bool UsdGeomPointInstancer::ComputeExtentAtTime( VtVec3fArray* extent, const UsdTimeCode time, const UsdTimeCode baseTime) const { if (!extent) { TF_WARN("%s -- null container passed to ComputeExtentAtTime()", GetPrim().GetPath().GetText()); return false; } VtIntArray protoIndices; if (!GetProtoIndicesAttr().Get(&protoIndices, time)) { TF_WARN("%s -- no prototype indices", GetPrim().GetPath().GetText()); return false; } const std::vector<bool> mask = ComputeMaskAtTime(time); if (!mask.empty() && mask.size() != protoIndices.size()) { TF_WARN("%s -- mask.size() [%zu] != protoIndices.size() [%zu]", GetPrim().GetPath().GetText(), mask.size(), protoIndices.size()); return false; } const UsdRelationship prototypes = GetPrototypesRel(); SdfPathVector protoPaths; if (!prototypes.GetTargets(&protoPaths) || protoPaths.empty()) { TF_WARN("%s -- no prototypes", GetPrim().GetPath().GetText()); return false; } // verify that all the protoIndices are in bounds. TF_FOR_ALL(iter, protoIndices) { const int protoIndex = *iter; if (protoIndex < 0 || static_cast<size_t>(protoIndex) >= protoPaths.size()) { TF_WARN("%s -- invalid prototype index: %d. Should be in [0, %zu)", GetPrim().GetPath().GetText(), protoIndex, protoPaths.size()); return false; } } // Note that we do NOT apply any masking when computing the instance // transforms. This is so that for a particular instance we can determine // both its transform and its prototype. Otherwise, the instanceTransforms // array would have masked instances culled out and we would lose the // mapping to the prototypes. // Masked instances will be culled before being applied to the extent below. VtMatrix4dArray instanceTransforms; if (!ComputeInstanceTransformsAtTime(&instanceTransforms, time, baseTime, IncludeProtoXform, IgnoreMask)) { TF_WARN("%s -- could not compute instance transforms", GetPrim().GetPath().GetText()); return false; } UsdStageWeakPtr stage = GetPrim().GetStage(); const TfTokenVector purposes { UsdGeomTokens->default_, UsdGeomTokens->proxy, UsdGeomTokens->render }; UsdGeomBBoxCache bboxCache(time, purposes); bboxCache.SetTime(time); GfRange3d extentRange; for (size_t instanceId = 0; instanceId < protoIndices.size(); ++instanceId) { if (!mask.empty() && !mask[instanceId]) { continue; } const int protoIndex = protoIndices[instanceId]; const SdfPath& protoPath = protoPaths[protoIndex]; const UsdPrim& protoPrim = stage->GetPrimAtPath(protoPath); // Get the prototype bounding box. GfBBox3d thisBounds = bboxCache.ComputeUntransformedBound(protoPrim); // Apply the instance transform. thisBounds.Transform(instanceTransforms[instanceId]); extentRange.UnionWith(thisBounds.ComputeAlignedRange()); } const GfVec3d extentMin = extentRange.GetMin(); const GfVec3d extentMax = extentRange.GetMax(); *extent = VtVec3fArray(2); (*extent)[0] = GfVec3f(extentMin[0], extentMin[1], extentMin[2]); (*extent)[1] = GfVec3f(extentMax[0], extentMax[1], extentMax[2]); return true; }
void PxrUsdKatanaReadPointInstancer( const UsdGeomPointInstancer& instancer, const PxrUsdKatanaUsdInPrivateData& data, PxrUsdKatanaAttrMap& instancerAttrMap, PxrUsdKatanaAttrMap& sourcesAttrMap, PxrUsdKatanaAttrMap& instancesAttrMap, PxrUsdKatanaAttrMap& inputAttrMap) { const double currentTime = data.GetCurrentTime(); PxrUsdKatanaReadXformable(instancer, data, instancerAttrMap); // Get primvars for setting later. Unfortunatley, the only way to get them // out of the attr map is to build it, which will cause its contents to be // cleared. We'll need to restore its contents before continuing. // FnKat::GroupAttribute instancerAttrs = instancerAttrMap.build(); FnKat::GroupAttribute primvarAttrs = instancerAttrs.getChildByName("geometry.arbitrary"); for (int64_t i = 0; i < instancerAttrs.getNumberOfChildren(); ++i) { instancerAttrMap.set(instancerAttrs.getChildName(i), instancerAttrs.getChildByIndex(i)); } instancerAttrMap.set("type", FnKat::StringAttribute("usd point instancer")); const std::string fileName = data.GetUsdInArgs()->GetFileName(); instancerAttrMap.set("info.usd.fileName", FnKat::StringAttribute(fileName)); FnKat::GroupAttribute inputAttrs = inputAttrMap.build(); const std::string katOutputPath = FnKat::StringAttribute( inputAttrs.getChildByName("outputLocationPath")).getValue("", false); if (katOutputPath.empty()) { _LogAndSetError(instancerAttrMap, "No output location path specified"); return; } // // Validate instancer data. // const std::string instancerPath = instancer.GetPath().GetString(); UsdStageWeakPtr stage = instancer.GetPrim().GetStage(); // Prototypes (required) // SdfPathVector protoPaths; instancer.GetPrototypesRel().GetTargets(&protoPaths); if (protoPaths.empty()) { _LogAndSetError(instancerAttrMap, "Instancer has no prototypes"); return; } _PathToPrimMap primCache; for (auto protoPath : protoPaths) { const UsdPrim &protoPrim = stage->GetPrimAtPath(protoPath); primCache[protoPath] = protoPrim; } // Indices (required) // VtIntArray protoIndices; if (!instancer.GetProtoIndicesAttr().Get(&protoIndices, currentTime)) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } const size_t numInstances = protoIndices.size(); if (numInstances == 0) { _LogAndSetError(instancerAttrMap, "Instancer has no prototype indices"); return; } for (auto protoIndex : protoIndices) { if (protoIndex < 0 || static_cast<size_t>(protoIndex) >= protoPaths.size()) { _LogAndSetError(instancerAttrMap, TfStringPrintf( "Out of range prototype index %d", protoIndex)); return; } } // Mask (optional) // std::vector<bool> pruneMaskValues = instancer.ComputeMaskAtTime(currentTime); if (!pruneMaskValues.empty() and pruneMaskValues.size() != numInstances) { _LogAndSetError(instancerAttrMap, "Mismatch in length of indices and mask"); return; } // Positions (required) // UsdAttribute positionsAttr = instancer.GetPositionsAttr(); if (!positionsAttr.HasValue()) { _LogAndSetError(instancerAttrMap, "Instancer has no positions"); return; } // // Compute instance transform matrices. // const double timeCodesPerSecond = stage->GetTimeCodesPerSecond(); // Gather frame-relative sample times and add them to the current time to // generate absolute sample times. // const std::vector<double> &motionSampleTimes = data.GetMotionSampleTimes(positionsAttr); const size_t sampleCount = motionSampleTimes.size(); std::vector<UsdTimeCode> sampleTimes(sampleCount); for (size_t a = 0; a < sampleCount; ++a) { sampleTimes[a] = UsdTimeCode(currentTime + motionSampleTimes[a]); } // Get velocityScale from the opArgs. // float velocityScale = FnKat::FloatAttribute( inputAttrs.getChildByName("opArgs.velocityScale")).getValue(1.0f, false); // XXX Replace with UsdGeomPointInstancer::ComputeInstanceTransformsAtTime. // std::vector<std::vector<GfMatrix4d>> xformSamples(sampleCount); const size_t numXformSamples = _ComputeInstanceTransformsAtTime(xformSamples, instancer, sampleTimes, UsdTimeCode(currentTime), timeCodesPerSecond, numInstances, positionsAttr, velocityScale); if (numXformSamples == 0) { _LogAndSetError(instancerAttrMap, "Could not compute " "sample/topology-invarying instance " "transform matrix"); return; } // // Compute prototype bounds. // bool aggregateBoundsValid = false; std::vector<double> aggregateBounds; // XXX Replace with UsdGeomPointInstancer::ComputeExtentAtTime. // VtVec3fArray aggregateExtent; if (_ComputeExtentAtTime( aggregateExtent, data.GetUsdInArgs(), xformSamples, motionSampleTimes, protoIndices, protoPaths, primCache, pruneMaskValues)) { aggregateBoundsValid = true; aggregateBounds.resize(6); aggregateBounds[0] = aggregateExtent[0][0]; // min x aggregateBounds[1] = aggregateExtent[1][0]; // max