/*! the radius ratio of a triangle NB (P. Pebay 01/13/07): CR / (2.0*IR) where CR is the circumradius and IR is the inradius The radius ratio is also known to VERDICT, for tetrahedral elements only, as the "aspect beta". */ C_FUNC_DEF double v_tri_radius_ratio( int /*num_nodes*/, double coordinates[][3] ) { // three vectors for each side VerdictVector a( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); VerdictVector b( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); VerdictVector c( coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2] ); double a1 = a.length(); double b1 = b.length(); double c1 = c.length(); VerdictVector ab = a * b; double denominator = ab.length_squared(); if( denominator < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX; double radius_ratio; radius_ratio = .25 * a1 * b1 * c1 * ( a1 + b1 + c1 ) / denominator; if( radius_ratio > 0 ) return (double) VERDICT_MIN( radius_ratio, VERDICT_DBL_MAX ); return (double) VERDICT_MAX( radius_ratio, -VERDICT_DBL_MAX ); }
inline double normalize_jacobian( double jacobi, VerdictVector& v1, VerdictVector& v2, VerdictVector& v3, int tet_flag = 0 ) { double return_value = 0.0; if ( jacobi != 0.0 ) { double l1, l2, l3, length_product; // Note: there may be numerical problems if one is a lot shorter // than the others this way. But scaling each vector before the // triple product would involve 3 square roots instead of just // one. l1 = v1.length_squared(); l2 = v2.length_squared(); l3 = v3.length_squared(); length_product = sqrt( l1 * l2 * l3 ); // if some numerical scaling problem, or just plain roundoff, // then push back into range [-1,1]. if ( length_product < fabs(jacobi) ) { length_product = fabs(jacobi); } if( tet_flag == 1) return_value = v_sqrt_2 * jacobi / length_product; else return_value = jacobi / length_product; } return return_value; }
double VerdictVector::vector_angle(const VerdictVector &vector1, const VerdictVector &vector2) const { // This routine does not assume that any of the input vectors are of unit // length. This routine does not normalize the input vectors. // Special cases: // If the normal vector is zero length: // If a new one can be computed from vectors 1 & 2: // the normal is replaced with the vector cross product // else the two vectors are colinear and zero or 2PI is returned. // If the normal is colinear with either (or both) vectors // a new one is computed with the cross products // (and checked again). // Check for zero length normal vector VerdictVector normal = *this; double normal_lensq = normal.length_squared(); double len_tol = 0.0000001; if( normal_lensq <= len_tol ) { // null normal - make it the normal to the plane defined by vector1 // and vector2. If still null, the vectors are colinear so check // for zero or 180 angle. normal = vector1 * vector2; normal_lensq = normal.length_squared(); if( normal_lensq <= len_tol ) { double cosine = vector1 % vector2; if( cosine > 0.0 ) return 0.0; else return VERDICT_PI; } } //Trap for normal vector colinear to one of the other vectors. If so, //use a normal defined by the two vectors. double dot_tol = 0.985; double dot = vector1 % normal; if( dot * dot >= vector1.length_squared() * normal_lensq * dot_tol ) { normal = vector1 * vector2; normal_lensq = normal.length_squared(); //Still problems if all three vectors were colinear if( normal_lensq <= len_tol ) { double cosine = vector1 % vector2; if( cosine >= 0.0 ) return 0.0; else return VERDICT_PI; } } else { //The normal and vector1 are not colinear, now check for vector2 dot = vector2 % normal; if( dot * dot >= vector2.length_squared() * normal_lensq * dot_tol ) { normal = vector1 * vector2; } } // Assume a plane