void
WallTensionEstimatorCylindricalCoordinates<Mesh >::constructGlobalStressVector()
{

    //Creating the local stress tensors
    VectorElemental elVecSigmaX (this->M_FESpace->fe().nbFEDof(), this->M_FESpace->fieldDim() );
    VectorElemental elVecSigmaY (this->M_FESpace->fe().nbFEDof(), this->M_FESpace->fieldDim() );
    VectorElemental elVecSigmaZ (this->M_FESpace->fe().nbFEDof(), this->M_FESpace->fieldDim() );

    LifeChrono chrono;

    //Constructing the patch area vector for reconstruction purposes
    solutionVect_Type patchArea (* (this->M_displacement), Unique, Add);
    patchArea *= 0.0;

    super::constructPatchAreaVector ( patchArea );

    //Before assembling the reconstruction process is done
    solutionVect_Type patchAreaR (patchArea, Repeated);

    QuadratureRule fakeQuadratureRule;

    Real refElemArea (0); //area of reference element
    //compute the area of reference element
    for (UInt iq = 0; iq < this->M_FESpace->qr().nbQuadPt(); iq++)
    {
        refElemArea += this->M_FESpace->qr().weight (iq);
    }

    Real wQuad (refElemArea / this->M_FESpace->refFE().nbDof() );

    //Setting the quadrature Points = DOFs of the element and weight = 1
    std::vector<GeoVector> coords = this->M_FESpace->refFE().refCoor();
    std::vector<Real> weights (this->M_FESpace->fe().nbFEDof(), wQuad);
    fakeQuadratureRule.setDimensionShape ( shapeDimension (this->M_FESpace->refFE().shape() ), this->M_FESpace->refFE().shape() );
    fakeQuadratureRule.setPoints (coords, weights);

    //Set the new quadrature rule
    this->M_FESpace->setQuadRule (fakeQuadratureRule);

    this->M_displayer->leaderPrint (" \n*********************************\n  ");
    this->M_displayer->leaderPrint ("   Performing the analysis recovering the Cauchy stresses..., ", this->M_dataMaterial->solidType() );
    this->M_displayer->leaderPrint (" \n*********************************\n  ");

    UInt totalDof = this->M_FESpace->dof().numTotalDof();
    VectorElemental dk_loc (this->M_FESpace->fe().nbFEDof(), this->M_FESpace->fieldDim() );

    //Vectors for the deformation tensor
    std::vector<matrix_Type> vectorDeformationF (this->M_FESpace->fe().nbFEDof(), * (this->M_deformationF) );
    //Copying the displacement field into a vector with repeated map for parallel computations
    solutionVect_Type dRep (* (this->M_displacement), Repeated);

    chrono.start();

    //Loop on each volume
    for ( UInt i = 0; i < this->M_FESpace->mesh()->numVolumes(); ++i )
    {
        this->M_FESpace->fe().updateFirstDerivQuadPt ( this->M_FESpace->mesh()->volumeList ( i ) );

        elVecSigmaX.zero();
        elVecSigmaY.zero();
        elVecSigmaZ.zero();

        this->M_marker = this->M_FESpace->mesh()->volumeList ( i ).markerID();

        UInt eleID = this->M_FESpace->fe().currentLocalId();

        //Extracting the local displacement
        for ( UInt iNode = 0; iNode < ( UInt ) this->M_FESpace->fe().nbFEDof(); iNode++ )
        {
            UInt  iloc = this->M_FESpace->fe().patternFirst ( iNode );

            for ( UInt iComp = 0; iComp < this->M_FESpace->fieldDim(); ++iComp )
            {
                UInt ig = this->M_FESpace->dof().localToGlobalMap ( eleID, iloc ) + iComp * this->M_FESpace->dim() + this->M_offset;
                dk_loc[iloc + iComp * this->M_FESpace->fe().nbFEDof()] = dRep[ig];
            }
        }

        //Compute the element tensor F
        AssemblyElementalStructure::computeLocalDeformationGradientWithoutIdentity ( dk_loc, vectorDeformationF, this->M_FESpace->fe() );

        //Compute the local vector of the principal stresses
        for ( UInt nDOF = 0; nDOF < ( UInt ) this->M_FESpace->fe().nbFEDof(); nDOF++ )
        {
            UInt  iloc = this->M_FESpace->fe().patternFirst ( nDOF );

            vector_Type localDisplacement (this->M_FESpace->fieldDim(), 0.0);

            for ( UInt coor = 0; coor < this->M_FESpace->fieldDim(); coor++ )
            {
                localDisplacement[coor] = iloc + coor * this->M_FESpace->fe().nbFEDof();
            }

            this->M_sigma->Scale (0.0);
            this->M_firstPiola->Scale (0.0);
            this->M_cofactorF->Scale (0.0);
            this->M_deformationCylindricalF->Scale (0.0);

            moveToCylindricalCoordinates (vectorDeformationF[nDOF], iloc, *M_deformationCylindricalF);

