/* Render the leaf with buffer objects. */ void VertexBufferLeaf::renderBufferObject( VertexBufferState& state ) const { GLuint buffers[4]; for( int i = 0; i < 4; ++i ) buffers[i] = state.getBufferObject( reinterpret_cast< const char* >(this) + i ); if( buffers[VERTEX_OBJECT] == state.INVALID || buffers[NORMAL_OBJECT] == state.INVALID || buffers[COLOR_OBJECT] == state.INVALID || buffers[INDEX_OBJECT] == state.INVALID ) setupRendering( state, buffers ); if( state.useColors() ) { glBindBuffer( GL_ARRAY_BUFFER, buffers[COLOR_OBJECT] ); glColorPointer( 4, GL_UNSIGNED_BYTE, 0, 0 ); } glBindBuffer( GL_ARRAY_BUFFER, buffers[NORMAL_OBJECT] ); glNormalPointer( GL_FLOAT, 0, 0 ); glBindBuffer( GL_ARRAY_BUFFER, buffers[VERTEX_OBJECT] ); glVertexPointer( 3, GL_FLOAT, 0, 0 ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, buffers[INDEX_OBJECT] ); glDrawElements( GL_TRIANGLES, GLsizei( _indexLength ), GL_UNSIGNED_SHORT, 0 ); }
void VertexBufferBase::drawBoundingSphere(VertexBufferState& state ) const { GLuint displayList = state.getDisplayList( &_boundingSphere ); if( displayList == state.INVALID ) { displayList = state.newDisplayList( &_boundingSphere ); glNewList( displayList, GL_COMPILE ); const float x = _boundingSphere.x(); const float y = _boundingSphere.y(); const float z = _boundingSphere.z(); const float x1 = x - _boundingSphere.w(); const float x2 = x + _boundingSphere.w(); const float y1 = y - _boundingSphere.w(); const float y2 = y + _boundingSphere.w(); const float z1 = z - _boundingSphere.w(); const float z2 = z + _boundingSphere.w(); const float size = _boundingSphere.w(); glBegin( GL_QUADS ); glNormal3f( 1.0f, 0.0f, 0.0f ); glVertex3f( x1, y - size, z - size ); glVertex3f( x1, y + size, z - size ); glVertex3f( x1, y + size, z + size ); glVertex3f( x1, y - size, z + size ); glNormal3f( -1.0f, 0.0f, 0.0f ); glVertex3f( x2, y - size, z - size ); glVertex3f( x2, y - size, z + size ); glVertex3f( x2, y + size, z + size ); glVertex3f( x2, y + size, z - size ); glNormal3f( 0.0f, -1.0f, 0.0f ); glVertex3f( x - size, y2, z - size ); glVertex3f( x + size, y2, z - size ); glVertex3f( x + size, y2, z + size ); glVertex3f( x - size, y2, z + size ); glNormal3f( 0.0f, 1.0f, 0.0f ); glVertex3f( x - size, y1, z - size ); glVertex3f( x - size, y1, z + size ); glVertex3f( x + size, y1, z + size ); glVertex3f( x + size, y1, z - size ); glNormal3f( 0.0f, 0.0f, -1.0f ); glVertex3f( x - size, y - size, z2 ); glVertex3f( x - size, y + size, z2 ); glVertex3f( x + size, y + size, z2 ); glVertex3f( x + size, y - size, z2 ); glNormal3f( 0.0f, 0.0f, 1.0f ); glVertex3f( x - size, y - size, z1 ); glVertex3f( x + size, y - size, z1 ); glVertex3f( x + size, y + size, z1 ); glVertex3f( x - size, y + size, z1 ); glEnd(); glEndList(); } glCallList( displayList ); }
/* Render the leaf with a display list. */ inline void VertexBufferLeaf::renderDisplayList( VertexBufferState& state ) const { char* key = (char*)( this ); if( state.useColors( )) ++key; GLuint displayList = state.getDisplayList( key ); if( displayList == state.INVALID ) setupRendering( state, &displayList ); glCallList( displayList ); }
