예제 #1
0
파일: Value.cpp 프로젝트: hahatt/CNTK
    void PackedValue::Unpack() const
    {
        if (m_packedDataLayout && (m_packedDataLayout->GetNumTimeSteps() != 1) && (m_packedDataLayout->GetNumSequences() != 1) && Internal::IsAutomaticUnpackingOfPackedValuesDisabled())
            LogicError("PackedValue::Unpack: Automatic unpacking of PackedValue objects is disabled");

        if (m_isPacked)
        {
            ValuePtr valueObject;
            auto dataType = m_packedData->GetDataType();
            switch (dataType)
            {
            case DataType::Float:
                valueObject = CompositeFunction::GetValueObjectFromCNTKImplMatrixAndMBLayout(m_sampleShape, *(m_packedData->GetMatrix<float>()), m_packedDataLayout, m_isReadOnly);
                break;
            case DataType::Double:
                valueObject = CompositeFunction::GetValueObjectFromCNTKImplMatrixAndMBLayout(m_sampleShape, *(m_packedData->GetMatrix<double>()), m_packedDataLayout, m_isReadOnly);
                break;
            default:
                LogicError("Unsupported DataType %s", DataTypeName(dataType));
            }

            m_data = valueObject->Data();
            m_mask = valueObject->Mask();

            m_packedData = nullptr;
            m_packedDataLayout = nullptr;
            m_isPacked = false;

            if (m_unpackedShape != m_data->Shape())
                LogicError("The computed unpacked shape of the PackedValue object does not match the actual Data NDArrayView's shape after unpacking");
        }
    }
예제 #2
0
void RunEvaluationOneHidden(FunctionPtr evalFunc, const DeviceDescriptor& device)
{
    const std::wstring inputNodeName = L"features";
    const std::wstring outputNodeName = L"out.z_output";

    Variable inputVar;
    if (!GetInputVariableByName(evalFunc, inputNodeName, inputVar))
    {
        fprintf(stderr, "Input variable %S is not available.\n", inputNodeName.c_str());
        throw("Input variable not found error.");
    }

    Variable outputVar;
    if (!GetOutputVaraiableByName(evalFunc, outputNodeName, outputVar))
    {
        fprintf(stderr, "Output variable %S is not available.\n", outputNodeName.c_str());
        throw("Output variable not found error.");
    }

    // Evaluate the network in several runs 
    size_t iterationCount = 4;   
    size_t numSamples = 3;
    for (size_t t = 0; t < iterationCount; ++t)
    {
        std::vector<float> inputData(inputVar.Shape().TotalSize() * numSamples);
        for (size_t i = 0; i < inputData.size(); ++i)
        {
            inputData[i] = static_cast<float>(i % 255);
        }

        NDShape inputShape = inputVar.Shape().AppendShape({1, numSamples});
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData, true));

        ValuePtr outputValue;
        std::unordered_map<Variable, ValuePtr> outputs = {{outputVar, outputValue}};
        evalFunc->Forward({{inputVar, inputValue}}, outputs, device);

        outputValue = outputs[outputVar];        
        NDShape outputShape = outputVar.Shape().AppendShape({1, numSamples});
        std::vector<float> outputData(outputShape.TotalSize());
        NDArrayViewPtr cpuArrayOutput = MakeSharedObject<NDArrayView>(outputShape, outputData, false);
        cpuArrayOutput->CopyFrom(*outputValue->Data());

        assert(outputData.size() == outputVar.Shape()[0] * numSamples);
        fprintf(stderr, "Evaluation result:\n");
        size_t dataIndex = 0;
        auto outputDim = outputVar.Shape()[0];
        for (size_t i = 0; i < numSamples; i++)
        {
            fprintf(stderr, "Iteration:%lu, Sample %lu:\n", t, i);
            fprintf(stderr, "Ouput:");
            for (size_t j = 0; j < outputDim; j++)
            {
                fprintf(stderr, "%f ", outputData[dataIndex++]);
            }
            fprintf(stderr, "\n");
        }
    }
}
예제 #3
0
void CheckValue(const ValuePtr testValue, const size_t dimension, const vector<vector<size_t>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i])
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                i, seqLenList[i], expectedData[i].size());
        }
    }