            //Compute the rightCauchyC tensor
            AssemblyElementalStructure::computeInvariantsRightCauchyGreenTensor (this->M_invariants, *M_deformationCylindricalF, * (this->M_cofactorF) );

            //Compute the first Piola-Kirchhoff tensor
            this->M_material->computeLocalFirstPiolaKirchhoffTensor (* (this->M_firstPiola), *M_deformationCylindricalF, * (this->M_cofactorF), this->M_invariants, this->M_marker);

            //Compute the Cauchy tensor
            AssemblyElementalStructure::computeCauchyStressTensor (* (this->M_sigma), * (this->M_firstPiola), this->M_invariants[3], *M_deformationCylindricalF);

            //Assembling the local vectors for local tensions Component X
            for ( int coor = 0; coor < this->M_FESpace->fieldDim(); coor++ )
            {
                (elVecSigmaX) [iloc + coor * this->M_FESpace->fe().nbFEDof()] = (* (this->M_sigma) ) (coor, 0);
            }

            //Assembling the local vectors for local tensions Component Y
            for ( int coor = 0; coor < this->M_FESpace->fieldDim(); coor++ )
            {
                (elVecSigmaY) [iloc + coor * this->M_FESpace->fe().nbFEDof()] = (* (this->M_sigma) ) (coor, 1);
            }

            //Assembling the local vectors for local tensions Component Z
            for ( int coor = 0; coor < this->M_FESpace->fieldDim(); coor++ )
            {
                (elVecSigmaZ) [iloc + coor * this->M_FESpace->fe().nbFEDof()] = (* (this->M_sigma) ) (coor, 2);
            }

        }

        super::reconstructElementaryVector ( elVecSigmaX, patchAreaR, *this->M_FESpace );
        super::reconstructElementaryVector ( elVecSigmaY, patchAreaR, *this->M_FESpace );
        super::reconstructElementaryVector ( elVecSigmaZ, patchAreaR, *this->M_FESpace );

        //Assembling the three elemental vector in the three global
        for ( UInt ic = 0; ic < this->M_FESpace->fieldDim(); ++ic )
        {
            assembleVector (*this->M_sigmaX, elVecSigmaX, this->M_FESpace->fe(), this->M_FESpace->dof(), ic, this->M_offset +  ic * totalDof );
            assembleVector (*this->M_sigmaY, elVecSigmaY, this->M_FESpace->fe(), this->M_FESpace->dof(), ic, this->M_offset +  ic * totalDof );
            assembleVector (*this->M_sigmaZ, elVecSigmaZ, this->M_FESpace->fe(), this->M_FESpace->dof(), ic, this->M_offset +  ic * totalDof );
        }
    }


    this->M_sigmaX->globalAssemble();
    this->M_sigmaY->globalAssemble();
    this->M_sigmaZ->globalAssemble();
}
예제 #2
0
void
HyperbolicSolver< Mesh, SolverType >::
localEvolve ( const UInt& iElem )
{

    // LAPACK wrapper of Epetra
    Epetra_LAPACK lapack;

    // Flags for LAPACK routines.
    Int INFO[1]  = { 0 };
    Int NB = M_FESpace.refFE().nbDof();

    // Parameter that indicate the Lower storage of matrices.
    char param_L = 'L';
    char param_N = 'N';

    // Paramater that indicate the Transpose of matrices.
    char param_T = 'T';

    // Numbers of columns of the right hand side := 1.
    Int NBRHS = 1;

    // Clean the local flux
    M_localFlux.zero();

    // Loop on the faces of the element iElem and compute the local contribution
    for ( UInt iFace (0); iFace < M_FESpace.mesh()->numLocalFaces(); ++iFace )
    {
        // Id mapping
        const UInt iGlobalFace ( M_FESpace.mesh()->localFacetId ( iElem, iFace ) );

        // Take the left element to the face, see regionMesh for the meaning of left element
        const UInt leftElement ( M_FESpace.mesh()->faceElement ( iGlobalFace, 0 ) );

        // Take the right element to the face, see regionMesh for the meaning of right element
        const UInt rightElement ( M_FESpace.mesh()->faceElement ( iGlobalFace, 1 ) );