such that the normal vector is the plane's normal. // Create yAxis perpendicular to both the normal and vector1. yAxis is // now in the plane. Create xAxis as the perpendicular to both yAxis and // the normal. xAxis is in the plane and is the projection of vector1 // into the plane. normal.normalize(); VerdictVector yAxis = normal; yAxis *= vector1; double yv = vector2 % yAxis; // yAxis memory slot will now be used for xAxis yAxis *= normal; double xv = vector2 % yAxis; // assert(x != 0.0 || y != 0.0); if( xv == 0.0 && yv == 0.0 ) { return 0.0; } double angle = atan2( yv, xv ); if (angle < 0.0) { angle += TWO_VERDICT_PI; } return angle; }
/*! tri_quality for calculating multiple tri functions at once using this method is generally faster than using the individual method multiple times. */ C_FUNC_DEF void v_tri_quality( int num_nodes, double coordinates[][3], unsigned int metrics_request_flag, TriMetricVals *metric_vals ) { memset( metric_vals, 0, sizeof(TriMetricVals) ); // for starts, lets set up some basic and common information /* node numbers and side numbers used below 2 ++ / \ 2 / \ 1 / \ / \ 0 ---------+ 1 0 */ // vectors for each side VerdictVector sides[3]; sides[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2] ); sides[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2] ); sides[2].set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2] ); VerdictVector tri_normal = sides[0] * sides[2]; //if we have access to normal information, check to see if the //element is inverted. If we don't have the normal information //that we need for this, assume the element is not inverted. //This flag will be used for condition number, jacobian, shape, //and size and shape. bool is_inverted = false; if( compute_normal ) { //center of tri double point[3], surf_normal[3]; point[0] = (coordinates[0][0] + coordinates[1][0] + coordinates[2][0]) / 3; point[1] = (coordinates[0][1] + coordinates[1][1] + coordinates[2][1]) / 3; point[2] = (coordinates[0][2] + coordinates[1][2] + coordinates[2][2]) / 3; //dot product compute_normal( point, surf_normal ); if( (tri_normal.x()*surf_normal[0] + tri_normal.y()*surf_normal[1] + tri_normal.z()*surf_normal[2] ) < 0 ) is_inverted=true; } // lengths squared of each side double sides_lengths_squared[3]; sides_lengths_squared[0] = sides[0].length_squared(); sides_lengths_squared[1] = sides[1].length_squared(); sides_lengths_squared[2] = sides[2].length_squared(); // if we are doing angle calcuations if( metrics_request_flag & (V_TRI_MINIMUM_ANGLE | V_TRI_MAXIMUM_ANGLE) ) { // which is short and long side int short_side=0, long_side=0; if(sides_lengths_squared[1] < sides_lengths_squared[0]) short_side = 1; if(sides_lengths_squared[2] < sides_lengths_squared[short_side]) short_side = 2; if(sides_lengths_squared[1] > sides_lengths_squared[0]) long_side = 1; if(sides_lengths_squared[2] > sides_lengths_squared[long_side]) long_side = 2; // calculate the minimum angle of the tri if( metrics_request_flag & V_TRI_MINIMUM_ANGLE ) { if(sides_lengths_squared[0] == 0.0 || sides_lengths_squared[1] == 0.0 || sides_lengths_squared[2] == 0.0) { metric_vals->minimum_angle = 0.0; } else if(short_side == 0) metric_vals->minimum_angle = (double)sides[2].interior_angle(sides[1]); else if(short_side == 1) metric_vals->minimum_angle = (double)sides[0].interior_angle(sides[2]); else metric_vals->minimum_angle = (double)sides[0].interior_angle(-sides[1]); } // calculate the maximum angle of the tri if( metrics_request_flag & V_TRI_MAXIMUM_ANGLE ) { if(sides_lengths_squared[0] == 0.0 || sides_lengths_squared[1] == 0.0 || sides_lengths_squared[2] == 0.0) { metric_vals->maximum_angle = 0.0; } else if(long_side == 0) metric_vals->maximum_angle = (double)sides[2].interior_angle(sides[1]); else if(long_side == 1) metric_vals->maximum_angle = (double)sides[0].interior_angle(sides[2]); else metric_vals->maximum_angle = (double)sides[0].interior_angle(-sides[1]); } } // calculate the area of the tri // the following functions depend on area if( metrics_request_flag & (V_TRI_AREA | V_TRI_SCALED_JACOBIAN | V_TRI_SHAPE | V_TRI_RELATIVE_SIZE_SQUARED | V_TRI_SHAPE_AND_SIZE ) ) { metric_vals->area = (double)((sides[0] * sides[2]).length() * 0.5); } // calculate the aspect ratio if(metrics_request_flag & V_TRI_ASPECT_FROBENIUS) { // sum the lengths squared double srms = sides_lengths_squared[0] + sides_lengths_squared[1] + sides_lengths_squared[2] ; // calculate once and reuse static const double twoTimesRootOf3 = 2*sqrt(3.0); double div = (twoTimesRootOf3 * ( (sides[0] * sides[2]).length() )); if(div == 0.0) metric_vals->aspect_frobenius = (double)VERDICT_DBL_MAX; else metric_vals->aspect_frobenius = (double)(srms / div); } // calculate the radius ratio of the triangle if( metrics_request_flag & V_TRI_RADIUS_RATIO ) { double a1 = sqrt( sides_lengths_squared[0] ); double b1 = sqrt( sides_lengths_squared[1] ); double c1 = sqrt( sides_lengths_squared[2] ); VerdictVector ab = sides[0] * sides[1]; metric_vals->radius_ratio = (double) .25 * a1 * b1 * c1 * ( a1 + b1 + c1 ) / ab.length_squared(); } // calculate the scaled jacobian if(metrics_request_flag & V_TRI_SCALED_JACOBIAN) { // calculate once and reuse static const double twoOverRootOf3 = 2/sqrt(3.0); // use the area from above double tmp = tri_normal.length() * twoOverRootOf3; // now scale it by the lengths of the sides double min_scaled_jac = VERDICT_DBL_MAX; double temp_scaled_jac; for(int i=0; i<3; i++) { if(sides_lengths_squared[i%3] == 0.0 || sides_lengths_squared[(i+2)%3] == 0.0) temp_scaled_jac = 0.0; else temp_scaled_jac = tmp / sqrt(sides_lengths_squared[i%3]) / sqrt(sides_lengths_squared[(i+2)%3]); if( temp_scaled_jac < min_scaled_jac ) min_scaled_jac = temp_scaled_jac; } //multiply by -1 if the normals are in opposite directions if( is_inverted ) { min_scaled_jac *= -1; } metric_vals->scaled_jacobian = (double)min_scaled_jac; } // calculate the condition number if(metrics_request_flag & V_TRI_CONDITION) { // calculate once and reuse static const double rootOf3 = sqrt(3.0); //if it is inverted, the condition number is considered to be infinity. if(is_inverted){ metric_vals->condition = VERDICT_DBL_MAX; } else{ double area2x = (sides[0] * sides[2]).length(); if(area2x == 0.0 ) metric_vals->condition = (double)(VERDICT_DBL_MAX); else metric_vals->condition = (double) ( (sides[0]%sides[0] + sides[2]%sides[2] - sides[0]%sides[2]) / (area2x*rootOf3) ); } } // calculate the shape if(metrics_request_flag & V_TRI_SHAPE || metrics_request_flag & V_TRI_SHAPE_AND_SIZE) { //if element is inverted, shape is zero. We don't need to //calculate anything. if(is_inverted ){ metric_vals->shape = 0.0; } else{//otherwise, we calculate the shape // calculate once and reuse static const double rootOf3 = sqrt(3.0); // reuse area from before double area2x = metric_vals->area * 2; // dot products double dots[3] = { sides[0] % sides[0], sides[2] % sides[2], sides[0] % sides[2] }; // add the dots double sum_dots = dots[0] + dots[1] - dots[2]; // then the finale if( sum_dots == 0.0 ) metric_vals->shape = 0.0; else metric_vals->shape = (double)(rootOf3 * area2x / sum_dots); } } // calculate relative size squared if(metrics_request_flag & V_TRI_RELATIVE_SIZE_SQUARED || metrics_request_flag & V_TRI_SHAPE_AND_SIZE) { // get weights double w11, w21, w12, w22; v_tri_get_weight(w11,w21,w12,w22); // get the determinant