    // Check shape
    NDShape shape = testValue->Shape();
    size_t valueRank = shape.Rank();
    if (valueRank < 2 || valueRank > 3 || shape[0] != dimension)
    {
        ReportFailure("The shape of the value does not match\n");
    }
    size_t numOfSequences = valueRank == 2 ? 1 : shape[2]; 
    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value
    vector<ElementType> outputData(shape.TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(shape, outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sample = 0; sample < seqLen; sample++)
        {
            for (size_t c = 0; c < dimension; c++, oIndex++)
            {
                if (outputData[oIndex] != 0)
                {
                    if (outputData[oIndex] != 1)
                    {
                        ReportFailure("OneHot vector contains value other than 0 and 1 at seqNo=%" PRIu64 " sampleNo=%" PRIu64 " position=%" PRIu64 "\n", seq, sample, c);
                    }
                    if (c != expectedData[seq][sample])
                    {
                        ReportFailure("OneHot Index does match at seqNo=%" PRIu64 ", sampleNo=%" PRIu64 ", expected: %" PRIu64 ", actual: %" PRIu64 "\n", seq, sample, expectedData[seq][sample], c);
                    }
                }
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * dimension;
    }
}
예제 #4
0
void RunEvaluationClassifier(FunctionPtr evalFunc, const DeviceDescriptor& device)
{
    const std::wstring inputNodeName = L"features";

    Variable inputVar;
    if (!GetInputVariableByName(evalFunc, inputNodeName, inputVar))
    {
        fprintf(stderr, "Input variable %S is not available.\n", inputNodeName.c_str());
        throw("Input variable not found error.");
    }

    // Evaluate the network in several runs 
    size_t iterationCount = 4;
    unsigned int randSeed = 2;
    srand(randSeed);
    size_t numSamples = 3;
    std::vector<float> inputData(inputVar.Shape().TotalSize() * numSamples);
    for (size_t t = 0; t < iterationCount; ++t)
    {
        for (size_t i = 0; i < inputData.size(); ++i)
        {
            inputData[i] = ((float)rand()) / RAND_MAX;
        }

        // Create input data shape. Adding sequence length and numSamples as axes.
        // Todo: remove sequence length when only numSamples is supported.
        // Todo: add convenience APIs to simplify data preparation here.
        NDShape inputShape = inputVar.Shape().AppendShape({1, numSamples});
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData, true));

        // Define output.
        ValuePtr outputValue;
        auto outputVar = evalFunc->Output();
        std::unordered_map<Variable, ValuePtr> outputs = {{outputVar, outputValue}};

        // Evaluate the model
        evalFunc->Forward({{inputVar, inputValue}}, outputs, device);

        // Get output value
        outputValue = outputs[outputVar];

        // Todo: remove sequence length when only numSamples is supported.
        // Todo: add convenience APIs to simplify retrieval of output results.
        NDShape outputShape = outputVar.Shape().AppendShape({1, numSamples});
        std::vector<float> outputData(outputShape.TotalSize());
        NDArrayViewPtr cpuArrayOutput = MakeSharedObject<NDArrayView>(outputShape, outputData, false);
        cpuArrayOutput->CopyFrom(*outputValue->Data());