        // Update the normal vector of the current face in each quadrature point
        M_FESpace.feBd().updateMeasNormalQuadPt ( M_FESpace.mesh()->boundaryFacet ( iGlobalFace ) );

        // Local flux of a face times the integration weight
        VectorElemental localFaceFluxWeight ( M_FESpace.refFE().nbDof(), 1 );

        // Solution in the left element
        VectorElemental leftValue  ( M_FESpace.refFE().nbDof(), 1 );

        // Solution in the right element
        VectorElemental rightValue ( M_FESpace.refFE().nbDof(), 1 );

        // Extract the solution in the current element, now is the leftElement
        extract_vec ( *M_uOld,
                      leftValue,
                      M_FESpace.refFE(),
                      M_FESpace.dof(),
                      leftElement , 0 );

        // Check if the current face is a boundary face, that is rightElement == NotAnId
        if ( !Flag::testOneSet ( M_FESpace.mesh()->face ( iGlobalFace ).flag(), EntityFlags::PHYSICAL_BOUNDARY | EntityFlags::SUBDOMAIN_INTERFACE ) )
        {
            // Extract the solution in the current element, now is the leftElement
            extract_vec ( *M_uOld,
                          rightValue,
                          M_FESpace.refFE(),
                          M_FESpace.dof(),
                          rightElement , 0 );
        }
        else if ( Flag::testOneSet ( M_FESpace.mesh()->face ( iGlobalFace ).flag(), EntityFlags::SUBDOMAIN_INTERFACE ) )
        {
            // TODO: this works only for P0 elements
            rightValue[ 0 ] = M_ghostDataMap[ iGlobalFace ];
        }
        else // Flag::testOneSet ( M_FESpace.mesh()->face ( iGlobalFace ).flag(), PHYSICAL_BOUNDARY )
        {

            // Clean the value of the right element
            rightValue.zero();

            // Check if the boundary conditions were updated.
            if ( !M_BCh->bcUpdateDone() )
            {
                // Update the boundary conditions handler. We use the finite element of the boundary of the dual variable.
                M_BCh->bcUpdate ( *M_FESpace.mesh(), M_FESpace.feBd(), M_FESpace.dof() );
            }

            // Take the boundary marker for the current boundary face
            const ID faceMarker ( M_FESpace.mesh()->boundaryFacet ( iGlobalFace ).markerID() );

            // Take the corrispective boundary function
            const BCBase& bcBase ( M_BCh->findBCWithFlag ( faceMarker ) );

            // Check if the bounday condition is of type Essential, useful for operator splitting strategies
            if ( bcBase.type() == Essential )
            {

                // Loop on all the quadrature points
                for ( UInt ig (0); ig < M_FESpace.feBd().nbQuadPt(); ++ig)
                {

                    // Current quadrature point
                    KN<Real> quadPoint (3);

                    // normal vector
                    KN<Real> normal (3);

                    for (UInt icoor (0); icoor < 3; ++icoor)
                    {
                        quadPoint (icoor) = M_FESpace.feBd().quadPt ( ig, icoor );
                        normal (icoor)    = M_FESpace.feBd().normal ( icoor, ig ) ;
                    }

                    // Compute the boundary contribution
                    rightValue[0] = bcBase ( M_data.dataTime()->time(), quadPoint (0), quadPoint (1), quadPoint (2), 0 );

                    const Real localFaceFlux = M_numericalFlux->firstDerivativePhysicalFluxDotNormal ( normal,
                                               iElem,
                                               M_data.dataTime()->time(),
                                               quadPoint (0),
                                               quadPoint (1),
                                               quadPoint (2),
                                               rightValue[ 0 ] );
                    // Update the local flux of the current face with the quadrature weight
                    localFaceFluxWeight[0] += localFaceFlux * M_FESpace.feBd().weightMeas ( ig );
                }

            }
            else
            {
                /* If the boundary flag is not Essential then is automatically an outflow boundary.
                   We impose to localFaceFluxWeight a positive value. */
                localFaceFluxWeight[0] = 1.;
            }

            // It is an outflow face, we use a ghost cell
            if ( localFaceFluxWeight[0] > 1e-4 )
            {
                rightValue = leftValue;
            }

            // Clean the localFaceFluxWeight
            localFaceFluxWeight.zero();

        }

        // Clean the localFaceFluxWeight
        localFaceFluxWeight.zero();

        // Loop on all the quadrature points
        for ( UInt ig (0); ig < M_FESpace.feBd().nbQuadPt(); ++ig )
        {

