bool run() { ASSERT(m_graph.m_form == ThreadedCPS); ASSERT(m_graph.m_unificationState == LocallyUnified); // Ensure that all Phi functions are unified. for (BlockIndex blockIndex = m_graph.m_blocks.size(); blockIndex--;) { BasicBlock* block = m_graph.m_blocks[blockIndex].get(); if (!block) continue; ASSERT(block->isReachable); for (unsigned phiIndex = block->phis.size(); phiIndex--;) { Node* phi = block->phis[phiIndex]; for (unsigned childIdx = 0; childIdx < AdjacencyList::Size; ++childIdx) { if (!phi->children.child(childIdx)) break; phi->variableAccessData()->unify( phi->children.child(childIdx)->variableAccessData()); } } } // Ensure that all predictions are fixed up based on the unification. for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { VariableAccessData* data = &m_graph.m_variableAccessData[i]; data->find()->predict(data->nonUnifiedPrediction()); data->find()->mergeIsCaptured(data->isCaptured()); data->find()->mergeStructureCheckHoistingFailed(data->structureCheckHoistingFailed()); data->find()->mergeShouldNeverUnbox(data->shouldNeverUnbox()); data->find()->mergeIsLoadedFrom(data->isLoadedFrom()); } m_graph.m_unificationState = GloballyUnified; return true; }
void doRoundOfDoubleVoting() { #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) dataLog("Voting on double uses of locals [%u]\n", m_count); #endif for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) m_graph.m_variableAccessData[i].find()->clearVotes(); for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) { Node& node = m_graph[m_compileIndex]; switch (node.op()) { case ValueAdd: case ArithAdd: case ArithSub: { SpeculatedType left = m_graph[node.child1()].prediction(); SpeculatedType right = m_graph[node.child2()].prediction(); DoubleBallot ballot; if (isNumberSpeculation(left) && isNumberSpeculation(right) && !m_graph.addShouldSpeculateInteger(node)) ballot = VoteDouble; else ballot = VoteValue; m_graph.vote(node.child1(), ballot); m_graph.vote(node.child2(), ballot); break; } case ArithMul: { SpeculatedType left = m_graph[node.child1()].prediction(); SpeculatedType right = m_graph[node.child2()].prediction(); DoubleBallot ballot; if (isNumberSpeculation(left) && isNumberSpeculation(right) && !m_graph.mulShouldSpeculateInteger(node)) ballot = VoteDouble; else ballot = VoteValue; m_graph.vote(node.child1(), ballot); m_graph.vote(node.child2(), ballot); break; } case ArithMin: case ArithMax: case ArithMod: case ArithDiv: { SpeculatedType left = m_graph[node.child1()].prediction(); SpeculatedType right = m_graph[node.child2()].prediction(); DoubleBallot ballot; if (isNumberSpeculation(left) && isNumberSpeculation(right) && !(Node::shouldSpeculateInteger(m_graph[node.child1()], m_graph[node.child1()]) && node.canSpeculateInteger())) ballot = VoteDouble; else ballot = VoteValue; m_graph.vote(node.child1(), ballot); m_graph.vote(node.child2(), ballot); break; } case ArithAbs: DoubleBallot ballot; if (!(m_graph[node.child1()].shouldSpeculateInteger() && node.canSpeculateInteger())) ballot = VoteDouble; else ballot = VoteValue; m_graph.vote(node.child1(), ballot); break; case ArithSqrt: m_graph.vote(node.child1(), VoteDouble); break; case SetLocal: { SpeculatedType prediction = m_graph[node.child1()].prediction(); if (isDoubleSpeculation(prediction)) node.variableAccessData()->vote(VoteDouble); else if (!isNumberSpeculation(prediction) || isInt32Speculation(prediction)) node.variableAccessData()->vote(VoteValue); break; } default: m_graph.vote(node, VoteValue); break; } } for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { VariableAccessData* variableAccessData = &m_graph.m_variableAccessData[i]; if (!variableAccessData->isRoot()) continue; if (operandIsArgument(variableAccessData->local()) || variableAccessData->isCaptured()) continue; m_changed |= variableAccessData->tallyVotesForShouldUseDoubleFormat(); } for (unsigned i = 0; i < m_graph.m_argumentPositions.size(); ++i) m_changed |= m_graph.m_argumentPositions[i].mergeArgumentAwareness(); for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { VariableAccessData* variableAccessData = &m_graph.m_variableAccessData[i]; if (!variableAccessData->isRoot()) continue; if (operandIsArgument(variableAccessData->local()) || variableAccessData->isCaptured()) continue; m_changed |= variableAccessData->makePredictionForDoubleFormat(); } }