x aggregateBounds[2] = aggregateExtent[0][1]; // min y aggregateBounds[3] = aggregateExtent[1][1]; // max y aggregateBounds[4] = aggregateExtent[0][2]; // min z aggregateBounds[5] = aggregateExtent[1][2]; // max z } // // Build sources. Keep track of which instances use them. // FnGeolibServices::StaticSceneCreateOpArgsBuilder sourcesBldr(false); std::vector<int> instanceIndices; instanceIndices.reserve(numInstances); std::vector<std::string> instanceSources; instanceSources.reserve(protoPaths.size()); std::map<std::string, int> instanceSourceIndexMap; std::vector<int> omitList; omitList.reserve(numInstances); std::map<SdfPath, std::string> protoPathsToKatPaths; for (size_t i = 0; i < numInstances; ++i) { int index = protoIndices[i]; // Check to see if we are pruned. // bool isPruned = (!pruneMaskValues.empty() and pruneMaskValues[i] == false); if (isPruned) { omitList.push_back(i); } const SdfPath &protoPath = protoPaths[index]; // Compute the full (Katana) path to this prototype. // std::string fullProtoPath; std::map<SdfPath, std::string>::const_iterator pptkpIt = protoPathsToKatPaths.find(protoPath); if (pptkpIt != protoPathsToKatPaths.end()) { fullProtoPath = pptkpIt->second; } else { _PathToPrimMap::const_iterator pcIt = primCache.find(protoPath); const UsdPrim &protoPrim = pcIt->second; if (!protoPrim) { continue; } // Determine where (what path) to start building the prototype prim // such that its material bindings will be preserved. This could be // the prototype path itself or an ancestor path. // SdfPathVector commonPrefixes; UsdRelationship materialBindingsRel = UsdShadeMaterial::GetBindingRel(protoPrim); auto assetAPI = UsdModelAPI(protoPrim); std::string assetName; bool isReferencedModelPrim = assetAPI.IsModel() and assetAPI.GetAssetName(&assetName); if (!materialBindingsRel or isReferencedModelPrim) { // The prim has no material bindings or is a referenced model // prim (meaning that materials are defined below it); start // building at the prototype path. // commonPrefixes.push_back(protoPath); } else { SdfPathVector materialPaths; materialBindingsRel.GetForwardedTargets(&materialPaths); for (auto materialPath : materialPaths) { const SdfPath &commonPrefix = protoPath.GetCommonPrefix(materialPath); if (commonPrefix.GetString() == "/") { // XXX Unhandled case. // The prototype prim and its material are not under the // same parent; start building at the prototype path // (although it is likely that bindings will be broken). // commonPrefixes.push_back(protoPath); } else { // Start building at the common ancestor between the // prototype prim and its material. // commonPrefixes.push_back(commonPrefix); } } } // XXX Unhandled case. // We'll use the first common ancestor even if there is more than // one (which shouldn't appen if the prototype prim and its bindings // are under the same parent). // SdfPath::RemoveDescendentPaths(&commonPrefixes); const std::string buildPath = commonPrefixes[0].GetString(); // See if the path is a child of the point instancer. If so, we'll // match its hierarchy. If not, we'll put it under a 'prototypes' // group. // std::string relBuildPath; if (pystring::startswith(buildPath, instancerPath + "/")) { relBuildPath = pystring::replace( buildPath, instancerPath + "/", ""); } else { relBuildPath = "prototypes/" + FnGeolibUtil::Path::GetLeafName(buildPath); } // Start generating the full path to the prototype. // fullProtoPath = katOutputPath + "/" + relBuildPath; // Make the common ancestor our instance source. // sourcesBldr.setAttrAtLocation(relBuildPath, "type", FnKat::StringAttribute("instance source")); // Author a tracking attr. // sourcesBldr.setAttrAtLocation(relBuildPath, "info.usd.sourceUsdPath", FnKat::StringAttribute(buildPath)); // Tell the BuildIntermediate op to