            // Current quadrature point
            KN<Real> quadPoint (3);

            // normal vector
            KN<Real> normal (3);

            for (UInt icoor (0); icoor < 3; ++icoor)
            {
                quadPoint (icoor) = M_FESpace.feBd().quadPt ( ig, icoor );
                normal (icoor)    = M_FESpace.feBd().normal ( icoor, ig ) ;
            }

            // If the normal is orientated inward, we change its sign and swap the left and value of the solution
            if ( iElem == rightElement )
            {
                normal *= -1.;
                std::swap ( leftValue, rightValue );
            }

            const Real localFaceFlux = (*M_numericalFlux) ( leftValue[ 0 ],
                                                            rightValue[ 0 ],
                                                            normal,
                                                            iElem,
                                                            M_data.dataTime()->time(),
                                                            quadPoint (0),
                                                            quadPoint (1),
                                                            quadPoint (2) );

            // Update the local flux of the current face with the quadrature weight
            localFaceFluxWeight[0] += localFaceFlux * M_FESpace.feBd().weightMeas ( ig );

        }

        /* Put in localFlux the vector L^{-1} * localFlux
           For more details see http://www.netlib.org/lapack/lapack-3.1.1/SRC/dtrtrs.f */
        lapack.TRTRS ( param_L, param_N, param_N, NB, NBRHS, M_elmatMass[ iElem ].mat(), NB, localFaceFluxWeight, NB, INFO);
        ASSERT_PRE ( !INFO[0], "Lapack Computation M_elvecSource = LB^{-1} rhs is not achieved." );

        /* Put in localFlux the vector L^{-T} * localFlux
           For more details see http://www.netlib.org/lapack/lapack-3.1.1/SRC/dtrtrs.f */
        lapack.TRTRS ( param_L, param_T, param_N, NB, NBRHS, M_elmatMass[ iElem ].mat(), NB, localFaceFluxWeight, NB, INFO);
        ASSERT_PRE ( !INFO[0], "Lapack Computation M_elvecSource = LB^{-1} rhs is not achieved." );

        // Add to the local flux the local flux of the current face
        M_localFlux += localFaceFluxWeight;

    }

} // localEvolve
void
WallTensionEstimatorCylindricalCoordinates<Mesh >::analyzeTensionsRecoveryEigenvaluesCylindrical ( void )
{

    LifeChrono chrono;

    this->M_displayer->leaderPrint (" \n*********************************\n  ");
    this->M_displayer->leaderPrint ("   Performing the analysis recovering the tensions..., ", this->M_dataMaterial->solidType() );
    this->M_displayer->leaderPrint (" \n*********************************\n  ");

    solutionVect_Type patchArea (* (this->M_displacement), Unique, Add);
    patchArea *= 0.0;

    super::constructPatchAreaVector ( patchArea );

    //Before assembling the reconstruction process is done
    solutionVect_Type patchAreaR (patchArea, Repeated);

    QuadratureRule fakeQuadratureRule;

    Real refElemArea (0); //area of reference element
    //compute the area of reference element
    for (UInt iq = 0; iq < this->M_FESpace->qr().nbQuadPt(); iq++)
    {
        refElemArea += this->M_FESpace->qr().weight (iq);
    }

    Real wQuad (refElemArea / this->M_FESpace->refFE().nbDof() );

    //Setting the quadrature Points = DOFs of the element and weight = 1
    std::vector<GeoVector> coords = this->M_FESpace->refFE().refCoor();
    std::vector<Real> weights (this->M_FESpace->fe().nbFEDof(), wQuad);
    fakeQuadratureRule.setDimensionShape ( shapeDimension (this->M_FESpace->refFE().shape() ), this->M_FESpace->refFE().shape() );
    fakeQuadratureRule.setPoints (coords, weights);

    //Set the new quadrature rule
    this->M_FESpace->setQuadRule (fakeQuadratureRule);

    UInt totalDof = this->M_FESpace->dof().numTotalDof();
    VectorElemental dk_loc (this->M_FESpace->fe().nbFEDof(), this->M_FESpace->fieldDim() );

    //Vectors for the deformation tensor
    std::vector<matrix_Type> vectorDeformationF (this->M_FESpace->fe().nbFEDof(), * (this->M_deformationF) );
    //Copying the displacement field into a vector with repeated map for parallel computations
    solutionVect_Type dRep (* (this->M_displacement), Repeated);

    VectorElemental elVecTens (this->M_FESpace->fe().nbFEDof(), this->M_FESpace->fieldDim() );

    chrono.start();

