// Save an image to a PPM image file. // // This function issues commands to copy/convert the swapchain image // from whatever compatible format the swapchain image uses // to a single format (VK_FORMAT_R8G8B8A8_UNORM) so that the converted // result can be easily written to a PPM file. // // Error handling: If there is a problem, this function should silently // fail without affecting the Present operation going on in the caller. // The numerous debug asserts are to catch programming errors and are not // expected to assert. Recovery and clean up are implemented for image memory // allocation failures. // (TODO) It would be nice to pass any failure info to DebugReport or something. static void writePPM(const char *filename, VkImage image1) { VkResult err; bool pass; // Bail immediately if we can't find the image. if (imageMap.empty() || imageMap.find(image1) == imageMap.end()) return; // Collect object info from maps. This info is generally recorded // by the other functions hooked in this layer. VkDevice device = imageMap[image1]->device; VkPhysicalDevice physicalDevice = deviceMap[device]->physicalDevice; VkInstance instance = physDeviceMap[physicalDevice]->instance; VkQueue queue = deviceMap[device]->queue; DeviceMapStruct *devMap = get_dev_info(device); if (NULL == devMap) { assert(0); return; } VkLayerDispatchTable *pTableDevice = devMap->device_dispatch_table; VkLayerDispatchTable *pTableQueue = get_dev_info(static_cast<VkDevice>(static_cast<void *>(queue))) ->device_dispatch_table; VkLayerInstanceDispatchTable *pInstanceTable; pInstanceTable = instance_dispatch_table(instance); // Gather incoming image info and check image format for compatibility with // the target format. // This function supports both 24-bit and 32-bit swapchain images. VkFormat const target32bitFormat = VK_FORMAT_R8G8B8A8_UNORM; VkFormat const target24bitFormat = VK_FORMAT_R8G8B8_UNORM; uint32_t const width = imageMap[image1]->imageExtent.width; uint32_t const height = imageMap[image1]->imageExtent.height; VkFormat const format = imageMap[image1]->format; uint32_t const numChannels = vk_format_get_channel_count(format); if ((vk_format_get_compatibility_class(target24bitFormat) != vk_format_get_compatibility_class(format)) && (vk_format_get_compatibility_class(target32bitFormat) != vk_format_get_compatibility_class(format))) { assert(0); return; } if ((3 != numChannels) && (4 != numChannels)) { assert(0); return; } // General Approach // // The idea here is to copy/convert the swapchain image into another image // that can be mapped and read by the CPU to produce a PPM file. // The image must be untiled and converted to a specific format for easy // parsing. The memory for the final image must be host-visible. // Note that in Vulkan, a BLIT operation must be used to perform a format // conversion. // // Devices vary in their ability to blit to/from linear and optimal tiling. // So we must query the device properties to get this information. // // If the device cannot BLIT to a LINEAR image, then the operation must be // done in two steps: // 1) BLIT the swapchain image (image1) to a temp image (image2) that is // created with TILING_OPTIMAL. // 2) COPY image2 to another temp image (image3) that is created with // TILING_LINEAR. // 3) Map image 3 and write the PPM file. // // If the device can BLIT to a LINEAR image, then: // 1) BLIT the swapchain image (image1) to a temp image (image2) that is // created with TILING_LINEAR. // 2) Map image 2 and write the PPM file. // // There seems to be no way to tell if the swapchain image (image1) is tiled // or not. We therefore assume that the BLIT operation can always read from // both linear and optimal tiled (swapchain) images. // There is therefore no point in looking at the BLIT_SRC properties. // // There is also the optimization where the incoming and target formats are // the same. In this case, just do a COPY. VkFormatProperties targetFormatProps; pInstanceTable->GetPhysicalDeviceFormatProperties( physicalDevice, (3 == numChannels) ? target24bitFormat : target32bitFormat, &targetFormatProps); bool need2steps = false; bool copyOnly = false; if ((target24bitFormat == format) || (target32bitFormat == format)) { copyOnly = true; } else { bool const bltLinear = targetFormatProps.linearTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT ? true : false; bool const bltOptimal = targetFormatProps.