        assert(outputData.size() == outputVar.Shape()[0] * numSamples);
        fprintf(stderr, "Evaluation result:\n");
        size_t dataIndex = 0;
        auto outputDim = outputVar.Shape()[0];
        for (size_t i = 0; i < numSamples; i++)
        {
            fprintf(stderr, "Iteration:%lu, Sample %lu:\n", t, i);
            fprintf(stderr, "    ");
            dataIndex = i * outputDim;
            for (size_t j = 0; j < std::min((size_t)10, outputDim); j++)
            {
                fprintf(stderr, "%f ", outputData[dataIndex++]);
            }
            if (outputDim > 10)
            {
                fprintf(stderr, "...");
            }
            fprintf(stderr, "\n");
        }
    }
}
예제 #5
0
void TestTimesAndPlus(size_t inputDim,
                      size_t outputDim,
                      size_t numSamples,
                      const DeviceDescriptor& device,
                      size_t numIterations,
                      bool usePreAllocatedOutputs,
                      bool outputOnSpecifiedDevice,
                      bool testSaveAndReLoad,
                      unsigned int seed = 1)
{
    Parameter timesParam(MakeSharedObject<NDArrayView>((ElementType)0.5, NDShape({ outputDim, inputDim }), device), L"timesParameters");
    Parameter plusParam(MakeSharedObject<NDArrayView>((ElementType)1.2, std::initializer_list<size_t>({ outputDim }), device), L"plusParameters");

    Variable inputVar({ inputDim }, AsDataType<ElementType>(), L"input");
    auto timesAndPlusFunc = Plus(plusParam, Times(timesParam, inputVar));

    if (testSaveAndReLoad)
        SaveAndReloadModel<ElementType>(timesAndPlusFunc, { &inputVar, &timesParam, &plusParam }, device);

    srand(seed);
    for (size_t iterIdx = 0; iterIdx < numIterations; ++iterIdx)
    {
        std::vector<ElementType> inputData(inputDim * numSamples);
        for (size_t i = 0; i < inputData.size(); ++i)
            inputData[i] = ((ElementType)rand()) / RAND_MAX;

        NDShape inputShape = inputVar.Shape().AppendShape({ 1, numSamples });
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData.data(), inputData.size(), DeviceDescriptor::CPUDevice(), true));

        NDShape outputShape = timesAndPlusFunc->Output().Shape().AppendShape({ 1, numSamples });
        std::vector<ElementType> outputData(outputShape.TotalSize());
        ValuePtr outputValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), outputAllocationDevice, false));
            else
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, outputAllocationDevice));
        }

        std::unordered_map<Variable, ValuePtr> outputs = { { timesAndPlusFunc->Output(), outputValue } };
        auto backpropState = timesAndPlusFunc->Forward({ { inputVar, inputValue } }, outputs, device, { timesAndPlusFunc->Output() });

        if (!usePreAllocatedOutputs)
            outputValue = outputs[timesAndPlusFunc->Output()];

        // Perform backprop
        std::vector<ElementType> rootGradientsData(outputShape.TotalSize(), 1);
        ValuePtr rootGradientValue;
        if (device.Type() == DeviceKind::CPU)
            rootGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), device, true));
        else
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), DeviceDescriptor::CPUDevice(), true);
            NDArrayViewPtr gpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, device);
            gpuArrayView->CopyFrom(*cpuArrayView);
            rootGradientValue = MakeSharedObject<Value>(gpuArrayView);
        }

        std::vector<ElementType> plusParameterGradientData(plusParam.Shape().TotalSize());
        std::vector<ElementType> timesParameterGradientData(timesParam.Shape().TotalSize());
        ValuePtr plusParameterGradientValue, timesParameterGradientValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(plusParam.Shape(), plusParameterGradientData.data(), plusParameterGradientData.size(), outputAllocationDevice, false));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(timesParam.Shape(), timesParameterGradientData.data(), timesParameterGradientData.size(), outputAllocationDevice, false));
            }
            else
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), plusParam.Shape(), outputAllocationDevice));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), timesParam.Shape(), outputAllocationDevice));
            }
        }

        std::unordered_map<Variable, ValuePtr> paramGradients = { { plusParam, plusParameterGradientValue }, { timesParam, timesParameterGradientValue } };
        timesAndPlusFunc->Backward(backpropState, { { timesAndPlusFunc->Output(), rootGradientValue } }, paramGradients);

        if (!usePreAllocatedOutputs)
        {
            plusParameterGradientValue = paramGradients[plusParam];
            timesParameterGradientValue = paramGradients[timesParam];
        }