    //Loop on each volume
    for ( UInt i = 0; i < this->M_FESpace->mesh()->numVolumes(); ++i )
    {
        this->M_FESpace->fe().updateFirstDerivQuadPt ( this->M_FESpace->mesh()->volumeList ( i ) );
        elVecTens.zero();

        this->M_marker = this->M_FESpace->mesh()->volumeList ( i ).markerID();

        UInt eleID = this->M_FESpace->fe().currentLocalId();

        //Extracting the local displacement
        for ( UInt iNode = 0; iNode < ( UInt ) this->M_FESpace->fe().nbFEDof(); iNode++ )
        {
            UInt  iloc = this->M_FESpace->fe().patternFirst ( iNode );

            for ( UInt iComp = 0; iComp < this->M_FESpace->fieldDim(); ++iComp )
            {
                UInt ig = this->M_FESpace->dof().localToGlobalMap ( eleID, iloc ) + iComp * this->M_FESpace->dim() + this->M_offset;
                dk_loc[iloc + iComp * this->M_FESpace->fe().nbFEDof()] = dRep[ig];
            }
        }

        //Compute the element tensor F
        AssemblyElementalStructure::computeLocalDeformationGradientWithoutIdentity ( dk_loc, vectorDeformationF, this->M_FESpace->fe() );

        //Compute the local vector of the principal stresses
        for ( UInt nDOF = 0; nDOF < ( UInt ) this->M_FESpace->fe().nbFEDof(); nDOF++ )
        {
            UInt  iloc = this->M_FESpace->fe().patternFirst ( nDOF );
            vector_Type localDisplacement (this->M_FESpace->fieldDim(), 0.0);

            for ( UInt coor = 0; coor < this->M_FESpace->fieldDim(); coor++ )
            {
                localDisplacement[coor] = iloc + coor * this->M_FESpace->fe().nbFEDof();
            }

            this->M_sigma->Scale (0.0);
            this->M_firstPiola->Scale (0.0);
            this->M_cofactorF->Scale (0.0);
            M_deformationCylindricalF->Scale (0.0);

            moveToCylindricalCoordinates (vectorDeformationF[nDOF], iloc, *M_deformationCylindricalF);

            //Compute the rightCauchyC tensor
            AssemblyElementalStructure::computeInvariantsRightCauchyGreenTensor (this->M_invariants, *M_deformationCylindricalF, * (this->M_cofactorF) );

            //Compute the first Piola-Kirchhoff tensor
            this->M_material->computeLocalFirstPiolaKirchhoffTensor (* (this->M_firstPiola), *M_deformationCylindricalF, * (this->M_cofactorF), this->M_invariants, this->M_marker);

            //Compute the Cauchy tensor
            AssemblyElementalStructure::computeCauchyStressTensor (* (this->M_sigma), * (this->M_firstPiola), this->M_invariants[3], *M_deformationCylindricalF);

            //Compute the eigenvalue
            AssemblyElementalStructure::computeEigenvalues (* (this->M_sigma), this->M_eigenvaluesR, this->M_eigenvaluesI);

            //The Cauchy tensor is symmetric and therefore, the eigenvalues are real
            //Check on the imaginary part of eigen values given by the Lapack method
            Real sum (0);
            for ( int i = 0; i < this->M_eigenvaluesI.size(); i++ )
            {
                sum += std::abs (this->M_eigenvaluesI[i]);
            }
            ASSERT_PRE ( sum < 1e-6 , "The eigenvalues of the Cauchy stress tensors have to be real!" );

            std::sort ( this->M_eigenvaluesR.begin(), this->M_eigenvaluesR.end() );

            //Assembling the local vector
            for ( int coor = 0; coor < this->M_eigenvaluesR.size(); coor++ )
            {
                elVecTens[iloc + coor * this->M_FESpace->fe().nbFEDof()] = this->M_eigenvaluesR[coor];
            }
        }

        super::reconstructElementaryVector ( elVecTens, patchAreaR, *this->M_FESpace );

        //Assembling the local into global vector
        for ( UInt ic = 0; ic < this->M_FESpace->fieldDim(); ++ic )
        {
            assembleVector (* (this->M_globalEigenvalues), elVecTens, this->M_FESpace->fe(), this->M_FESpace->dof(), ic, this->M_offset +  ic * totalDof );
        }
    }

    this->M_globalEigenvalues->globalAssemble();

    chrono.stop();
    this->M_displayer->leaderPrint ("Analysis done in: ", chrono.diff() );
}