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT ? true : false; if (!bltLinear && !bltOptimal) { // Cannot blit to either target tiling type. It should be pretty // unlikely to have a device that cannot blit to either type. // But punt by just doing a copy and possibly have the wrong // colors. This should be quite rare. copyOnly = true; } else if (!bltLinear && bltOptimal) { // Cannot blit to a linear target but can blt to optimal, so copy // after blit is needed. need2steps = true; } // Else bltLinear is available and only 1 step is needed. } // Put resources that need to be cleaned up in a struct with a destructor // so that things get cleaned up when this function is exited. WritePPMCleanupData data = {}; data.device = device; data.pTableDevice = pTableDevice; // Set up the image creation info for both the blit and copy images, in case // both are needed. VkImageCreateInfo imgCreateInfo2 = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, NULL, 0, VK_IMAGE_TYPE_2D, VK_FORMAT_R8G8B8A8_UNORM, {width, height, 1}, 1, 1, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_SHARING_MODE_EXCLUSIVE, 0, NULL, VK_IMAGE_LAYOUT_UNDEFINED, }; VkImageCreateInfo imgCreateInfo3 = imgCreateInfo2; // If we need both images, set up image2 to be read/write and tiled. if (need2steps) { imgCreateInfo2.tiling = VK_IMAGE_TILING_OPTIMAL; imgCreateInfo2.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; } VkMemoryAllocateInfo memAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, NULL, 0, // allocationSize, queried later 0 // memoryTypeIndex, queried later }; VkMemoryRequirements memRequirements; VkPhysicalDeviceMemoryProperties memoryProperties; // Create image2 and allocate its memory. It could be the intermediate or // final image. err = pTableDevice->CreateImage(device, &imgCreateInfo2, NULL, &data.image2); assert(!err); if (VK_SUCCESS != err) return; pTableDevice->GetImageMemoryRequirements(device, data.image2, &memRequirements); memAllocInfo.allocationSize = memRequirements.size; pInstanceTable->GetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties); pass = memory_type_from_properties( &memoryProperties, memRequirements.memoryTypeBits, need2steps ? VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT : VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex); assert(pass); err = pTableDevice->AllocateMemory(device, &memAllocInfo, NULL, &data.mem2); assert(!err); if (VK_SUCCESS != err) return; err = pTableQueue->BindImageMemory(device, data.image2, data.mem2, 0); assert(!err); if (VK_SUCCESS != err) return; // Create image3 and allocate its memory, if needed. if (need2steps) { err = pTableDevice->CreateImage(device, &imgCreateInfo3, NULL, &data.image3); assert(!err); if (VK_SUCCESS != err) return; pTableDevice->GetImageMemoryRequirements(device, data.image3, &memRequirements); memAllocInfo.allocationSize = memRequirements.size; pInstanceTable->GetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties); pass = memory_type_from_properties( &memoryProperties, memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex); assert(pass); err = pTableDevice->AllocateMemory(device, &memAllocInfo, NULL, &data.mem3); assert(!err); if (VK_SUCCESS != err) return; err = pTableQueue->BindImageMemory(device, data.image3, data.mem3, 0); assert(!err); if (VK_SUCCESS != err) return; } // Set up the command buffer. We get a command buffer from a pool we saved // in a hooked function, which would be the application's pool. const VkCommandBufferAllocateInfo allocCommandBufferInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, NULL, deviceMap[device]->commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1}; data.commandPool = deviceMap[device]->commandPool; err = pTableDevice->AllocateCommandBuffers(device, &allocCommandBufferInfo, &data.commandBuffer); assert(!err); if (VK_SUCCESS != err) return; VkDevice cmdBuf = static_cast<VkDevice>(static_cast<void *>(data.commandBuffer)); deviceMap.emplace(cmdBuf, devMap); VkLayerDispatchTable *pTableCommandBuffer; pTableCommandBuffer = get_dev_info(cmdBuf)->device_dispatch_table; // We have just created a dispatchable object, but the dispatch table has // not been placed in the object yet. When a "normal" application creates // a command buffer, the dispatch table is installed by the top-level api // binding (trampoline.c). But here, we have to do it ourselves. if (!devMap->pfn_dev_init) { *((const void **)data.commandBuffer) = *(void **)device; } else { err = devMap->pfn_dev_init(device, (void *)data.commandBuffer); assert(!err); } const VkCommandBufferBeginInfo commandBufferBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, NULL, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, }; err = pTableCommandBuffer->BeginCommandBuffer(data.commandBuffer, &commandBufferBeginInfo); assert(!err); // This barrier is used to transition from/to present Layout VkImageMemoryBarrier presentMemoryBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, NULL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, image1, {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; // This barrier is used to transition from a newly-created layout to a blt // or copy destination layout. VkImageMemoryBarrier destMemoryBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, NULL, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, data.image2, {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; // This barrier is used to transition a dest layout to general layout. VkImageMemoryBarrier generalMemoryBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, NULL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, data.image2, {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; VkPipelineStageFlags srcStages = VK_PIPELINE_STAGE_TRANSFER_BIT; VkPipelineStageFlags dstStages = VK_PIPELINE_STAGE_TRANSFER_BIT; // The source image needs to be transitioned from present to transfer // source. pTableCommandBuffer->CmdPipelineBarrier(data.commandBuffer, srcStages, dstStages, 0, 0, NULL, 0, NULL, 1, &presentMemoryBarrier); // image2 needs to be transitioned from its undefined state to transfer // destination. pTableCommandBuffer->CmdPipelineBarrier(data.commandBuffer, srcStages, dstStages, 0, 0, NULL, 0, NULL, 1, &destMemoryBarrier); const VkImageCopy imageCopyRegion = {{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, {0, 0, 0}, {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, {0, 0, 0}, {width, height, 1}}; if (copyOnly) { pTableCommandBuffer->CmdCopyImage( data.commandBuffer, image1, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, data.image2, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageCopyRegion); } else { VkImageBlit imageBlitRegion = {}; imageBlitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageBlitRegion.srcSubresource.baseArrayLayer = 0; imageBlitRegion.srcSubresource.layerCount = 1; imageBlitRegion.srcSubresource.mipLevel = 0; imageBlitRegion.srcOffsets[1].x = width; imageBlitRegion.srcOffsets[1].y = height; imageBlitRegion.srcOffsets[1].z = 1; imageBlitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageBlitRegion.dstSubresource.baseArrayLayer = 0; imageBlitRegion.dstSubresource.layerCount = 1; imageBlitRegion.dstSubresource.mipLevel = 0; imageBlitRegion.dstOffsets[1].x = width; imageBlitRegion.dstOffsets[1].y = height; imageBlitRegion.dstOffsets[1].z = 1; pTableCommandBuffer->CmdBlitImage( data.commandBuffer, image1, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, data.image2, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlitRegion, VK_FILTER_NEAREST); if (need2steps) { // image 3 needs to be transitioned from its undefined state to a // transfer destination. destMemoryBarrier.image = data.image3; pTableCommandBuffer->CmdPipelineBarrier( data.commandBuffer, srcStages, dstStages, 0, 0, NULL, 0, NULL, 1, &destMemoryBarrier); // Transition image2 so that it can be read for the upcoming copy to // image 3. destMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; destMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; destMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; destMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; destMemoryBarrier.image = data.image2; pTableCommandBuffer->CmdPipelineBarrier( data.commandBuffer, srcStages, dstStages, 