double detw = v_determinant(w11,w21,w12,w22); // use the area from above and divide with the determinant if( metric_vals->area == 0.0 || detw == 0.0 ) metric_vals->relative_size_squared = 0.0; else { double size = metric_vals->area * 2.0 / detw; // square the size size *= size; // value ranges between 0 to 1 metric_vals->relative_size_squared = (double)VERDICT_MIN(size, 1.0/size ); } } // calculate shape and size if(metrics_request_flag & V_TRI_SHAPE_AND_SIZE) { metric_vals->shape_and_size = metric_vals->relative_size_squared * metric_vals->shape; } // calculate distortion if(metrics_request_flag & V_TRI_DISTORTION) metric_vals->distortion = v_tri_distortion(num_nodes, coordinates); //take care of any over-flow problems if( metric_vals->aspect_frobenius > 0 ) metric_vals->aspect_frobenius = (double) VERDICT_MIN( metric_vals->aspect_frobenius, VERDICT_DBL_MAX );\ else metric_vals->aspect_frobenius = (double) VERDICT_MAX( metric_vals->aspect_frobenius, -VERDICT_DBL_MAX ); if( metric_vals->area > 0 ) metric_vals->area = (double) VERDICT_MIN( metric_vals->area, VERDICT_DBL_MAX ); else metric_vals->area = (double) VERDICT_MAX( metric_vals->area, -VERDICT_DBL_MAX ); if( metric_vals->minimum_angle > 0 ) metric_vals->minimum_angle = (double) VERDICT_MIN( metric_vals->minimum_angle, VERDICT_DBL_MAX ); else metric_vals->minimum_angle = (double) VERDICT_MAX( metric_vals->minimum_angle, -VERDICT_DBL_MAX ); if( metric_vals->maximum_angle > 0 ) metric_vals->maximum_angle = (double) VERDICT_MIN( metric_vals->maximum_angle, VERDICT_DBL_MAX ); else metric_vals->maximum_angle = (double) VERDICT_MAX( metric_vals->maximum_angle , -VERDICT_DBL_MAX ); if( metric_vals->condition > 0 ) metric_vals->condition = (double) VERDICT_MIN( metric_vals->condition, VERDICT_DBL_MAX ); else metric_vals->condition = (double) VERDICT_MAX( metric_vals->condition, -VERDICT_DBL_MAX ); if( metric_vals->shape > 0 ) metric_vals->shape = (double) VERDICT_MIN( metric_vals->shape, VERDICT_DBL_MAX ); else metric_vals->shape = (double) VERDICT_MAX( metric_vals->shape, -VERDICT_DBL_MAX ); if( metric_vals->radius_ratio > 0 ) metric_vals->radius_ratio = (double) VERDICT_MIN( metric_vals->radius_ratio, VERDICT_DBL_MAX );\ else metric_vals->radius_ratio = (double) VERDICT_MAX( metric_vals->radius_ratio, -VERDICT_DBL_MAX ); if( metric_vals->scaled_jacobian > 0 ) metric_vals->scaled_jacobian = (double) VERDICT_MIN( metric_vals->scaled_jacobian, VERDICT_DBL_MAX ); else metric_vals->scaled_jacobian = (double) VERDICT_MAX( metric_vals->scaled_jacobian, -VERDICT_DBL_MAX ); if( metric_vals->relative_size_squared > 0 ) metric_vals->relative_size_squared = (double) VERDICT_MIN( metric_vals->relative_size_squared, VERDICT_DBL_MAX ); else metric_vals->relative_size_squared = (double) VERDICT_MAX( metric_vals->relative_size_squared, -VERDICT_DBL_MAX ); if( metric_vals->shape_and_size > 0 ) metric_vals->shape_and_size = (double) VERDICT_MIN( metric_vals->shape_and_size, VERDICT_DBL_MAX ); else metric_vals->shape_and_size = (double) VERDICT_MAX( metric_vals->shape_and_size, -VERDICT_DBL_MAX ); if( metric_vals->distortion > 0 ) metric_vals->distortion = (double) VERDICT_MIN( metric_vals->distortion, VERDICT_DBL_MAX ); else metric_vals->distortion = (double) VERDICT_MAX( metric_vals->distortion, -VERDICT_DBL_MAX ); }
