void FEdgeXDetector::postProcessSuggestiveContourFace(WXFace *iFace) { // Compute the derivative of the radial curvature in the radial direction, // at the two extremities of the smooth edge. // If the derivative is smaller than a given threshold _kr_derivative_epsilon, // discard the edge. // Find the suggestive contour layer of the face (zero or one edge). vector<WXFaceLayer*> sc_layers; iFace->retrieveSmoothEdgesLayers(Nature::SUGGESTIVE_CONTOUR, sc_layers); if(sc_layers.empty()) return; WXFaceLayer *sc_layer; sc_layer = sc_layers[0]; // Compute the derivative value at each vertex of the face, and add it in a vector. vector<real> kr_derivatives; unsigned vertices_nb = iFace->numberOfVertices(); WXVertex *v, *opposite_vertex_a, *opposite_vertex_b; WXFace *wxf; WOEdge *opposite_edge; Vec3r opposite_edge_vec, normal_vec, radial_normal_vec, er_vec, v_vec, inter, inter1, inter2, tmp_vec; GeomUtils::intersection_test res; real kr(0), kr1(0), kr2(0), t; for (unsigned i = 0; i < vertices_nb; ++i) { v = (WXVertex*)(iFace->GetVertex(i)); // v is a singular vertex, skip it. if (v->isBoundary()) { kr_derivatives.push_back(0); continue; } v_vec = v->GetVertex(); er_vec = v->curvatures()->er; // For each vertex, iterate on its adjacent faces. for (WVertex::face_iterator fit = v->faces_begin(), fitend = v->faces_end(); fit != fitend; ++fit) { wxf = dynamic_cast<WXFace*>(*fit); if(!(wxf->getOppositeEdge(v, opposite_edge))) continue; opposite_vertex_a = (WXVertex*)opposite_edge->GetaVertex(); opposite_vertex_b = (WXVertex*)opposite_edge->GetbVertex(); opposite_edge_vec = opposite_vertex_b->GetVertex() - opposite_vertex_a->GetVertex(); normal_vec = wxf->GetVertexNormal(v); // FIXME: what about e1 ^ e2 ? radial_normal_vec = er_vec ^ normal_vec; // Test wether the radial plan intersects with the edge at the opposite of v. res = GeomUtils::intersectRayPlane(opposite_vertex_a->GetVertex(), opposite_edge_vec, radial_normal_vec, -(v_vec * radial_normal_vec), t, 1.e-06); // If there is an intersection, compute the value of the derivative ath that point. if ((res == GeomUtils::DO_INTERSECT) && (t >= 0) && (t <= 1)) { kr = t * opposite_vertex_a->curvatures()->Kr + (1 - t) * opposite_vertex_b->curvatures()->Kr; inter = opposite_vertex_a->GetVertex() + t * opposite_edge_vec; tmp_vec = inter - v->GetVertex(); // Is it kr1 or kr2? if (tmp_vec * er_vec > 0) { kr2 = kr; inter2 = inter; } else { kr1 = kr; inter1 = inter; } } } // Now we have kr1 and kr2 along the radial direction, for one vertex of iFace. // We have to compute the derivative of kr for that vertex, equal to: // (kr2 - kr1) / dist(inter1, inter2). // Then we add it to the vector of derivatives. v->curvatures()->dKr = (kr2 - kr1) / (inter2 - inter1).norm(); kr_derivatives.push_back(v->curvatures()->dKr); } // At that point, we have the derivatives for each vertex of iFace. // All we have to do now is to use linear interpolation to compute the values at // the extremities of the smooth edge. WXSmoothEdge *sc_edge = sc_layer->getSmoothEdge(); WOEdge *sc_oedge = sc_edge->woea(); t = sc_edge->ta(); if (t * kr_derivatives[iFace->GetIndex(sc_oedge->GetaVertex())] + (1 - t) * kr_derivatives[iFace->GetIndex(sc_oedge->GetbVertex())] < _kr_derivative_epsilon) { sc_layer->removeSmoothEdge(); return; } sc_oedge = sc_edge->woeb(); t = sc_edge->tb(); if (t * kr_derivatives[iFace->GetIndex(sc_oedge->GetaVertex())] + (1 - t) * kr_derivatives[iFace->GetIndex(sc_oedge->GetbVertex())] < _kr_derivative_epsilon) sc_layer->removeSmoothEdge(); }