        // Verify forward prop results
        if (!usePreAllocatedOutputs || (outputOnSpecifiedDevice && (device.Type() != DeviceKind::CPU)))
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), DeviceDescriptor::CPUDevice(), false);
            cpuArrayView->CopyFrom(*outputValue->Data());
        }

        std::vector<ElementType> expectedOutputValues(outputShape.TotalSize());
        for (size_t i = 0; i < numSamples; ++i)
        {
            ElementType expectedVal = (ElementType)1.2;
            for (size_t j = 0; j < inputDim; ++j)
                expectedVal += (ElementType)(inputData[i * inputDim + j] * 0.5);

            for (size_t j = 0; j < outputDim; ++j)
                expectedOutputValues[i * outputDim + j] = expectedVal;
        }

        FloatingPointVectorCompare(outputData, expectedOutputValues, "TestTimesAndPlus: Forward prop results do not match expected results");

        // Verify backward prop results
        if (device.Type() != DeviceKind::CPU)
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), plusParam.Shape(), DeviceDescriptor::CPUDevice());
            cpuArrayView->CopyFrom(*plusParameterGradientValue->Data());
            const ElementType* cpuArrayViewBuffer = cpuArrayView->DataBuffer<ElementType>();
            memcpy(plusParameterGradientData.data(), cpuArrayViewBuffer, plusParam.Shape().TotalSize() * sizeof(ElementType));

            cpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), timesParam.Shape(), DeviceDescriptor::CPUDevice());
            cpuArrayView->CopyFrom(*timesParameterGradientValue->Data());
            cpuArrayViewBuffer = cpuArrayView->DataBuffer<ElementType>();
            memcpy(timesParameterGradientData.data(), cpuArrayViewBuffer, timesParam.Shape().TotalSize() * sizeof(ElementType));
        }

        for (size_t i = 0; i < outputDim; ++i)
            if (plusParameterGradientData[i] != numSamples)
                throw std::runtime_error("TestTimesAndPlus: Backprop prop results do not match expected results for Plus params gradients");

        std::vector<ElementType> expectedTimesParamsGradientValues(timesParam.Shape().TotalSize());
        for (size_t i = 0; i < inputDim; ++i)
        {
            ElementType expectedVal = 0;
            for (size_t j = 0; j < numSamples; ++j)
                expectedVal += inputData[j * inputDim + i];

            for (size_t j = 0; j < outputDim; ++j)
                expectedTimesParamsGradientValues[i * outputDim + j] = expectedVal;
        }

        FloatingPointVectorCompare(timesParameterGradientData, expectedTimesParamsGradientValues, "TestTimesAndPlus: Backprop prop results do not match expected results for Times params gradients");
    }
}
예제 #6
0
void CheckValue(const ValuePtr testValue, const NDShape& sampleShape, const vector<vector<ElementType>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    size_t sampleSize = sampleShape.TotalSize();
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i] * sampleSize)
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                          i, seqLenList[i] * sampleSize, expectedData[i].size());
        }
    }

    // Check shape 
    auto valueRank = testValue->Shape().Rank();
    auto sampleRank = sampleShape.Rank();
    auto shapeIsCorrect = !((valueRank < sampleRank + 1) || (valueRank > sampleRank + 2) || (sampleShape != testValue->Shape().SubShape(0, sampleRank)));

    BOOST_TEST(shapeIsCorrect, "The Value does not have the expected shape.");

    size_t numOfSequences;
    if (valueRank == sampleShape.Rank() + 1)
    {
        // no batch axis, only sequence axis
        numOfSequences = 1;
    }
    else
    {
        assert(valueRank == sampleShape.Rank() + 2);
        numOfSequences = testValue->Shape()[valueRank - 1];
    }