/*! multiple quality measures of a quad */ C_FUNC_DEF void v_quad_quality( int num_nodes, VERDICT_REAL coordinates[][3], unsigned int metrics_request_flag, QuadMetricVals *metric_vals ) { memset( metric_vals, 0, sizeof(QuadMetricVals) ); // for starts, lets set up some basic and common information /* node numbers and side numbers used below 2 3 +--------- 2 / + / | 3 / | 1 / | + | 0 -------------+ 1 0 */ // vectors for each side VerdictVector edges[4]; make_quad_edges( edges, coordinates ); double areas[4]; signed_corner_areas( areas, coordinates ); double lengths[4]; lengths[0] = edges[0].length(); lengths[1] = edges[1].length(); lengths[2] = edges[2].length(); lengths[3] = edges[3].length(); VerdictBoolean is_collapsed = is_collapsed_quad(coordinates); // handle collapsed quads metrics here if(is_collapsed == VERDICT_TRUE && metrics_request_flag & ( V_QUAD_MINIMUM_ANGLE | V_QUAD_MAXIMUM_ANGLE | V_QUAD_JACOBIAN | V_QUAD_SCALED_JACOBIAN )) { if(metrics_request_flag & V_QUAD_MINIMUM_ANGLE) metric_vals->minimum_angle = v_tri_minimum_angle(3, coordinates); if(metrics_request_flag & V_QUAD_MAXIMUM_ANGLE) metric_vals->maximum_angle = v_tri_maximum_angle(3, coordinates); if(metrics_request_flag & V_QUAD_JACOBIAN) metric_vals->jacobian = (VERDICT_REAL)(v_tri_area(3, coordinates) * 2.0); if(metrics_request_flag & V_QUAD_SCALED_JACOBIAN) metric_vals->jacobian = (VERDICT_REAL)(v_tri_scaled_jacobian(3, coordinates) * 2.0); } // calculate both largest and smallest angles if(metrics_request_flag & (V_QUAD_MINIMUM_ANGLE | V_QUAD_MAXIMUM_ANGLE) && is_collapsed == VERDICT_FALSE ) { // gather the angles double angles[4]; angles[0] = acos( -(edges[0] % edges[1])/(lengths[0]*lengths[1]) ); angles[1] = acos( -(edges[1] % edges[2])/(lengths[1]*lengths[2]) ); angles[2] = acos( -(edges[2] % edges[3])/(lengths[2]*lengths[3]) ); angles[3] = acos( -(edges[3] % edges[0])/(lengths[3]*lengths[0]) ); if( lengths[0] <= VERDICT_DBL_MIN || lengths[1] <= VERDICT_DBL_MIN || lengths[2] <= VERDICT_DBL_MIN || lengths[3] <= VERDICT_DBL_MIN ) { metric_vals->minimum_angle = 360.0; metric_vals->maximum_angle = 0.0; } else { // if smallest angle, find the smallest angle if(metrics_request_flag & V_QUAD_MINIMUM_ANGLE) { metric_vals->minimum_angle = VERDICT_DBL_MAX; for(int i = 0; i<4; i++) metric_vals->minimum_angle = VERDICT_MIN(angles[i], metric_vals->minimum_angle); metric_vals->minimum_angle *= 180.0 / VERDICT_PI; } // if largest angle, find the largest angle if(metrics_request_flag & V_QUAD_MAXIMUM_ANGLE) { metric_vals->maximum_angle = 0.0; for(int i = 0; i<4; i++) metric_vals->maximum_angle = VERDICT_MAX(angles[i], metric_vals->maximum_angle); metric_vals->maximum_angle *= 180.0 / VERDICT_PI; if( areas[0] < 0 || areas[1] < 0 || areas[2] < 0 || areas[3] < 0 ) metric_vals->maximum_angle = 360 - metric_vals->maximum_angle; } } } // handle aspect, skew, taper, and area together if( metrics_request_flag & ( V_QUAD_ASPECT | V_QUAD_SKEW | V_QUAD_TAPER ) ) { //get principle axes VerdictVector principal_axes[2]; principal_axes[0] = edges[0] - edges[2]; principal_axes[1] = edges[1] - edges[3]; if(metrics_request_flag & (V_QUAD_ASPECT | V_QUAD_SKEW | V_QUAD_TAPER)) { double len1 = principal_axes[0].length(); double len2 = principal_axes[1].length(); // calculate the aspect ratio if(metrics_request_flag & V_QUAD_ASPECT) { if( len1 < VERDICT_DBL_MIN || len2 < VERDICT_DBL_MIN ) metric_vals->aspect = VERDICT_DBL_MAX; else metric_vals->aspect = VERDICT_MAX( len1 / len2, len2 / len1 ); } // calculate the taper if(metrics_request_flag & V_QUAD_TAPER) { double min_length = VERDICT_MIN( len1, len2 ); VerdictVector cross_derivative = edges[1] + edges[3]; if( min_length < VERDICT_DBL_MIN ) metric_vals->taper = VERDICT_DBL_MAX; else metric_vals->taper = cross_derivative.length()/ min_length; } // calculate the skew if(metrics_request_flag & V_QUAD_SKEW) { if( principal_axes[0].normalize() < VERDICT_DBL_MIN || principal_axes[1].normalize() < VERDICT_DBL_MIN ) metric_vals->skew = 0.0; else metric_vals->skew = fabs( principal_axes[0] % principal_axes[1] ); } } } // calculate