/* Set up rendering of the leaf nodes. */ void VertexBufferLeaf::setupRendering( VertexBufferState& state, GLuint* data ) const { switch( state.getRenderMode() ) { case RENDER_MODE_IMMEDIATE: break; case RENDER_MODE_BUFFER_OBJECT: { const char* charThis = reinterpret_cast< const char* >( this ); if( data[VERTEX_OBJECT] == state.INVALID ) data[VERTEX_OBJECT] = state.newBufferObject( charThis + 0 ); glBindBuffer( GL_ARRAY_BUFFER, data[VERTEX_OBJECT] ); glBufferData( GL_ARRAY_BUFFER, _vertexLength * sizeof( Vertex ), &_globalData.vertices[_vertexStart], GL_STATIC_DRAW ); if( data[NORMAL_OBJECT] == state.INVALID ) data[NORMAL_OBJECT] = state.newBufferObject( charThis + 1 ); glBindBuffer( GL_ARRAY_BUFFER, data[NORMAL_OBJECT] ); glBufferData( GL_ARRAY_BUFFER, _vertexLength * sizeof( Normal ), &_globalData.normals[_vertexStart], GL_STATIC_DRAW ); if( data[COLOR_OBJECT] == state.INVALID ) data[COLOR_OBJECT] = state.newBufferObject( charThis + 2 ); if( state.useColors() ) { glBindBuffer( GL_ARRAY_BUFFER, data[COLOR_OBJECT] ); glBufferData( GL_ARRAY_BUFFER, _vertexLength * sizeof( Color ), &_globalData.colors[_vertexStart], GL_STATIC_DRAW ); } if( data[INDEX_OBJECT] == state.INVALID ) data[INDEX_OBJECT] = state.newBufferObject( charThis + 3 ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, data[INDEX_OBJECT] ); glBufferData( GL_ELEMENT_ARRAY_BUFFER, _indexLength * sizeof( ShortIndex ), &_globalData.indices[_indexStart], GL_STATIC_DRAW ); break; } case RENDER_MODE_DISPLAY_LIST: default: { if( data[0] == state.INVALID ) { char* key = (char*)( this ); if( state.useColors( )) ++key; data[0] = state.newDisplayList( key ); } glNewList( data[0], GL_COMPILE ); renderImmediate( state ); glEndList(); break; } } }
/* Draw the node by rendering the children. */ void VertexBufferNode::draw( VertexBufferState& state ) const { if ( state.stopRendering( )) return; _left->draw( state ); _right->draw( state ); }
/* Set up the common OpenGL state for rendering of all nodes. */ void VertexBufferRoot::_beginRendering( VertexBufferState& state ) const { state.resetRegion(); switch( state.getRenderMode() ) { #ifdef GL_ARB_vertex_buffer_object case RENDER_MODE_BUFFER_OBJECT: glPushClientAttrib( GL_CLIENT_VERTEX_ARRAY_BIT ); glEnableClientState( GL_VERTEX_ARRAY ); glEnableClientState( GL_NORMAL_ARRAY ); if( state.useColors() ) glEnableClientState( GL_COLOR_ARRAY ); #endif case RENDER_MODE_DISPLAY_LIST: case RENDER_MODE_IMMEDIATE: default: ; } }
/* Draw the leaf. */ void VertexBufferLeaf::draw( VertexBufferState& state ) const { if ( state.stopRendering( )) return; switch( state.getRenderMode() ) { case RENDER_MODE_IMMEDIATE: renderImmediate( state ); return; case RENDER_MODE_BUFFER_OBJECT: renderBufferObject( state ); return; case RENDER_MODE_DISPLAY_LIST: default: renderDisplayList( state ); return; } }
/* Render the leaf with immediate mode primitives or vertex arrays. */ inline void VertexBufferLeaf::renderImmediate( VertexBufferState& state ) const { glBegin( GL_TRIANGLES ); for( Index offset = 0; offset < _indexLength; ++offset ) { const Index i =_vertexStart + _globalData.indices[_indexStart + offset]; if( state.useColors() ) glColor3ubv( &_globalData.colors[i][0] ); glNormal3fv( &_globalData.normals[i][0] ); glVertex3fv( &_globalData.vertices[i][0] ); } glEnd(); }
