typename property_traits<CoreMap>::value_type core_numbers_impl(Graph& g, CoreMap c, EdgeWeightMap wm, MutableQueue& Q, Visitor vis) { typename property_traits<CoreMap>::value_type v_cn = 0; typedef typename graph_traits<Graph>::vertex_descriptor vertex; while (!Q.empty()) { // remove v from the Q, and then decrease the core numbers // of its successors vertex v = Q.top(); vis.examine_vertex(v,g); Q.pop(); v_cn = get(c,v); typename graph_traits<Graph>::out_edge_iterator oi,oi_end; for (boost::tie(oi,oi_end) = out_edges(v,g); oi!=oi_end; ++oi) { vis.examine_edge(*oi,g); vertex u = target(*oi,g); // if c[u] > c[v], then u is still in the graph, if (get(c,u) > v_cn) { // remove the edge put(c,u,get(c,u)-get(wm,*oi)); if (Q.contains(u)) Q.update(u); } } vis.finish_vertex(v,g); } return (v_cn); }
typename property_traits<CoreMap>::value_type core_numbers_impl(Graph& g, CoreMap c, PositionMap pos, Visitor vis) { typedef typename graph_traits<Graph>::vertices_size_type size_type; typedef typename graph_traits<Graph>::degree_size_type degree_type; typedef typename graph_traits<Graph>::vertex_descriptor vertex; typename graph_traits<Graph>::vertex_iterator vi,vi_end; // store the vertex core numbers typename property_traits<CoreMap>::value_type v_cn = 0; // compute the maximum degree (degrees are in the coremap) typename graph_traits<Graph>::degree_size_type max_deg = 0; for (boost::tie(vi,vi_end) = vertices(g); vi!=vi_end; ++vi) { max_deg = (std::max<typename graph_traits<Graph>::degree_size_type>)(max_deg, get(c,*vi)); } // store the vertices in bins by their degree // allocate two extra locations to ease boundary cases std::vector<size_type> bin(max_deg+2); for (boost::tie(vi,vi_end) = vertices(g); vi!=vi_end; ++vi) { ++bin[get(c,*vi)]; } // this loop sets bin[d] to the starting position of vertices // with degree d in the vert array for the bucket sort size_type cur_pos = 0; for (degree_type cur_deg = 0; cur_deg < max_deg+2; ++cur_deg) { degree_type tmp = bin[cur_deg]; bin[cur_deg] = cur_pos; cur_pos += tmp; } // perform the bucket sort with pos and vert so that // pos[0] is the vertex of smallest degree std::vector<vertex> vert(num_vertices(g)); for (boost::tie(vi,vi_end) = vertices(g); vi!=vi_end; ++vi) { vertex v=*vi; size_type p=bin[get(c,v)]; put(pos,v,p); vert[p]=v; ++bin[get(c,v)]; } // we ``abused'' bin while placing the vertices, now, // we need to restore it std::copy(boost::make_reverse_iterator(bin.end()-2), boost::make_reverse_iterator(bin.begin()), boost::make_reverse_iterator(bin.end()-1)); // now simulate removing the vertices for (size_type i=0; i < num_vertices(g); ++i) { vertex v = vert[i]; vis.examine_vertex(v,g); v_cn = get(c,v); typename graph_traits<Graph>::out_edge_iterator oi,oi_end; for (boost::tie(oi,oi_end) = out_edges(v,g); oi!=oi_end; ++oi) { vis.examine_edge(*oi,g); vertex u = target(*oi,g); // if c[u] > c[v], then u is still in the graph, if (get(c,u) > v_cn) { degree_type deg_u = get(c,u); degree_type pos_u = get(pos,u); // w is the first vertex with the same degree as u // (this is the resort operation!) degree_type pos_w = bin[deg_u]; vertex w = vert[pos_w]; if (u!=v) { // swap u and w put(pos,u,pos_w); put(pos,w,pos_u); vert[pos_w] = u; vert[pos_u] = w; } // now, the vertices array is sorted assuming // we perform the following step // start the set of vertices with degree of u // one into the future (this now points at vertex // w which we swapped with u). ++bin[deg_u]; // we are removing v from the graph, so u's degree // decreases put(c,u,get(c,u)-1); } } vis.finish_vertex(v,g); } return v_cn; }