int main()
{
    char str[100];
    while(scanf("%s",str))
    {
        int len=strlen(str);
        int ar[100];
        for( int i=0; i<len; i++ ) ar[i]=i;
        VS v;
        string st;
        sort(ar,ar+len);
        do
        {
            for( int i=0; i<len; i++ ) st+=str[ar[i]];
            v.PB(st);
            st.clear();
        }
        while(next_permutation(ar,ar+len));
        for( int i=0; i<v.size()/len; i++ )
        {
            for( int j=i; j<v.size(); j+=7 )
                cout<<v[j]<<endl;
        }
        v.clear();
        printf("\n");
    }
    return 0;
}
예제 #2
0
파일: C.cpp 프로젝트: delta4d/AlgoSolution
int main() {
	int m, n;
	int i, j, k;
	int max_subfile, max_file;
	string s, x;
	//freopen("f:\\in.txt", "r", stdin);
	while (cin >> s) {
		flist.clear();
		for (i=3; s[i]; ++i) {
			if (s[i] == '\\') flist.push_back(s.substr(0, i));
		}
		n = flist.size();
		for (i=0; i!=n; ++i) {
			if (fc.find(flist[i]) == fc.end()) {
				for (j=0; j!=i; ++j) {
					if (subfile.find(flist[j]) == subfile.end()) subfile.insert(make_pair(flist[j], 1));
					else ++subfile[flist[j]];
				}
				fc.insert(flist[i]);
			}
			if (file.find(flist[i]) == file.end()) file.insert(make_pair(flist[i], 1));
			else ++file[flist[i]];
		}
	}
	max_subfile = 0, max_file = 0;
	for (MSII it=subfile.begin(); it!=subfile.end(); ++it) max_subfile = max(max_subfile, it->second);
	for (MSII it=file.begin(); it!=file.end(); ++it) max_file = max(max_file, it->second);
	printf("%d %d\n", max_subfile, max_file);
	return 0;
}
예제 #3
0
int main(){
  int i, n; char buff[MAXL]; VS code;

  while(scanf("%d", &n) == 1){
    code.clear();
    for(i = 0; i < n; i++){
      scanf(" %s", buff);
      code.push_back(buff);
    }
    printf("[%s]\n", UDFind(code).c_str());
  }
  return 0;
}
예제 #4
0
            void generateTestData(const int scenario, const int subset) {
                size_t subset_total = dataSamples.size() / subsetsNum;
                int train_start_index = subset * (int)subset_total;
                int test_start_index = train_start_index + subset_total * 0.66;
                int end_index = train_start_index + (int)subset_total;
                if (end_index > dataSamples.size()) {
                    end_index = (int)dataSamples.size();
                }
                
                //
                // prepare train data
                //
                DTrain.clear();
                double mean = 0;
                int countIq = 0;
                for (int i = train_start_index; i < test_start_index; i++) {
                    VS rows = dataSamples[i];
                    for (int r = 0; r < rows.size(); r++) {
                        string line = rows[r];
                        VS values = splt(line);
                        double iq = atof(values[iqCol].c_str());
                        
                        if (scenario > 0) {
                            DTrain.push_back(line);
                        } else if (iq > 0) {
                            // add only line with IQ set for 1 scenario
                            DTrain.push_back(line);
                        }
                        
                        if (iq > 0) {
                            mean += iq;
                            countIq++;
                        }
                    }
                }
//                filterDataSet(DTrain, scenario, true);
                
                //
                // prepare test data
                //
                DTest.clear();
                groundTruth.clear();
                for (int i = test_start_index; i < end_index; i++) {
                    VS rows = dataSamples[i];
                    for (int r = 0; r < rows.size(); r++) {
                        string line = rows[r];
                        VS values = splt(line);
                        double iq = atof(values[iqCol].c_str());
                        if (iq > 0) {
                            groundTruth.push_back(iq);
                            // add only line with IQ set for 1 scenario
                            DTest.push_back(line);
                        } else if (scenario > 0) {
                            DTest.push_back(line);
                        }
                    }
                }
//                filterDataSet(DTest, scenario, false);
                
                //
                // calculate sse0
                //
                mean /= countIq;
                sse0 = 0;
                for (const double &iq : groundTruth) {
                    double e = mean - iq;
                    sse0 += e * e;
                }
            }