bool run() { for (unsigned i = m_graph.m_variableAccessData.size(); i--;) { VariableAccessData* variable = &m_graph.m_variableAccessData[i]; if (!variable->isRoot()) continue; variable->clearVotes(); } // Identify the set of variables that are always subject to the same structure // checks. For now, only consider monomorphic structure checks (one structure). for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex) { BasicBlock* block = m_graph.m_blocks[blockIndex].get(); if (!block) continue; for (unsigned indexInBlock = 0; indexInBlock < block->size(); ++indexInBlock) { NodeIndex nodeIndex = block->at(indexInBlock); Node& node = m_graph[nodeIndex]; if (!node.shouldGenerate()) continue; switch (node.op()) { case CheckStructure: { Node& child = m_graph[node.child1()]; if (child.op() != GetLocal) break; VariableAccessData* variable = child.variableAccessData(); variable->vote(VoteStructureCheck); if (variable->isCaptured() || variable->structureCheckHoistingFailed()) break; if (!isCellSpeculation(variable->prediction())) break; noticeStructureCheck(variable, node.structureSet()); break; } case ForwardCheckStructure: case ForwardStructureTransitionWatchpoint: // We currently rely on the fact that we're the only ones who would // insert this node. ASSERT_NOT_REACHED(); break; case GetByOffset: case PutByOffset: case PutStructure: case StructureTransitionWatchpoint: case AllocatePropertyStorage: case ReallocatePropertyStorage: case GetPropertyStorage: case GetByVal: case PutByVal: case PutByValAlias: case GetArrayLength: case CheckArray: case GetIndexedPropertyStorage: case Phantom: // Don't count these uses. break; default: m_graph.vote(node, VoteOther); break; } } } // Disable structure hoisting on variables that appear to mostly be used in // contexts where it doesn't make sense. for (unsigned i = m_graph.m_variableAccessData.size(); i--;) { VariableAccessData* variable = &m_graph.m_variableAccessData[i]; if (!variable->isRoot()) continue; if (variable->voteRatio() >= Options::structureCheckVoteRatioForHoisting()) continue; HashMap<VariableAccessData*, CheckData>::iterator iter = m_map.find(variable); if (iter == m_map.end()) continue; #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) dataLog("Zeroing the structure to hoist for %s because the ratio is %lf.\n", m_graph.nameOfVariableAccessData(variable), variable->voteRatio()); #endif iter->second.m_structure = 0; } // Identify the set of variables that are live across a structure clobber. Operands<VariableAccessData*> live( m_graph.m_blocks[0]->variablesAtTail.numberOfArguments(), m_graph.m_blocks[0]->variablesAtTail.numberOfLocals()); for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex) { BasicBlock* block = m_graph.m_blocks[blockIndex].get(); if (!block) continue; ASSERT(live.numberOfArguments() == block->variablesAtTail.numberOfArguments()); ASSERT(live.numberOfLocals() == block->variablesAtTail.numberOfLocals()); for (unsigned i = live.size(); i--;) { NodeIndex indexAtTail = block->variablesAtTail[i]; VariableAccessData* variable; if (indexAtTail == NoNode) variable = 0; else variable = m_graph[indexAtTail].variableAccessData(); live[i] = variable; } for (unsigned indexInBlock = block->size(); indexInBlock--;) { NodeIndex nodeIndex = block->at(indexInBlock); Node& node = m_graph[nodeIndex]; if (!node.shouldGenerate()) continue; switch (node.op()) { case GetLocal: case Flush: // This is a birth. live.operand(node.local()) = node.variableAccessData(); break; case SetLocal: case SetArgument: ASSERT(live.operand(node.local())); // Must be live. ASSERT(live.operand(node.local()) == node.variableAccessData()); // Must have the variable we expected. // This is a death. live.operand(node.local()) = 0; break; // Use the CFA's notion of what clobbers the world. case ValueAdd: if (m_graph.addShouldSpeculateInteger(node)) break; if (Node::shouldSpeculateNumber(m_graph[node.child1()], m_graph[node.child2()])) break; clobber(live); break; case CompareLess: case CompareLessEq: case CompareGreater: case CompareGreaterEq: case CompareEq: { Node& left = m_graph[node.child1()]; Node& right = m_graph[node.child2()]; if (Node::shouldSpeculateInteger(left, right)) break; if (Node::shouldSpeculateNumber(left, right)) break; if (node.op() == CompareEq) { if ((m_graph.isConstant(node.child1().index()) && m_graph.valueOfJSConstant(node.child1().index()).isNull()) || (m_graph.isConstant(node.child2().index()) && m_graph.valueOfJSConstant(node.child2().index()).isNull())) break; if (Node::shouldSpeculateFinalObject(left, right)) break; if (Node::shouldSpeculateArray(left, right)) break; if (left.shouldSpeculateFinalObject() && right.shouldSpeculateFinalObjectOrOther()) break; if (right.shouldSpeculateFinalObject() && left.shouldSpeculateFinalObjectOrOther()) break; if (left.shouldSpeculateArray() && right.shouldSpeculateArrayOrOther()) break; if (right.shouldSpeculateArray() && left.shouldSpeculateArrayOrOther()) break; } clobber(live); break; } case GetByVal: case PutByVal: case PutByValAlias: if (m_graph.byValIsPure(node)) break; clobber(live); break; case GetMyArgumentsLengthSafe: case GetMyArgumentByValSafe: case GetById: case GetByIdFlush: case PutStructure: case PhantomPutStructure: case PutById: case PutByIdDirect: case Call: case Construct: case Resolve: case ResolveBase: case ResolveBaseStrictPut: case ResolveGlobal: clobber(live); break; default: ASSERT(node.op() != Phi); break; } } } bool changed = false; #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) for (HashMap<VariableAccessData*, CheckData>::iterator it = m_map.begin(); it != m_map.end(); ++it) { if (!it->second.m_structure) { dataLog("Not hoisting checks for %s because of heuristics.\n", m_graph.nameOfVariableAccessData(it->first)); continue; } if (it->second.m_isClobbered && !it->second.m_structure->transitionWatchpointSetIsStillValid()) { dataLog("Not hoisting checks for %s because the structure is clobbered and has an invalid watchpoint set.\n", m_graph.nameOfVariableAccessData(it->first)); continue; } dataLog("Hoisting checks for %s\n", m_graph.nameOfVariableAccessData(it->first)); } #endif // DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) // Make changes: // 1) If a variable's live range does not span a clobber, then inject structure // checks before the SetLocal. // 2) If a variable's live range spans a clobber but is watchpointable, then // inject structure checks before the SetLocal and replace all other structure // checks on that variable with structure transition watchpoints. InsertionSet<NodeIndex> insertionSet; for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex) { BasicBlock* block = m_graph.m_blocks[blockIndex].get(); if (!block) continue; for (unsigned indexInBlock = 0; indexInBlock < block->size(); ++indexInBlock) { NodeIndex nodeIndex = block->at(indexInBlock); Node& node = m_graph[nodeIndex]; // Be careful not to use 'node' after appending to the graph. In those switch // cases where we need to append, we first carefully extract everything we need // from the node, before doing any appending. if (!node.shouldGenerate()) continue; switch (node.op()) { case SetArgument: { ASSERT(!blockIndex); // Insert a GetLocal and a CheckStructure immediately following this // SetArgument, if the variable was a candidate for structure hoisting. // If the basic block previously only had the SetArgument as its // variable-at-tail, then replace it with this GetLocal. VariableAccessData* variable = node.variableAccessData(); HashMap<VariableAccessData*, CheckData>::iterator iter = m_map.find(variable); if (iter == m_map.end()) break; if (!iter->second.m_structure) break; if (iter->second.m_isClobbered && !iter->second.m_structure->transitionWatchpointSetIsStillValid()) break; node.ref(); CodeOrigin codeOrigin = node.codeOrigin; Node getLocal(GetLocal, codeOrigin, OpInfo(variable), nodeIndex); getLocal.predict(variable->prediction()); getLocal.ref(); NodeIndex getLocalIndex = m_graph.size(); m_graph.append(getLocal); insertionSet.append(indexInBlock + 1, getLocalIndex); Node checkStructure(CheckStructure, codeOrigin, OpInfo(m_graph.addStructureSet(iter->second.m_structure)), getLocalIndex); checkStructure.ref(); NodeIndex checkStructureIndex = m_graph.size(); m_graph.append(checkStructure); insertionSet.append(indexInBlock + 1, checkStructureIndex); if (block->variablesAtTail.operand(variable->local()) == nodeIndex) block->variablesAtTail.operand(variable->local()) = getLocalIndex; m_graph.substituteGetLocal(*block, indexInBlock, variable, getLocalIndex); changed = true; break; } case SetLocal: { VariableAccessData* variable = node.variableAccessData(); HashMap<VariableAccessData*, CheckData>::iterator iter = m_map.find(variable); if (iter == m_map.end()) break; if (!iter->second.m_structure) break; if (iter->second.m_isClobbered && !iter->second.m_structure->transitionWatchpointSetIsStillValid()) break; // First insert a dead SetLocal to tell OSR that the child's value should // be dropped into this bytecode variable if the CheckStructure decides // to exit. CodeOrigin codeOrigin = node.codeOrigin; NodeIndex child1 = node.child1().index(); Node setLocal(SetLocal, codeOrigin, OpInfo(variable), child1); NodeIndex setLocalIndex = m_graph.size(); m_graph.append(setLocal); insertionSet.append(indexInBlock, setLocalIndex); m_graph[child1].ref(); // Use a ForwardCheckStructure to indicate that we should exit to the // next bytecode instruction rather than reexecuting the current one. Node