0, 0, NULL, 0, NULL, 1, &destMemoryBarrier); // This step essentially untiles the image. pTableCommandBuffer->CmdCopyImage( data.commandBuffer, data.image2, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, data.image3, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageCopyRegion); generalMemoryBarrier.image = data.image3; } } // The destination needs to be transitioned from the optimal copy format to // the format we can read with the CPU. pTableCommandBuffer->CmdPipelineBarrier(data.commandBuffer, srcStages, dstStages, 0, 0, NULL, 0, NULL, 1, &generalMemoryBarrier); // Restore the swap chain image layout to what it was before. // This may not be strictly needed, but it is generally good to restore // things to original state. presentMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; presentMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; presentMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT; presentMemoryBarrier.dstAccessMask = 0; pTableCommandBuffer->CmdPipelineBarrier(data.commandBuffer, srcStages, dstStages, 0, 0, NULL, 0, NULL, 1, &presentMemoryBarrier); err = pTableCommandBuffer->EndCommandBuffer(data.commandBuffer); assert(!err); VkFence nullFence = {VK_NULL_HANDLE}; VkSubmitInfo submitInfo; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.pNext = NULL; submitInfo.waitSemaphoreCount = 0; submitInfo.pWaitSemaphores = NULL; submitInfo.pWaitDstStageMask = NULL; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &data.commandBuffer; submitInfo.signalSemaphoreCount = 0; submitInfo.pSignalSemaphores = NULL; err = pTableQueue->QueueSubmit(queue, 1, &submitInfo, nullFence); assert(!err); err = pTableQueue->QueueWaitIdle(queue); assert(!err); err = pTableDevice->DeviceWaitIdle(device); assert(!err); // Map the final image so that the CPU can read it. const VkImageSubresource sr = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0}; VkSubresourceLayout srLayout; const char *ptr; if (!need2steps) { pTableDevice->GetImageSubresourceLayout(device, data.image2, &sr, &srLayout); err = pTableDevice->MapMemory(device, data.mem2, 0, VK_WHOLE_SIZE, 0, (void **)&ptr); assert(!err); if (VK_SUCCESS != err) return; data.mem2mapped = true; } else { pTableDevice->GetImageSubresourceLayout(device, data.image3, &sr, &srLayout); err = pTableDevice->MapMemory(device, data.mem3, 0, VK_WHOLE_SIZE, 0, (void **)&ptr); assert(!err); if (VK_SUCCESS != err) return; data.mem3mapped = true; } // Write the data to a PPM file. ofstream file(filename, ios::binary); file << "P6\n"; file << width << "\n"; file << height << "\n"; file << 255 << "\n"; ptr += srLayout.offset; if (3 == numChannels) { for (uint32_t y = 0; y < height; y++) { file.write(ptr, 3 * width); ptr += srLayout.rowPitch; } } else if (4 == numChannels) { for (uint32_t y = 0; y < height; y++) { const unsigned int *row = (const unsigned int *)ptr; for (uint32_t x = 0; x < width; x++) { file.write((char *)row, 3); row++; } ptr += srLayout.rowPitch; } } file.close(); // Clean up handled by ~WritePPMCleanupData() }
static void after_device_create(VkPhysicalDevice gpu, VkDevice device, layer_data *data) { VkResult U_ASSERT_ONLY err; data->gpu = gpu; data->dev = device; data->frame = 0; data->cmdBuffersThisFrame = 0; VkLayerDispatchTable *pTable = data->device_dispatch_table; /* Get our WSI hooks in. */ data->pfnCreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)pTable->GetDeviceProcAddr(device, "vkCreateSwapchainKHR"); data->pfnGetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)pTable->GetDeviceProcAddr(device, "vkGetSwapchainImagesKHR"); data->pfnQueuePresentKHR = (PFN_vkQueuePresentKHR)pTable->GetDeviceProcAddr(device, "vkQueuePresentKHR"); data->pfnDestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)pTable->GetDeviceProcAddr(device, "vkDestroySwapchainKHR"); data->swapChains = new std::unordered_map<VkSwapchainKHR, SwapChainData *>; /* Command pool */ VkCommandPoolCreateInfo cpci; cpci.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cpci.pNext = nullptr; cpci.queueFamilyIndex = data->graphicsQueueFamilyIndex; cpci.