start building at the common // ancestor. // sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimPath", FnKat::StringAttribute(buildPath)); sourcesBldr.setAttrAtLocation(relBuildPath, "usdPrimName", FnKat::StringAttribute("geo")); if (protoPath.GetString() != buildPath) { // Finish generating the full path to the prototype. // fullProtoPath = fullProtoPath + "/geo" + pystring::replace( protoPath.GetString(), buildPath, ""); } // Create a mapping that will link the instance's index to its // prototype's full path. // instanceSourceIndexMap[fullProtoPath] = instanceSources.size(); instanceSources.push_back(fullProtoPath); // Finally, store the full path in the map so we won't have to do // this work again. // protoPathsToKatPaths[protoPath] = fullProtoPath; } instanceIndices.push_back(instanceSourceIndexMap[fullProtoPath]); } // // Build instances. // FnGeolibServices::StaticSceneCreateOpArgsBuilder instancesBldr(false); instancesBldr.createEmptyLocation("instances", "instance array"); instancesBldr.setAttrAtLocation("instances", "geometry.instanceSource", FnKat::StringAttribute(instanceSources, 1)); instancesBldr.setAttrAtLocation("instances", "geometry.instanceIndex", FnKat::IntAttribute(&instanceIndices[0], instanceIndices.size(), 1)); FnKat::DoubleBuilder instanceMatrixBldr(16); for (size_t a = 0; a < numXformSamples; ++a) { double relSampleTime = motionSampleTimes[a]; // Shove samples into the builder at the frame-relative sample time. If // motion is backwards, make sure to reverse time samples. std::vector<double> &matVec = instanceMatrixBldr.get( data.IsMotionBackward() ? PxrUsdKatanaUtils::ReverseTimeSample(relSampleTime) : relSampleTime); matVec.reserve(16 * numInstances); for (size_t i = 0; i < numInstances; ++i) { GfMatrix4d instanceXform = xformSamples[a][i]; const double *matArray = instanceXform.GetArray(); for (int j = 0; j < 16; ++j) { matVec.push_back(matArray[j]); } } } instancesBldr.setAttrAtLocation("instances", "geometry.instanceMatrix", instanceMatrixBldr.build()); if (!omitList.empty()) { instancesBldr.setAttrAtLocation("instances", "geometry.omitList", FnKat::IntAttribute(&omitList[0], omitList.size(), 1)); } instancesBldr.setAttrAtLocation("instances", "geometry.pointInstancerId", FnKat::StringAttribute(katOutputPath)); // // Transfer primvars. // FnKat::GroupBuilder instancerPrimvarsBldr; FnKat::GroupBuilder instancesPrimvarsBldr; for (int64_t i = 0; i < primvarAttrs.getNumberOfChildren(); ++i) { const std::string primvarName = primvarAttrs.getChildName(i); // Use "point" scope for the instancer. instancerPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancerPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("point")); // User "primitive" scope for the instances. instancesPrimvarsBldr.set(primvarName, primvarAttrs.getChildByIndex(i)); instancesPrimvarsBldr.set(primvarName + ".scope", FnKat::StringAttribute("primitive")); } instancerAttrMap.set("geometry.arbitrary", instancerPrimvarsBldr.build()); instancesBldr.setAttrAtLocation("instances", "geometry.arbitrary", instancesPrimvarsBldr.build()); // // Set the final aggregate bounds. // if (aggregateBoundsValid) { instancerAttrMap.set("bound", FnKat::DoubleAttribute(&aggregateBounds[0], 6, 2)); } // // Set proxy attrs. // instancerAttrMap.set("proxies", PxrUsdKatanaUtils::GetViewerProxyAttr(data)); // // Transfer builder results to our attr maps. // FnKat::GroupAttribute sourcesAttrs = sourcesBldr.build(); for (int64_t i = 0; i < sourcesAttrs.getNumberOfChildren(); ++i) { sourcesAttrMap.set( sourcesAttrs.getChildName(i), sourcesAttrs.getChildByIndex(i)); } FnKat::GroupAttribute instancesAttrs = instancesBldr.build(); for (int64_t i = 0; i < instancesAttrs.getNumberOfChildren(); ++i) { instancesAttrMap.set( instancesAttrs.getChildName(i), instancesAttrs.getChildByIndex(i)); } }