/* Tear down the common OpenGL state for rendering of all nodes. */ void VertexBufferRoot::_endRendering( VertexBufferState& state ) const { switch( state.getRenderMode() ) { #ifdef GL_ARB_vertex_buffer_object case RENDER_MODE_BUFFER_OBJECT: { // deactivate VBO and EBO use #define glewGetContext state.glewGetContext glBindBuffer( GL_ARRAY_BUFFER_ARB, 0); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER_ARB, 0); glPopClientAttrib(); } #endif case RENDER_MODE_DISPLAY_LIST: case RENDER_MODE_IMMEDIATE: default: ; } }
/* Render the leaf with immediate mode primitives or vertex arrays. */ inline void VertexBufferLeaf::renderImmediate( VertexBufferState& state ) const { glBegin( GL_TRIANGLES ); for( Index offset = 0; offset < _indexLength; ++offset ) { const Index i =_vertexStart + _globalData.indices[_indexStart + offset]; if( state.useColors() ) glColor4ubv( &_globalData.colors[i][0] ); glNormal3fv( &_globalData.normals[i][0] ); glVertex3fv( &_globalData.vertices[i][0] ); } glEnd(); // if( state.useColors() ) // glColorPointer( 4, GL_UNSIGNED_BYTE, 0, // &_globalData.colors[_vertexStart] ); // glNormalPointer( GL_FLOAT, 0, &_globalData.normals[_vertexStart] ); // glVertexPointer( 3, GL_FLOAT, 0, &_globalData.vertices[_vertexStart] ); // glDrawElements( GL_TRIANGLES, _indexLength, GL_UNSIGNED_SHORT, // &_globalData.indices[_indexStart] ); }
// #define LOGCULL void VertexBufferRoot::cullDraw( VertexBufferState& state ) const { _beginRendering( state ); #ifdef LOGCULL size_t verticesRendered = 0; size_t verticesOverlap = 0; #endif const Range& range = state.getRange(); FrustumCuller culler; culler.setup( state.getProjectionModelViewMatrix( )); // start with root node std::vector< const mesh::VertexBufferBase* > candidates; candidates.push_back( this ); while( !candidates.empty() ) { if( state.stopRendering( )) return; const mesh::VertexBufferBase* treeNode = candidates.back(); candidates.pop_back(); // completely out of range check if( treeNode->getRange()[0] >= range[1] || treeNode->getRange()[1] < range[0] ) { continue; } // bounding sphere view frustum culling const vmml::Visibility visibility = state.useFrustumCulling() ? culler.test_sphere( treeNode->getBoundingSphere( )) : vmml::VISIBILITY_FULL; switch( visibility ) { case vmml::VISIBILITY_FULL: // if fully visible and fully in range, render it if( treeNode->getRange()[0] >= range[0] && treeNode->getRange()[1] < range[1] ) { treeNode->draw( state ); //treeNode->drawBoundingSphere( state ); #ifdef LOGCULL verticesRendered += treeNode->getNumberOfVertices(); #endif break; } // partial range, fall through to partial visibility case vmml::VISIBILITY_PARTIAL: { const mesh::VertexBufferBase* left = treeNode->getLeft(); const mesh::VertexBufferBase* right = treeNode->getRight(); if( !left && !right ) { if( treeNode->getRange()[0] >= range[0] ) { treeNode->draw( state ); //treeNode->drawBoundingSphere( state ); #ifdef LOGCULL verticesRendered += treeNode->getNumberOfVertices(); if( visibility == vmml::VISIBILITY_PARTIAL ) verticesOverlap += treeNode->getNumberOfVertices(); #endif } // else drop, to be drawn by 'previous' channel } else { if( left ) candidates.push_back( left ); if( right ) candidates.push_back( right ); } break; } case vmml::VISIBILITY_NONE: // do nothing break; } } _endRendering( state ); #ifdef LOGCULL const size_t verticesTotal = model->getNumberOfVertices(); MESHINFO << getName() << " rendered " << verticesRendered * 100 / verticesTotal << "% of model, overlap <= " << verticesOverlap * 100 / verticesTotal << "%" << std::endl; #endif }