checkStructure(ForwardCheckStructure, codeOrigin, OpInfo(m_graph.addStructureSet(iter->second.m_structure)), child1); checkStructure.ref(); NodeIndex checkStructureIndex = m_graph.size(); m_graph.append(checkStructure); insertionSet.append(indexInBlock, checkStructureIndex); changed = true; break; } case CheckStructure: { Node& child = m_graph[node.child1()]; if (child.op() != GetLocal) break; HashMap<VariableAccessData*, CheckData>::iterator iter = m_map.find(child.variableAccessData()); if (iter == m_map.end()) break; if (!iter->second.m_structure) break; if (!iter->second.m_isClobbered) { node.setOpAndDefaultFlags(Phantom); ASSERT(node.refCount() == 1); break; } if (!iter->second.m_structure->transitionWatchpointSetIsStillValid()) break; ASSERT(iter->second.m_structure == node.structureSet().singletonStructure()); node.convertToStructureTransitionWatchpoint(); changed = true; break; } default: break; } } insertionSet.execute(*block); } return changed; }
bool run() { RELEASE_ASSERT(m_graph.m_form == ThreadedCPS); if (dumpGraph) { dataLog("Graph dump at top of SSA conversion:\n"); m_graph.dump(); } // Eliminate all duplicate or self-pointing Phi edges. This means that // we transform: // // p: Phi(@n1, @n2, @n3) // // into: // // p: Phi(@x) // // if each @ni in {@n1, @n2, @n3} is either equal to @p to is equal // to @x, for exactly one other @x. Additionally, trivial Phis (i.e. // p: Phi(@x)) are forwarded, so that if have an edge to such @p, we // replace it with @x. This loop does this for Phis only; later we do // such forwarding for Phi references found in other nodes. // // See Aycock and Horspool in CC'00 for a better description of what // we're doing here. do { m_changed = false; for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) { Node* phi = block->phis[phiIndex]; if (phi->variableAccessData()->isCaptured()) continue; forwardPhiChildren(phi); deduplicateChildren(phi); } } } while (m_changed); // For each basic block, for each local live at the head of that block, // figure out what node we should be referring to instead of that local. // If it turns out to be a non-trivial Phi, make sure that we create an // SSA Phi and Upsilons in predecessor blocks. We reuse // BasicBlock::variablesAtHead for tracking which nodes to refer to. Operands<bool> nonTrivialPhis(OperandsLike, m_graph.block(0)->variablesAtHead); for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; nonTrivialPhis.fill(false); for (unsigned i = block->phis.size(); i--;) { Node* phi = block->phis[i]; if (!phi->children.justOneChild()) nonTrivialPhis.operand(phi->local()) = true; } for (unsigned i = block->variablesAtHead.size(); i--;) { Node* node = block->variablesAtHead[i]; if (!node) continue; if (verbose) dataLog("At block #", blockIndex, " for operand r", block->variablesAtHead.operandForIndex(i), " have node ", node, "\n"); VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured()) { // Poison this entry in variablesAtHead because we don't // want anyone to try to refer to it, if the variable is // captured. block->variablesAtHead[i] = 0; continue; } switch (node->op()) { case Phi: case SetArgument: break; case Flush: case GetLocal: case PhantomLocal: node = node->child1().node(); break; default: RELEASE_ASSERT_NOT_REACHED(); } RELEASE_ASSERT(node->op() == Phi || node->op() == SetArgument); bool isFlushed = !!(node->flags() & NodeIsFlushed); if (node->op() == Phi) { if (!nonTrivialPhis.operand(node->local())) { Edge edge = node->children.justOneChild(); ASSERT(edge); if (verbose) dataLog(" One child: ", edge, ", ", RawPointer(edge.node()), "\n"); node = edge.node(); // It's something from a different basic block. } else { if (verbose) dataLog(" Non-trivial.\n"); // It's a non-trivial Phi. FlushFormat format = variable->flushFormat(); NodeFlags result = resultFor(format); UseKind useKind = useKindFor(format); node = m_insertionSet.insertNode(0, SpecNone, Phi, NodeOrigin()); if (verbose) dataLog(" Inserted new node: ", node, "\n"); node->mergeFlags(result); RELEASE_ASSERT((node->flags() & NodeResultMask) == result); for (unsigned j = block->predecessors.size(); j--;) { BasicBlock* predecessor = block->predecessors[j]; predecessor->appendNonTerminal( m_graph, SpecNone, Upsilon, predecessor->last()->origin, OpInfo(node), Edge(predecessor->variablesAtTail[i], useKind)); } if (isFlushed) { // Do nothing. For multiple reasons. // Reason #1: If the local is flushed then we don't need to bother // with a MovHint since every path to this point in the code will // have flushed the bytecode variable using a SetLocal and hence // the Availability::flushedAt() will agree, and