    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value 
    vector<ElementType> outputData(testValue->Shape().TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(testValue->Shape(), outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sIndex = 0; sIndex < seqLen * sampleSize; sIndex++, oIndex++)
        {
            if (expectedData[seq][sIndex] != outputData[oIndex])
            {
                ReportFailure("Data does match at position %" PRIu64 ", expected: %f, actual: %f\n", oIndex, expectedData[seq][sIndex], outputData[oIndex]);
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * sampleSize;
    }
}
예제 #7
0
파일: Trainer.cpp 프로젝트: Soukiy/CNTK
    bool Trainer::TrainMinibatch(const std::unordered_map<Variable, ValuePtr>& arguments, std::unordered_map<Variable, ValuePtr>& outputsToFetch, const DeviceDescriptor& computeDevice /*= DeviceDescriptor::UseDefaultDevice()*/)
    {
        std::unordered_map<Variable, ValuePtr> outputs = { { m_aggregatedLossFunction, nullptr }, { m_trainingSampleCountVar, nullptr } };
        if (m_aggregatedEvaluationFunction)
            outputs.insert({ m_aggregatedEvaluationFunction, nullptr });

        outputs.insert(outputsToFetch.begin(), outputsToFetch.end());

        if (m_distributedTrainer)
            m_distributedTrainer->PreMinibatchCallback(*this);

        auto backPropSate = m_combinedTrainingFunction->Forward(arguments, outputs, computeDevice, { m_aggregatedLossFunction });
        m_prevMinibatchAggregateTrainingLossValue = outputs[m_aggregatedLossFunction];
        if (m_aggregatedEvaluationFunction)
            m_prevMinibatchAggregateEvalCriterionValue = outputs[m_aggregatedEvaluationFunction];

        for (auto outputToFetch : outputsToFetch)
        {
            if (outputToFetch.second == nullptr)
                outputsToFetch[outputToFetch.first] = outputs[outputToFetch.first];
        }

        ValuePtr rootGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(m_aggregatedLossFunction->Output().GetDataType(), m_prevMinibatchAggregateTrainingLossValue->Shape(), computeDevice), outputs.at(m_aggregatedLossFunction)->Mask());
        if (m_aggregatedLossFunction->Output().GetDataType() == DataType::Float)
            rootGradientValue->Data()->SetValue(1.0f);
        else
            rootGradientValue->Data()->SetValue(1.0);

        auto modelParameters = m_combinedTrainingFunction->Parameters();
        std::unordered_map<Variable, ValuePtr> parameterGradients;
        for (const auto& parameter : modelParameters)
        {
            parameterGradients[parameter] = nullptr;
        }

        m_combinedTrainingFunction->Backward(backPropSate, { { m_aggregatedLossFunction, rootGradientValue } }, parameterGradients);

        m_prevMinibatchNumSamples = GetSampleCount(m_trainingSampleCountVar, outputs[m_trainingSampleCountVar]);

        bool endOfData = m_prevMinibatchNumSamples == 0;
        if (m_distributedTrainer)
        {
            // Aggregation should happen in the same order, the order of parmaters is guaranteed to be the same.
            std::vector<std::pair<Parameter, NDArrayViewPtr>> gradients;
            gradients.reserve(modelParameters.size());
            for (const auto& parameter : modelParameters)
                gradients.push_back(std::make_pair(parameter, parameterGradients[parameter]->Data()));

            MinibatchInfo info
            {
                arguments.empty(),
                m_prevMinibatchNumSamples,
                m_prevMinibatchAggregateTrainingLossValue->Data(),
                m_prevMinibatchAggregateEvalCriterionValue->Data()
            };

            endOfData = m_distributedTrainer->PreParameterUpdateCallback(*this, gradients, info);
            m_prevMinibatchNumSamples = info.numberOfSamples;
        }

        bool anyUpdatesPerformed = false;
        for (auto learner : m_parameterLearners)
        {
            std::unordered_map<Parameter, NDArrayViewPtr> learnerParameterGradients;
            const auto& learnerParameters = learner->Parameters();
            for (const auto& parameter : learnerParameters)
            {
                learnerParameterGradients[parameter] = parameterGradients[parameter]->Data();

                if (parameterGradients[parameter]->Mask())
                    LogicError("The gradient value for a Parameter cannot have an associated mask!");
            }

            anyUpdatesPerformed |= learner->Update(learnerParameterGradients, m_prevMinibatchNumSamples);
        }

        return anyUpdatesPerformed && !endOfData;
    }