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; err = pTable->CreateCommandPool(device, &cpci, nullptr, &data->pool); assert(!err); /* Create the objects we need */ /* Compile the shaders */ compile_shader(device, VULKAN_SAMPLES_BASE_DIR "/Layer-Samples/data/overlay-vert.spv", &data->vsShaderModule); compile_shader(device, VULKAN_SAMPLES_BASE_DIR "/Layer-Samples/data/overlay-frag.spv", &data->fsShaderModule); /* Upload the font bitmap */ VkImageCreateInfo ici; memset(&ici, 0, sizeof(ici)); ici.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; ici.imageType = VK_IMAGE_TYPE_2D; ici.format = VK_FORMAT_R8_UNORM; ici.extent.width = FONT_ATLAS_SIZE; ici.extent.height = FONT_ATLAS_SIZE; ici.extent.depth = 1; ici.mipLevels = 1; ici.arrayLayers = 1; ici.samples = VK_SAMPLE_COUNT_1_BIT; ici.tiling = VK_IMAGE_TILING_LINEAR; ici.usage = VK_IMAGE_USAGE_SAMPLED_BIT; ici.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; err = pTable->CreateImage(device, &ici, nullptr, &data->fontGlyphsImage); assert(!err); VkMemoryRequirements mem_reqs; pTable->GetImageMemoryRequirements(device, data->fontGlyphsImage, &mem_reqs); VkMemoryAllocateInfo mem_alloc; memset(&mem_alloc, 0, sizeof(mem_alloc)); mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mem_alloc.allocationSize = mem_reqs.size; mem_alloc.memoryTypeIndex = choose_memory_type(gpu, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); err = pTable->AllocateMemory(device, &mem_alloc, nullptr, &data->fontGlyphsMemory); assert(!err); err = pTable->BindImageMemory(device, data->fontGlyphsImage, data->fontGlyphsMemory, 0); assert(!err); VkImageSubresource subres; subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subres.mipLevel = 0; subres.arrayLayer = 0; VkSubresourceLayout layout; void *bits; pTable->GetImageSubresourceLayout(device, data->fontGlyphsImage, &subres, &layout); /* ensure we can directly upload into this layout */ assert(!layout.offset); assert(layout.size >= FONT_ATLAS_SIZE * FONT_ATLAS_SIZE); assert(layout.rowPitch == FONT_ATLAS_SIZE); err = pTable->MapMemory(device, data->fontGlyphsMemory, 0, VK_WHOLE_SIZE, 0, &bits); assert(!err); /* Load the font glyphs directly into the mapped buffer */ std::vector<unsigned char> fontData; get_file_contents(VULKAN_SAMPLES_BASE_DIR "/Layer-Samples/data/FreeSans.ttf", fontData); stbtt_BakeFontBitmap(&fontData[0], 0, FONT_SIZE_PIXELS, (unsigned char *)bits, FONT_ATLAS_SIZE, FONT_ATLAS_SIZE, 32, 96, data->glyphs); pTable->UnmapMemory(device, data->fontGlyphsMemory); VkImageViewCreateInfo ivci; ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; ivci.viewType = VK_IMAGE_VIEW_TYPE_2D; ivci.pNext = nullptr; ivci.format = ici.format; ivci.components.r = VK_COMPONENT_SWIZZLE_R; ivci.components.g = VK_COMPONENT_SWIZZLE_G; ivci.components.b = VK_COMPONENT_SWIZZLE_B; ivci.components.a = VK_COMPONENT_SWIZZLE_A; ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; ivci.subresourceRange.baseMipLevel = 0; ivci.subresourceRange.levelCount = 1; ivci.subresourceRange.baseArrayLayer = 0; ivci.subresourceRange.layerCount = 1; ivci.image = data->fontGlyphsImage; ivci.flags = 0; err = pTable->CreateImageView(device, &ivci, nullptr, &data->fontGlyphsImageView); assert(!err); /* transition from undefined layout to shader readonly so we can use it. * requires a command buffer. */ VkCommandBufferAllocateInfo cbai; cbai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; cbai.pNext = nullptr; cbai.commandPool = data->pool; cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cbai.commandBufferCount = 1; VkCommandBuffer cmd; err = pTable->AllocateCommandBuffers(device, &cbai, &cmd); assert(!err); /* We have just created a dispatchable object, but the dispatch table has * not been placed in the object yet. * When a "normal" application creates a command buffer, * the dispatch table is installed by the top-level binding (trampoline.c). * But here, we have to do it ourselves. */ if (!data->pfn_dev_init) { *((const void **)cmd) = *(void **)device; } else { err = data->pfn_dev_init(device, (void *)cmd); assert(!err); } VkCommandBufferBeginInfo cbbi; cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cbbi.pNext = nullptr; cbbi.