bool UsdGeomPointInstancer::ComputeInstanceTransformsAtTime( VtArray<GfMatrix4d>* xforms, const UsdTimeCode time, const UsdTimeCode baseTime, const ProtoXformInclusion doProtoXforms, const MaskApplication applyMask) const { // XXX: Need to add handling of velocities/angularVelocities and baseTime. (void)baseTime; if (!xforms) { TF_WARN("%s -- null container passed to ComputeInstanceTransformsAtTime()", GetPrim().GetPath().GetText()); return false; } VtIntArray protoIndices; if (!GetProtoIndicesAttr().Get(&protoIndices, time)) { TF_WARN("%s -- no prototype indices", GetPrim().GetPath().GetText()); return false; } if (protoIndices.empty()) { xforms->clear(); return true; } VtVec3fArray positions; if (!GetPositionsAttr().Get(&positions, time)) { TF_WARN("%s -- no positions", GetPrim().GetPath().GetText()); return false; } if (positions.size() != protoIndices.size()) { TF_WARN("%s -- positions.size() [%zu] != protoIndices.size() [%zu]", GetPrim().GetPath().GetText(), positions.size(), protoIndices.size()); return false; } VtVec3fArray scales; GetScalesAttr().Get(&scales, time); if (!scales.empty() && scales.size() != protoIndices.size()) { TF_WARN("%s -- scales.size() [%zu] != protoIndices.size() [%zu]", GetPrim().GetPath().GetText(), scales.size(), protoIndices.size()); return false; } VtQuathArray orientations; GetOrientationsAttr().Get(&orientations, time); if (!orientations.empty() && orientations.size() != protoIndices.size()) { TF_WARN("%s -- orientations.size() [%zu] != protoIndices.size() [%zu]", GetPrim().GetPath().GetText(), orientations.size(), protoIndices.size()); return false; } // If we're going to include the prototype transforms, verify that we have // prototypes and that all of the protoIndices are in bounds. SdfPathVector protoPaths; if (doProtoXforms == IncludeProtoXform) { const UsdRelationship prototypes = GetPrototypesRel(); if (!prototypes.GetTargets(&protoPaths) || protoPaths.empty()) { TF_WARN("%s -- no prototypes", GetPrim().GetPath().GetText()); return false; } TF_FOR_ALL(iter, protoIndices) { const int protoIndex = *iter; if (protoIndex < 0 || static_cast<size_t>(protoIndex) >= protoPaths.size()) { TF_WARN("%s -- invalid prototype index: %d. Should be in [0, %zu)", GetPrim().GetPath().GetText(), protoIndex, protoPaths.size()); return false; } } } // Compute the mask only if applyMask says we should, otherwise we leave // mask empty so that its application below is a no-op. std::vector<bool> mask; if (applyMask == ApplyMask) { mask = ComputeMaskAtTime(time); if (!mask.empty() && mask.size() != protoIndices.size()) { TF_WARN("%s -- mask.size() [%zu] != protoIndices.size() [%zu]", GetPrim().GetPath().GetText(), mask.size(), protoIndices.size()); return false; } } UsdStageWeakPtr stage = GetPrim().GetStage(); UsdGeomXformCache xformCache(time); xforms->assign(protoIndices.size(), GfMatrix4d(1.0)); for (size_t instanceId = 0; instanceId < protoIndices.size(); ++instanceId) { if (!mask.empty() && !mask[instanceId]) { continue; } GfTransform instanceTransform; if (!scales.empty()) { instanceTransform.SetScale(scales[instanceId]); } if (!orientations.empty()) { instanceTransform.SetRotation(GfRotation(orientations[instanceId])); } instanceTransform.SetTranslation(positions[instanceId]); GfMatrix4d protoXform(1.0); if (doProtoXforms == IncludeProtoXform) { const int protoIndex = protoIndices[instanceId]; const SdfPath& protoPath = protoPaths[protoIndex]; const UsdPrim& protoPrim = stage->GetPrimAtPath(protoPath); if (protoPrim) { // Get the prototype's local transformation. bool resetsXformStack; protoXform = xformCache.GetLocalTransformation(protoPrim, &resetsXformStack); } } (*xforms)[instanceId] = protoXform * instanceTransform.GetMatrix(); } return ApplyMaskToArray(mask, xforms); }