that will be // sufficient for figuring out how to recover the variable's value. // Reason #2: If we had inserted a MovHint and the Phi function had // died (because the only user of the value was the "flush" - i.e. // some asynchronous runtime thingy) then the MovHint would turn // into a ZombieHint, which would fool us into thinking that the // variable is dead. // Reason #3: If we had inserted a MovHint then even if the Phi // stayed alive, we would still end up generating inefficient code // since we would be telling the OSR exit compiler to use some SSA // value for the bytecode variable rather than just telling it that // the value was already on the stack. } else { m_insertionSet.insertNode( 0, SpecNone, MovHint, NodeOrigin(), OpInfo(variable->local().offset()), Edge(node)); } } } block->variablesAtHead[i] = node; } m_insertionSet.execute(block); } if (verbose) { dataLog("Variables at head after SSA Phi insertion:\n"); for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; dataLog(" ", *block, ": ", block->variablesAtHead, "\n"); } } // At this point variablesAtHead in each block refers to either: // // 1) A new SSA phi in the current block. // 2) A SetArgument, which will soon get converted into a GetArgument. // 3) An old CPS phi in a different block. // // We don't have to do anything for (1) and (2), but we do need to // do a replacement for (3). // Clear all replacements, since other phases may have used them. m_graph.clearReplacements(); if (dumpGraph) { dataLog("Graph just before identifying replacements:\n"); m_graph.dump(); } // For all of the old CPS Phis, figure out what they correspond to in SSA. for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; if (verbose) dataLog("Dealing with block #", blockIndex, "\n"); for (unsigned phiIndex = block->phis.size(); phiIndex--;) { Node* phi = block->phis[phiIndex]; if (verbose) { dataLog( "Considering ", phi, " (", RawPointer(phi), "), for r", phi->local(), ", and its replacement in ", *block, ", ", block->variablesAtHead.operand(phi->local()), "\n"); } ASSERT(phi != block->variablesAtHead.operand(phi->local())); phi->misc.replacement = block->variablesAtHead.operand(phi->local()); } } // Now make sure that all variablesAtHead in each block points to the // canonical SSA value. Prior to this, variablesAtHead[local] may point to // an old CPS Phi in a different block. for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (size_t i = block->variablesAtHead.size(); i--;) { Node* node = block->variablesAtHead[i]; if (!node) continue; while (node->misc.replacement) { ASSERT(node != node->misc.replacement); node = node->misc.replacement; } block->variablesAtHead[i] = node; } } if (verbose) { dataLog("Variables at head after convergence:\n"); for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; dataLog(" ", *block, ": ", block->variablesAtHead, "\n"); } } // Convert operations over locals into operations over SSA nodes. // - GetLocal over captured variables lose their phis. // - GetLocal over uncaptured variables die and get replaced with references // to the node specified by variablesAtHead. // - SetLocal gets NodeMustGenerate if it's flushed, or turns into a // Check otherwise. // - Flush loses its children and turns into a Phantom. // - PhantomLocal becomes Phantom, and its child is whatever is specified // by variablesAtHead. // - SetArgument turns into GetArgument unless it's a captured variable. // - Upsilons get their children fixed to refer to the true value of that local // at the end of the block. Prior to this loop, Upsilons will refer to // variableAtTail[operand], which may be any of Flush, PhantomLocal, GetLocal, // SetLocal, SetArgument, or Phi. We accomplish this by setting the // replacement pointers of all of those nodes to refer to either // variablesAtHead[operand], or the child of the SetLocal. for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) { block->phis[phiIndex]->misc.replacement = block->variablesAtHead.operand(block->phis[phiIndex]->local()); } for (unsigned nodeIndex = block->size(); nodeIndex--;) ASSERT(!block->at(nodeIndex)->misc.replacement); for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { Node* node = block->at(nodeIndex); m_graph.performSubstitution(node); switch (node->op()) { case SetLocal: { VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured() || !!