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; cbbi.pInheritanceInfo = nullptr; err = pTable->BeginCommandBuffer(cmd, &cbbi); assert(!err); VkImageMemoryBarrier imb; imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; imb.pNext = nullptr; imb.dstAccessMask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; imb.srcAccessMask = 0; imb.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imb.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imb.image = data->fontGlyphsImage; imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imb.subresourceRange.baseMipLevel = 0; imb.subresourceRange.levelCount = 1; imb.subresourceRange.baseArrayLayer = 0; imb.subresourceRange.layerCount = 1; imb.srcQueueFamilyIndex = data->graphicsQueueFamilyIndex; imb.dstQueueFamilyIndex = data->graphicsQueueFamilyIndex; pTable->CmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0 /* dependency flags */, 0, nullptr, /* memory barriers */ 0, nullptr, /* buffer memory barriers */ 1, &imb); /* image memory barriers */ pTable->EndCommandBuffer(cmd); data->fontUploadCmdBuffer = cmd; data->fontUploadComplete = false; /* we will schedule this at first present on this device */ #ifdef OVERLAY_DEBUG printf("Font upload done.\n"); #endif /* create a sampler to use with the texture */ VkSamplerCreateInfo sci; sci.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; sci.pNext = nullptr; sci.flags = 0; sci.magFilter = VK_FILTER_NEAREST; sci.minFilter = VK_FILTER_NEAREST; sci.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; sci.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sci.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sci.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sci.mipLodBias = 0.0f; sci.anisotropyEnable = false; sci.maxAnisotropy = 1; sci.compareEnable = false; sci.compareOp = VK_COMPARE_OP_NEVER; sci.minLod = 0.0f; sci.maxLod = 0.0f; sci.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; sci.unnormalizedCoordinates = VK_FALSE; err = pTable->CreateSampler(device, &sci, nullptr, &data->sampler); assert(!err); /* descriptor set stuff so we can use the texture from a shader. */ VkDescriptorSetLayoutBinding dslb[1]; dslb[0].binding = 0; dslb[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; dslb[0].descriptorCount = 1; dslb[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; dslb[0].pImmutableSamplers = nullptr; VkDescriptorSetLayoutCreateInfo dslci; memset(&dslci, 0, sizeof(dslci)); dslci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; dslci.pNext = nullptr; dslci.bindingCount = 1; dslci.pBindings = dslb; err = pTable->CreateDescriptorSetLayout(device, &dslci, nullptr, &data->dsl); assert(!err); VkPipelineLayoutCreateInfo plci; memset(&plci, 0, sizeof(plci)); plci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; plci.setLayoutCount = 1; plci.pSetLayouts = &data->dsl; err = pTable->CreatePipelineLayout(device, &plci, nullptr, &data->pl); assert(!err); VkDescriptorPoolSize dtc[1]; dtc[0].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; dtc[0].descriptorCount = 1; VkDescriptorPoolCreateInfo dpci; dpci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; dpci.pNext = nullptr; dpci.flags = 0; dpci.maxSets = 1; dpci.poolSizeCount = 1; dpci.pPoolSizes = dtc; err = pTable->CreateDescriptorPool(device, &dpci, nullptr, &data->desc_pool); assert(!err); VkDescriptorSetAllocateInfo dsai; dsai.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; dsai.pNext = nullptr; dsai.descriptorPool = data->desc_pool; dsai.descriptorSetCount = 1; dsai.pSetLayouts = &data->dsl; err = pTable->AllocateDescriptorSets(device, &dsai, &data->desc_set); assert(!err); VkDescriptorImageInfo descs[1]; descs[0].sampler = data->sampler; descs[0].imageView = data->fontGlyphsImageView; descs[0].imageLayout = VK_IMAGE_LAYOUT_GENERAL; // TODO: cube does this, is it correct? VkWriteDescriptorSet writes[1]; memset(&writes, 0, sizeof(writes)); writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[0].dstSet = data->desc_set; writes[0].dstBinding = 0; writes[0].descriptorCount = 1; writes[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[0].pImageInfo = descs; pTable->UpdateDescriptorSets(device, 1, writes, 0, nullptr); VkFenceCreateInfo fci; fci.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fci.pNext = NULL; fci.flags = VK_FENCE_CREATE_SIGNALED_BIT; pTable->CreateFence(device, &fci, NULL, &data->fence); }