void FEdgeXDetector::ProcessRidgeFace(WXFace *iFace) { // RIDGE LAYER // Compute the RidgeFunction, that is the derivative of the ppal curvature along e1 at each vertex of the face WVertex *v; Vec3r v1v2; real t; vector<WXFaceLayer*> SmoothLayers; WXFaceLayer *faceLayer; Face_Curvature_Info *layer_info; real K1_a(0), K1_b(0); Vec3r Inter_a, Inter_b; // find the ridge layer of the face iFace->retrieveSmoothLayers(Nature::RIDGE, SmoothLayers); if ( SmoothLayers.size()!=1 ) return; faceLayer = SmoothLayers[0]; // retrieve the curvature info of this layer layer_info = (Face_Curvature_Info *)faceLayer->userdata; int numVertices = iFace->numberOfVertices(); for (int i = 0; i < numVertices; i++) { v = iFace->GetVertex(i); // vec_curvature_info[i] contains the curvature info of this vertex Vec3r e2 = layer_info->vec_curvature_info[i]->K2*layer_info->vec_curvature_info[i]->e2; Vec3r e1 = layer_info->vec_curvature_info[i]->K1*layer_info->vec_curvature_info[i]->e1; e2.normalize(); WVertex::face_iterator fit = v->faces_begin(); WVertex::face_iterator fitend = v->faces_end(); for (; fit != fitend; ++fit) { WXFace *wxf = dynamic_cast<WXFace*>(*fit); WOEdge *oppositeEdge; if (!(wxf->getOppositeEdge(v, oppositeEdge))) continue; v1v2 = oppositeEdge->GetbVertex()->GetVertex() - oppositeEdge->GetaVertex()->GetVertex(); GeomUtils::intersection_test res; res = GeomUtils::intersectRayPlane(oppositeEdge->GetaVertex()->GetVertex(), v1v2, e2, -(v->GetVertex()*e2), t, 1.0e-06); if ((res == GeomUtils::DO_INTERSECT) && (t >= 0.0) && (t <= 1.0)) { vector<WXFaceLayer*> second_ridge_layer; wxf->retrieveSmoothLayers(Nature::RIDGE, second_ridge_layer); if (second_ridge_layer.size() != 1) continue; Face_Curvature_Info *second_layer_info = (Face_Curvature_Info*)second_ridge_layer[0]->userdata; unsigned index1 = wxf->GetIndex(oppositeEdge->GetaVertex()); unsigned index2 = wxf->GetIndex(oppositeEdge->GetbVertex()); real K1_1 = second_layer_info->vec_curvature_info[index1]->K1; real K1_2 = second_layer_info->vec_curvature_info[index2]->K1; real K1 = (1.0 - t) * K1_1 + t * K1_2; Vec3r inter((1.0 - t) * oppositeEdge->GetaVertex()->GetVertex() + t * oppositeEdge->GetbVertex()->GetVertex()); Vec3r vtmp(inter - v->GetVertex()); // is it K1_a or K1_b ? if (vtmp * e1 > 0) { K1_b = K1; Inter_b = inter; } else { K1_a = K1; Inter_a = inter; } } } // Once we have K1 along the ppal direction compute the derivative : K1b - K1a put it in DotP //real d = fabs(K1_b) - fabs(K1_a); real d = 0; real threshold = _meanK1 + (_maxK1 - _meanK1) / 7.0; //real threshold = _meanK1; //if ((fabs(K1_b) > threshold) || ((fabs(K1_a) > threshold))) d = (K1_b) - (K1_a) / (Inter_b - Inter_a).norm(); faceLayer->PushDotP(d); //faceLayer->PushDotP(layer_info->vec_curvature_info[i]->K1); } // Make the values relevant by checking whether all principal directions have the "same" direction: Vec3r e0((layer_info->vec_curvature_info[0]->K1 * layer_info->vec_curvature_info[0]->e1)); e0.normalize(); Vec3r e1((layer_info->vec_curvature_info[1]->K1 * layer_info->vec_curvature_info[1]->e1)); e1.normalize(); Vec3r e2((layer_info->vec_curvature_info[2]->K1 * layer_info->vec_curvature_info[2]->e1)); e2.normalize(); if (e0 * e1 < 0) // invert dotP[1] faceLayer->ReplaceDotP(1, -faceLayer->dotP(1)); if (e0 * e2 < 0) // invert dotP[2] faceLayer->ReplaceDotP(2, -faceLayer->dotP(2)); #if 0 // remove the weakest values; real minDiff = (_maxK1 - _minK1) / 10.0; real minDiff = _meanK1; if ((faceLayer->dotP(0) < minDiff) && (faceLayer->dotP(1) < minDiff) && (faceLayer->dotP(2) < minDiff)) { faceLayer->ReplaceDotP(0, 0); faceLayer->ReplaceDotP(1, 0); faceLayer->ReplaceDotP(2, 0); } #endif }