(node->flags() & NodeIsFlushed)) node->mergeFlags(NodeMustGenerate); else node->setOpAndDefaultFlags(Check); node->misc.replacement = node->child1().node(); // Only for Upsilons. break; } case GetLocal: { // It seems tempting to just do forwardPhi(GetLocal), except that we // could have created a new (SSA) Phi, and the GetLocal could still be // referring to an old (CPS) Phi. Uses variablesAtHead to tell us what // to refer to. node->children.reset(); VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured()) break; node->convertToPhantom(); node->misc.replacement = block->variablesAtHead.operand(variable->local()); break; } case Flush: { node->children.reset(); node->convertToPhantom(); // This is only for Upsilons. An Upsilon will only refer to a Flush if // there were no SetLocals or GetLocals in the block. node->misc.replacement = block->variablesAtHead.operand(node->local()); break; } case PhantomLocal: { VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured()) break; node->child1().setNode(block->variablesAtHead.operand(variable->local())); node->convertToPhantom(); // This is only for Upsilons. An Upsilon will only refer to a // PhantomLocal if there were no SetLocals or GetLocals in the block. node->misc.replacement = block->variablesAtHead.operand(variable->local()); break; } case SetArgument: { VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured()) break; node->setOpAndDefaultFlags(GetArgument); node->mergeFlags(resultFor(node->variableAccessData()->flushFormat())); break; } default: break; } } } // Free all CPS phis and reset variables vectors. for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) m_graph.m_allocator.free(block->phis[phiIndex]); block->phis.clear(); block->variablesAtHead.clear(); block->variablesAtTail.clear(); block->valuesAtHead.clear(); block->valuesAtHead.clear(); block->ssa = adoptPtr(new BasicBlock::SSAData(block)); } m_graph.m_arguments.clear(); m_graph.m_form = SSA; return true; }
bool run() { RELEASE_ASSERT(m_graph.m_form == ThreadedCPS); m_graph.clearReplacements(); m_graph.m_dominators.computeIfNecessary(m_graph); if (verbose) { dataLog("Graph before SSA transformation:\n"); m_graph.dump(); } // Create a SSACalculator::Variable for every root VariableAccessData. for (VariableAccessData& variable : m_graph.m_variableAccessData) { if (!variable.isRoot() || variable.isCaptured()) continue; SSACalculator::Variable* ssaVariable = m_calculator.newVariable(); ASSERT(ssaVariable->index() == m_variableForSSAIndex.size()); m_variableForSSAIndex.append(&variable); m_ssaVariableForVariable.add(&variable, ssaVariable); } // Find all SetLocals and create Defs for them. We handle SetArgument by creating a // GetLocal, and recording the flush format. for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; // Must process the block in forward direction because we want to see the last // assignment for every local. for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { Node* node = block->at(nodeIndex); if (node->op() != SetLocal && node->op() != SetArgument) continue; VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured()) continue; Node* childNode; if (node->op() == SetLocal) childNode = node->child1().node(); else { ASSERT(node->op() == SetArgument); childNode = m_insertionSet.insertNode( nodeIndex, node->variableAccessData()->prediction(), GetStack, node->origin, OpInfo(m_graph.m_stackAccessData.add(variable->local(), variable->flushFormat()))); if (!ASSERT_DISABLED) m_argumentGetters.add(childNode); m_argumentMapping.add(node, childNode); } m_calculator.newDef( m_ssaVariableForVariable.get(variable), block, childNode); } m_insertionSet.execute(block); } // Decide where Phis are to be inserted. This creates the Phi's but doesn't insert them // yet. We will later know where to insert them because SSACalculator is such a bro. m_calculator.computePhis( [&] (SSACalculator::Variable* ssaVariable, BasicBlock* block) -> Node* { VariableAccessData* variable = m_variableForSSAIndex[ssaVariable->index()]; // Prune by liveness. This doesn't buy us much other than compile times. Node* headNode = block->variablesAtHead.operand(variable->local()); if (!headNode) return nullptr; // There is the possibiltiy of "rebirths". The SSA calculator will already prune // rebirths for the same VariableAccessData. But it will not be able to prune // rebirths that arose from the same local variable number but a different // VariableAccessData. We do that pruning here. // // Here's an example of a rebirth that this would catch: // // var x; // if (foo) { // if (bar) { // x = 42; // } else { // x = 43; // } // print(x); // x = 44; // } else { // x = 45; // } // print(x); // Without this check, we'd have a Phi for x = 42|43 here. // // FIXME: Consider feeding local variable numbers, not VariableAccessData*'s, as // the "variables" for SSACalculator. That would allow us to eliminate this // special case. // https://bugs.webkit.org/show_bug.cgi?id=136641 if (headNode->variableAccessData() != variable) return nullptr; Node* phiNode = m_graph.addNode( variable->prediction(), Phi, NodeOrigin()); FlushFormat format = variable->flushFormat(); NodeFlags result = resultFor(format); phiNode->mergeFlags(result); return phiNode; }); if (verbose) { dataLog("Computed Phis, about to transform the graph.