the area if(metrics_request_flag & (V_QUAD_AREA | V_QUAD_RELATIVE_SIZE_SQUARED) ) { metric_vals->area = 0.25 * (areas[0] + areas[1] + areas[2] + areas[3]); } // calculate the relative size if(metrics_request_flag & (V_QUAD_RELATIVE_SIZE_SQUARED | V_QUAD_SHAPE_AND_SIZE | V_QUAD_SHEAR_AND_SIZE ) ) { double quad_area = v_quad_area (4, coordinates); v_set_quad_size( quad_area ); double w11,w21,w12,w22; get_weight(w11,w21,w12,w22); double avg_area = determinant(w11,w21,w12,w22); if( avg_area < VERDICT_DBL_MIN ) metric_vals->relative_size_squared = 0.0; else metric_vals->relative_size_squared = pow( VERDICT_MIN( metric_vals->area/avg_area, avg_area/metric_vals->area ), 2 ); } // calculate the jacobian if(metrics_request_flag & V_QUAD_JACOBIAN) { metric_vals->jacobian = VERDICT_MIN( VERDICT_MIN( areas[0], areas[1] ), VERDICT_MIN( areas[2], areas[3] ) ); } if( metrics_request_flag & ( V_QUAD_SCALED_JACOBIAN | V_QUAD_SHEAR | V_QUAD_SHEAR_AND_SIZE ) ) { double scaled_jac, min_scaled_jac = VERDICT_DBL_MAX; if( lengths[0] < VERDICT_DBL_MIN || lengths[1] < VERDICT_DBL_MIN || lengths[2] < VERDICT_DBL_MIN || lengths[3] < VERDICT_DBL_MIN ) { metric_vals->scaled_jacobian = 0.0; metric_vals->shear = 0.0; } else { scaled_jac = areas[0] / (lengths[0] * lengths[3]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); scaled_jac = areas[1] / (lengths[1] * lengths[0]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); scaled_jac = areas[2] / (lengths[2] * lengths[1]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); scaled_jac = areas[3] / (lengths[3] * lengths[2]); min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac ); metric_vals->scaled_jacobian = min_scaled_jac; //what the heck...set shear as well if( min_scaled_jac <= VERDICT_DBL_MIN ) metric_vals->shear = 0.0; else metric_vals->shear = min_scaled_jac; } } if( metrics_request_flag & (V_QUAD_WARPAGE | V_QUAD_ODDY) ) { VerdictVector corner_normals[4]; corner_normals[0] = edges[3] * edges[0]; corner_normals[1] = edges[0] * edges[1]; corner_normals[2] = edges[1] * edges[2]; corner_normals[3] = edges[2] * edges[3]; if( metrics_request_flag & V_QUAD_ODDY ) { double oddy, max_oddy = 0.0; double diff, dot_prod; double length_squared[4]; length_squared[0] = corner_normals[0].length_squared(); length_squared[1] = corner_normals[1].length_squared(); length_squared[2] = corner_normals[2].length_squared(); length_squared[3] = corner_normals[3].length_squared(); if( length_squared[0] < VERDICT_DBL_MIN || length_squared[1] < VERDICT_DBL_MIN || length_squared[2] < VERDICT_DBL_MIN || length_squared[3] < VERDICT_DBL_MIN ) metric_vals->oddy = VERDICT_DBL_MAX; else { diff = (lengths[0]*lengths[0]) - (lengths[1]*lengths[1]); dot_prod = edges[0]%edges[1]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[1]); max_oddy = VERDICT_MAX( oddy, max_oddy ); diff = (lengths[1]*lengths[1]) - (lengths[2]*lengths[2]); dot_prod = edges[1]%edges[2]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[2]); max_oddy = VERDICT_MAX( oddy, max_oddy ); diff = (lengths[2]*lengths[2]) - (lengths[3]*lengths[3]); dot_prod = edges[2]%edges[3]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[3]); max_oddy = VERDICT_MAX( oddy, max_oddy ); diff = (lengths[3]*lengths[3]) - (lengths[0]*lengths[0]); dot_prod = edges[3]%edges[0]; oddy = ((diff*diff) + 4*dot_prod*dot_prod ) / (2*length_squared[0]); max_oddy = VERDICT_MAX( oddy, max_oddy ); metric_vals->oddy = max_oddy; } } if( metrics_request_flag & V_QUAD_WARPAGE ) { if( corner_normals[0].normalize() < VERDICT_DBL_MIN || corner_normals[1].normalize() < VERDICT_DBL_MIN || corner_normals[2].normalize() < VERDICT_DBL_MIN || corner_normals[3].normalize() < VERDICT_DBL_MIN ) metric_vals->warpage = VERDICT_DBL_MAX; else { metric_vals->warpage = pow( VERDICT_MIN( corner_normals[0]%corner_normals[2], corner_normals[1]%corner_normals[3]), 3 ); } } } if( metrics_request_flag & V_QUAD_STRETCH ) { VerdictVector temp; temp.set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1], coordinates[2][2] - coordinates[0][2]); double diag02 = temp.length_squared(); temp.set( coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1], coordinates[3][2] - coordinates[1][2]); double diag13 = temp.length_squared(); static const double QUAD_STRETCH_FACTOR = sqrt(2.0); // 'diag02' is now the max diagonal of the quad diag02 = VERDICT_MAX( diag02, diag13 ); if( diag02 < VERDICT_DBL_MIN ) metric_vals->stretch = VERDICT_DBL_MAX; else metric_vals->stretch = QUAD_STRETCH_FACTOR * VERDICT_MIN( VERDICT_MIN( lengths[0], lengths[1] ), VERDICT_MIN( lengths[2], lengths[3] ) ) / sqrt(diag02); } if(metrics_request_flag & (V_QUAD_CONDITION | V_QUAD_SHAPE | V_QUAD_SHAPE_AND_SIZE ) ) { double lengths_squared[4]; lengths_squared[0] = edges[0].length_squared(); lengths_squared[1] = edges[1].length_squared(); lengths_squared[2] = edges[2].length_squared(); lengths_squared[3] = edges[3].length_squared(); if( areas[0] < VERDICT_DBL_MIN || areas[1] < VERDICT_DBL_MIN || areas[2] < VERDICT_DBL_MIN || areas[3] < VERDICT_DBL_MIN ) { metric_vals->condition = VERDICT_DBL_MAX; metric_vals->shape= VERDICT_DBL_MAX; } else { double max_condition = 0.0, condition; condition = (lengths_squared[0] + lengths_squared[3])/areas[0]; max_condition = VERDICT_MAX( max_condition, condition ); condition = (lengths_squared[1] + lengths_squared[0])/areas[1]; max_condition = VERDICT_MAX( max_condition, condition ); condition = (lengths_squared[2] + lengths_squared[1])/areas[2]; max_condition = VERDICT_MAX( max_condition, condition ); condition = (lengths_squared[3] + lengths_squared[2])/areas[3]; max_condition = VERDICT_MAX( max_condition, condition ); metric_vals->condition = 0.5*max_condition; metric_vals->shape = 2/max_condition; } } if(metrics_request_flag & V_QUAD_AREA ) { if( metric_vals->area > 0 ) metric_vals->area = (VERDICT_REAL) VERDICT_MIN( metric_vals->area, VERDICT_DBL_MAX ); metric_vals->area = (VERDICT_REAL) VERDICT_MAX( metric_vals->area, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_ASPECT ) { if( metric_vals->aspect > 0 ) metric_vals->aspect = (VERDICT_REAL) VERDICT_MIN( metric_vals->aspect, VERDICT_DBL_MAX ); metric_vals->aspect = (VERDICT_REAL) VERDICT_MAX( metric_vals->aspect, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_CONDITION ) { if( metric_vals->condition > 0 ) metric_vals->condition = (VERDICT_REAL) VERDICT_MIN( metric_vals->condition, VERDICT_DBL_MAX ); metric_vals->condition = (VERDICT_REAL) VERDICT_MAX( metric_vals->condition, -VERDICT_DBL_MAX ); } // calculate distortion if(metrics_request_flag & V_QUAD_DISTORTION) { metric_vals->distortion = v_quad_distortion(num_nodes, coordinates); if( metric_vals->distortion > 0 ) metric_vals->distortion = (VERDICT_REAL) VERDICT_MIN( metric_vals->distortion, VERDICT_DBL_MAX ); metric_vals->distortion = (VERDICT_REAL) VERDICT_MAX( metric_vals->distortion, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_JACOBIAN ) { if( metric_vals->jacobian > 0 ) metric_vals->jacobian = (VERDICT_REAL) VERDICT_MIN( metric_vals->jacobian, VERDICT_DBL_MAX ); metric_vals->jacobian = (VERDICT_REAL) VERDICT_MAX( metric_vals->jacobian, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_MAXIMUM_ANGLE ) { if( metric_vals->maximum_angle > 0 ) metric_vals->maximum_angle = (VERDICT_REAL) VERDICT_MIN( metric_vals->maximum_angle, VERDICT_DBL_MAX ); metric_vals->maximum_angle = (VERDICT_REAL) VERDICT_MAX( metric_vals->maximum_angle, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_MINIMUM_ANGLE ) { if( metric_vals->minimum_angle > 0 ) metric_vals->minimum_angle = (VERDICT_REAL) VERDICT_MIN( metric_vals->minimum_angle, VERDICT_DBL_MAX ); metric_vals->minimum_angle = (VERDICT_REAL) VERDICT_MAX( metric_vals->minimum_angle, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_ODDY ) { if( metric_vals->oddy > 0 ) metric_vals->oddy = (VERDICT_REAL) VERDICT_MIN( metric_vals->oddy, VERDICT_DBL_MAX ); metric_vals->oddy = (VERDICT_REAL) VERDICT_MAX( metric_vals->oddy, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_RELATIVE_SIZE_SQUARED ) { if( metric_vals->relative_size_squared> 0 ) metric_vals->relative_size_squared = (VERDICT_REAL) VERDICT_MIN( metric_vals->relative_size_squared, VERDICT_DBL_MAX ); metric_vals->relative_size_squared = (VERDICT_REAL) VERDICT_MAX( metric_vals->relative_size_squared, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SCALED_JACOBIAN ) { if( metric_vals->scaled_jacobian> 0 ) metric_vals->scaled_jacobian = (VERDICT_REAL) VERDICT_MIN( metric_vals->scaled_jacobian, VERDICT_DBL_MAX ); metric_vals->scaled_jacobian = (VERDICT_REAL) VERDICT_MAX( metric_vals->scaled_jacobian, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SHEAR ) { if( metric_vals->shear > 0 ) metric_vals->shear = (VERDICT_REAL) VERDICT_MIN( metric_vals->shear, VERDICT_DBL_MAX ); metric_vals->shear = (VERDICT_REAL) VERDICT_MAX( metric_vals->shear, -VERDICT_DBL_MAX ); } // calculate shear and size // reuse values from above if(metrics_request_flag & V_QUAD_SHEAR_AND_SIZE) { metric_vals->shear_and_size = metric_vals->shear * metric_vals->relative_size_squared; if( metric_vals->shear_and_size > 0 ) metric_vals->shear_and_size = (VERDICT_REAL) VERDICT_MIN( metric_vals->shear_and_size, VERDICT_DBL_MAX ); metric_vals->shear_and_size = (VERDICT_REAL) VERDICT_MAX( metric_vals->shear_and_size, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SHAPE ) { if( metric_vals->shape > 0 ) metric_vals->shape = (VERDICT_REAL) VERDICT_MIN( metric_vals->shape, VERDICT_DBL_MAX ); metric_vals->shape = (VERDICT_REAL) VERDICT_MAX( metric_vals->shape, -VERDICT_DBL_MAX ); } // calculate shape and size // reuse values from above if(metrics_request_flag & V_QUAD_SHAPE_AND_SIZE) { metric_vals->shape_and_size = metric_vals->shape * metric_vals->relative_size_squared; if( metric_vals->shape_and_size > 0 ) metric_vals->shape_and_size = (VERDICT_REAL) VERDICT_MIN( metric_vals->shape_and_size, VERDICT_DBL_MAX ); metric_vals->shape_and_size = (VERDICT_REAL) VERDICT_MAX( metric_vals->shape_and_size, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_SKEW ) { if( metric_vals->skew > 0 ) metric_vals->skew = (VERDICT_REAL) VERDICT_MIN( metric_vals->skew, VERDICT_DBL_MAX ); metric_vals->skew = (VERDICT_REAL) VERDICT_MAX( metric_vals->skew, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_STRETCH ) { if( metric_vals->stretch > 0 ) metric_vals->stretch = (VERDICT_REAL) VERDICT_MIN( metric_vals->stretch, VERDICT_DBL_MAX ); metric_vals->stretch = (VERDICT_REAL) VERDICT_MAX( metric_vals->stretch, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_TAPER ) { if( metric_vals->taper > 0 ) metric_vals->taper = (VERDICT_REAL) VERDICT_MIN( metric_vals->taper, VERDICT_DBL_MAX ); metric_vals->taper = (VERDICT_REAL) VERDICT_MAX( metric_vals->taper, -VERDICT_DBL_MAX ); } if(metrics_request_flag & V_QUAD_WARPAGE ) { if( metric_vals->warpage > 0 ) metric_vals->warpage = (VERDICT_REAL) VERDICT_MIN( metric_vals->warpage, VERDICT_DBL_MAX ); metric_vals->warpage = (VERDICT_REAL) VERDICT_MAX( metric_vals->warpage, -VERDICT_DBL_MAX ); } }