->GetDataHandle().data(), &status); CHECK_MSTATUS_AND_RETURN(status, false); if (!UsdMayaWriteUtil::WriteArrayAttrsToInstancer( inputPointsData, instancer, _numPrototypes, usdTime, _GetSparseValueWriter())) { return false; } // Load the completed point instancer to compute and set its extent. instancer.GetPrim().GetStage()->Load(instancer.GetPath()); VtArray<GfVec3f> extent(2); if (instancer.ComputeExtentAtTime(&extent, usdTime, usdTime)) { _SetAttribute(instancer.CreateExtentAttr(), &extent, usdTime); } return true; }