\n"); dataLog("\n"); dataLog("Graph:\n"); m_graph.dump(); dataLog("\n"); dataLog("Mappings:\n"); for (unsigned i = 0; i < m_variableForSSAIndex.size(); ++i) dataLog(" ", i, ": ", VariableAccessDataDump(m_graph, m_variableForSSAIndex[i]), "\n"); dataLog("\n"); dataLog("SSA calculator: ", m_calculator, "\n"); } // Do the bulk of the SSA conversion. For each block, this tracks the operand->Node // mapping based on a combination of what the SSACalculator tells us, and us walking over // the block in forward order. We use our own data structure, valueForOperand, for // determining the local mapping, but we rely on SSACalculator for the non-local mapping. // // This does three things at once: // // - Inserts the Phis in all of the places where they need to go. We've already created // them and they are accounted for in the SSACalculator's data structures, but we // haven't inserted them yet, mostly because we want to insert all of a block's Phis in // one go to amortize the cost of node insertion. // // - Create and insert Upsilons. // // - Convert all of the preexisting SSA nodes (other than the old CPS Phi nodes) into SSA // form by replacing as follows: // // - MovHint has KillLocal prepended to it. // // - GetLocal over captured variables lose their phis and become GetStack. // // - GetLocal over uncaptured variables die and get replaced with references to the node // specified by valueForOperand. // // - SetLocal turns into PutStack if it's flushed, or turns into a Check otherwise. // // - Flush loses its children and turns into a Phantom. // // - PhantomLocal becomes Phantom, and its child is whatever is specified by // valueForOperand. // // - SetArgument is removed. Note that GetStack nodes have already been inserted. Operands<Node*> valueForOperand(OperandsLike, m_graph.block(0)->variablesAtHead); for (BasicBlock* block : m_graph.blocksInPreOrder()) { valueForOperand.clear(); // CPS will claim that the root block has all arguments live. But we have already done // the first step of SSA conversion: argument locals are no longer live at head; // instead we have GetStack nodes for extracting the values of arguments. So, we // skip the at-head available value calculation for the root block. if (block != m_graph.block(0)) { for (size_t i = valueForOperand.size(); i--;) { Node* nodeAtHead = block->variablesAtHead[i]; if (!nodeAtHead) continue; VariableAccessData* variable = nodeAtHead->variableAccessData(); if (variable->isCaptured()) continue; if (verbose) dataLog("Considering live variable ", VariableAccessDataDump(m_graph, variable), " at head of block ", *block, "\n"); SSACalculator::Variable* ssaVariable = m_ssaVariableForVariable.get(variable); SSACalculator::Def* def = m_calculator.reachingDefAtHead(block, ssaVariable); if (!def) { // If we are required to insert a Phi, then we won't have a reaching def // at head. continue; } Node* node = def->value(); if (node->replacement) { // This will occur when a SetLocal had a GetLocal as its source. The // GetLocal would get replaced with an actual SSA value by the time we get // here. Note that the SSA value with which the GetLocal got replaced // would not in turn have a replacement. node = node->replacement; ASSERT(!node->replacement); } if (verbose) dataLog("Mapping: ", VirtualRegister(valueForOperand.operandForIndex(i)), " -> ", node, "\n"); valueForOperand[i] = node; } } // Insert Phis by asking the calculator what phis there are in this block. Also update // valueForOperand with those Phis. For Phis associated with variables that are not // flushed, we also insert a MovHint. size_t phiInsertionPoint = 0; for (SSACalculator::Def* phiDef : m_calculator.phisForBlock(block)) { VariableAccessData* variable = m_variableForSSAIndex[phiDef->variable()->index()]; m_insertionSet.insert(phiInsertionPoint, phiDef->value()); valueForOperand.operand(variable->local()) = phiDef->value(); m_insertionSet.insertNode( phiInsertionPoint, SpecNone, MovHint, NodeOrigin(), OpInfo(variable->local().offset()), phiDef->value()->defaultEdge()); } for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { Node* node = block->at(nodeIndex); if (verbose) { dataLog("Processing node ", node, ":\n"); m_graph.dump(WTF::dataFile(), " ", node); } m_graph.performSubstitution(node); switch (node->op()) { case MovHint: { m_insertionSet.insertNode( nodeIndex, SpecNone, KillStack, node->origin, OpInfo(node->unlinkedLocal().offset())); break; } case SetLocal: { VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured() || !!