toxi::geom::Matrix4x4 toxi::geom::Matrix4x4::lookAt( Vec3D & eye, Vec3D & target, Vec3D & up ) { Vec3D f = eye.sub( target ).normalize(); Vec3D s = up.cross( f ).normalize(); Vec3D t = f.cross( s ).normalize(); return set( s.getX(), s.getY(), s.getZ(), -s.dot( eye ), t.getX(), t.getY(), t.getZ(), -t.dot( eye ), f.getX(), f.getY(), f.getZ(), -f.dot( eye ), 0, 0, 0, 1 ); }
// using vector to a point, unit normal vector to a plane, and a vector // to a point in the plane, find distance from point to plane static double distancePointToPlane(const Vec3D& point, const Vec3D& unitN, const Vec3D& pointInPlane) { Vec3D diff = point - pointInPlane; return unitN.dot(diff); }
toxi::geom::Vec3D toxi::geom::Triangle3D::toBarycentric( Vec3D & p ) { Vec3D e = b.sub( a ).cross( c.sub( a ) ); Vec3D n = e.getNormalized(); // Compute twice area of triangle ABC float areaABC = n.dot( e ); // Compute lambda1 float areaPBC = n.dot( b.sub( p ).cross( c.sub( p ) ) ); float l1 = areaPBC / areaABC; // Compute lambda2 float areaPCA = n.dot( c.sub( p ).cross( a.sub( p ) ) ); float l2 = areaPCA / areaABC; // Compute lambda3 float l3 = 1.0f - l1 - l2; return Vec3D(l1, l2, l3); }
bool toxi::geom::AABB::planeBoxOverlap( Vec3D & normal, const float & d, const Vec3D & maxBox ) { Vec3D vmin = Vec3D(); Vec3D vmax = Vec3D(); if (normal.getX() > 0.0f) { vmin.setX( -maxBox.getX() ); vmax.setX( maxBox.getX() ); } else { vmin.setX( maxBox.getX() ); vmax.setX( -maxBox.getX() ); } if (normal.getY() > 0.0f) { vmin.setY( -maxBox.getY() ); vmax.setY( maxBox.getY() ); } else { vmin.setY( maxBox.getY() ); vmax.setY( -maxBox.getY() ); } if (normal.getZ() > 0.0f) { vmin.setZ( -maxBox.getZ() ); vmax.setZ( maxBox.getZ() ); } else { vmin.setZ( maxBox.getZ() ); vmax.setZ( -maxBox.getZ() ); } if (normal.dot(vmin) + d > 0.0f) { return false; } if (normal.dot(vmax) + d >= 0.0f) { return true; } return false; }
int TriangleMeshData::createDebugMesh( CFly::Object* obj , CFly::Material* mat ) { struct vtx_t { vtx_t( Vec3D const& v , Vec3D const& c) :vtx(v),color(c){} Vec3D vtx; Vec3D color; }; std::vector< vtx_t > vtxVec; std::vector< TriangleIndex > triVec; vtxVec.reserve( m_triVec.size() * 3 ); triVec.reserve( m_triVec.size() ); int index = -1; for (int i = 0; i < m_triVec.size(); ++i ) { TriangleIndex& tri = m_triVec[i]; Vec3D& v0 = m_vertexVec[ tri.v[0] ]; Vec3D& v1 = m_vertexVec[ tri.v[1] ]; Vec3D& v2 = m_vertexVec[ tri.v[2] ]; Vec3D normal = ( v1 - v0 ).cross( v2 - v1 ); float len = sqrt( normal.dot(normal) ); float c = ( 2 + (normal.y + normal.z)/len )/ 4 ; Vec3D color( c ,c , c ); vtxVec.push_back( vtx_t( v0 , color ) ); vtxVec.push_back( vtx_t( v1 , color ) ); vtxVec.push_back( vtx_t( v2 , color ) ); TriangleIndex t; t.v[0] = ++index; t.v[1] = ++index; t.v[2] = ++index; triVec.push_back( t ); } return obj->createIndexedTriangle( mat , CFVT_XYZ_CF1 , (float*) &vtxVec[0] , vtxVec.size() , &( triVec[0].v[0] ) , triVec.size() ); }
static double vecLength(Vec3D vec) { return std::sqrt(vec.dot(vec)); }
toxi::geom::Vec3D toxi::geom::Triangle3D::closestPointOnSurface( Vec3D & p ) { Vec3D ab = b.sub( a ); Vec3D ac = c.sub( a ); Vec3D bc = c.sub( b ); Vec3D pa = p.sub( a ); Vec3D pb = p.sub( b ); Vec3D pc = p.sub( c ); Vec3D ap = a.sub( p ); Vec3D bp = b.sub( p ); Vec3D cp = c.sub( p ); // Compute parametric position s for projection P' of P on AB, // P' = A + s*AB, s = snom/(snom+sdenom) float snom = pa.dot( ab ); // Compute parametric position t for projection P' of P on AC, // P' = A + t*AC, s = tnom/(tnom+tdenom) float tnom = pa.dot( ac ); if ( snom <= 0.0f && tnom <= 0.0f ) { return a; // Vertex region early out } float sdenom = pb.dot( a.sub( b ) ); float tdenom = pc.dot( a.sub( c ) ); // Compute parametric position u for projection P' of P on BC, // P' = B + u*BC, u = unom/(unom+udenom) float unom = pb.dot( bc ); float udenom = pc.dot( b.sub( c ) ); if ( sdenom <= 0.0f && unom <= 0.0f ) { return b; // Vertex region early out } if ( tdenom <= 0.0f && udenom <= 0.0f ) { return c; // Vertex region early out } // P is outside (or on) AB if the triple scalar product [N PA PB] <= 0 Vec3D n = ab.cross( ac ); float vc = n.dot( ap.crossSelf( bp ) ); // If P outside AB and within feature region of AB, // return projection of P onto AB if ( vc <= 0.0f && snom >= 0.0f && sdenom >= 0.0f ) { // return a + snom / (snom + sdenom) * ab; return a.add( ab.scaleSelf( snom / ( snom + sdenom ) ) ); } // P is outside (or on) BC if the triple scalar product [N PB PC] <= 0 float va = n.dot( bp.crossSelf( cp ) ); // If P outside BC and within feature region of BC, // return projection of P onto BC if ( va <= 0.0f && unom >= 0.0f && udenom >= 0.0f ) { // return b + unom / (unom + udenom) * bc; return b.add( bc.scaleSelf( unom / ( unom + udenom ) ) ); } // P is outside (or on) CA if the triple scalar product [N PC PA] <= 0 float vb = n.dot( cp.crossSelf( ap ) ); // If P outside CA and within feature region of CA, // return projection of P onto CA if ( vb <= 0.0f && tnom >= 0.0f && tdenom >= 0.0f ) { // return a + tnom / (tnom + tdenom) * ac; return a.add( ac.scaleSelf( tnom / ( tnom + tdenom ) ) ); } // P must project inside face region. Compute Q using barycentric // coordinates float u = va / ( va + vb + vc ); float v = vb / ( va + vb + vc ); float w = 1.0f - u - v; // = vc / (va + vb + vc) // return u * a + v * b + w * c; return a.scale( u ).addSelf( b.scale( v ) ).addSelf( c.scale( w ) ); }