(node->flags() & NodeIsFlushed)) { node->convertToPutStack( m_graph.m_stackAccessData.add( variable->local(), variable->flushFormat())); } else node->setOpAndDefaultFlags(Check); if (!variable->isCaptured()) { if (verbose) dataLog("Mapping: ", variable->local(), " -> ", node->child1().node(), "\n"); valueForOperand.operand(variable->local()) = node->child1().node(); } break; } case GetStack: { ASSERT(m_argumentGetters.contains(node)); valueForOperand.operand(node->stackAccessData()->local) = node; break; } case GetLocal: { VariableAccessData* variable = node->variableAccessData(); node->children.reset(); if (variable->isCaptured()) { node->convertToGetStack(m_graph.m_stackAccessData.add(variable->local(), variable->flushFormat())); break; } node->convertToPhantom(); if (verbose) dataLog("Replacing node ", node, " with ", valueForOperand.operand(variable->local()), "\n"); node->replacement = valueForOperand.operand(variable->local()); break; } case Flush: { node->children.reset(); node->convertToPhantom(); break; } case PhantomLocal: { ASSERT(node->child1().useKind() == UntypedUse); VariableAccessData* variable = node->variableAccessData(); if (variable->isCaptured()) { // This is a fun case. We could have a captured variable that had some // or all of its uses strength reduced to phantoms rather than flushes. // SSA conversion will currently still treat it as flushed, in the sense // that it will just keep the SetLocal. Therefore, there is nothing that // needs to be done here: we don't need to also keep the source value // alive. And even if we did want to keep the source value alive, we // wouldn't be able to, because the variablesAtHead value for a captured // local wouldn't have been computed by the Phi reduction algorithm // above. node->children.reset(); } else node->child1() = valueForOperand.operand(variable->local())->defaultEdge(); node->convertToPhantom(); break; } case SetArgument: { node->convertToPhantom(); break; } default: break; } } // We want to insert Upsilons just before the end of the block. On the surface this // seems dangerous because the Upsilon will have a checking UseKind. But, we will not // actually be performing the check at the point of the Upsilon; the check will // already have been performed at the point where the original SetLocal was. size_t upsilonInsertionPoint = block->size() - 1; NodeOrigin upsilonOrigin = block->last()->origin; for (unsigned successorIndex = block->numSuccessors(); successorIndex--;) { BasicBlock* successorBlock = block->successor(successorIndex); for (SSACalculator::Def* phiDef : m_calculator.phisForBlock(successorBlock)) { Node* phiNode = phiDef->value(); SSACalculator::Variable* ssaVariable = phiDef->variable(); VariableAccessData* variable = m_variableForSSAIndex[ssaVariable->index()]; FlushFormat format = variable->flushFormat(); UseKind useKind = useKindFor(format); m_insertionSet.insertNode( upsilonInsertionPoint, SpecNone, Upsilon, upsilonOrigin, OpInfo(phiNode), Edge( valueForOperand.operand(variable->local()), useKind)); } } m_insertionSet.execute(block); } // Free all CPS phis and reset variables vectors. for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { BasicBlock* block = m_graph.block(blockIndex); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) m_graph.m_allocator.free(block->phis[phiIndex]); block->phis.clear(); block->variablesAtHead.clear(); block->variablesAtTail.clear(); block->valuesAtHead.clear(); block->valuesAtHead.clear(); block->ssa = std::make_unique<BasicBlock::SSAData>(block); } m_graph.m_argumentFormats.resize(m_graph.m_arguments.size()); for (unsigned i = m_graph.m_arguments.size(); i--;) { FlushFormat format = FlushedJSValue; Node* node = m_argumentMapping.get(m_graph.m_arguments[i]); // m_argumentMapping.get could return null for a captured local. That's fine. We only // track the argument loads of those arguments for which we speculate type. We don't // speculate type for captured arguments. if (node) format = node->stackAccessData()->format; m_graph.m_argumentFormats[i] = format; m_graph.m_arguments[i] = node; // Record the load that loads the arguments for the benefit of exit profiling. } m_graph.m_form = SSA; if (verbose) { dataLog("Graph after SSA transformation:\n"); m_graph.dump(); } return true; }