FrameIterator::FrameIterator(const WasmActivation& activation) : cx_(activation.cx()), instance_(&activation.instance()), callsite_(nullptr), codeRange_(nullptr), fp_(activation.fp()), missingFrameMessage_(false) { if (fp_) { settle(); return; } void* pc = activation.resumePC(); if (!pc) return; const CodeRange* codeRange = instance_->lookupCodeRange(pc); MOZ_ASSERT(codeRange); if (codeRange->kind() == CodeRange::Function) codeRange_ = codeRange; else missingFrameMessage_ = true; MOZ_ASSERT(!done()); }
ProfilingFrameIterator::ProfilingFrameIterator(const WasmActivation& activation) : instance_(&activation.instance()), codeRange_(nullptr), callerFP_(nullptr), callerPC_(nullptr), stackAddress_(nullptr), exitReason_(ExitReason::None) { // If profiling hasn't been enabled for this instance, then CallerFPFromFP // will be trash, so ignore the entire activation. In practice, this only // happens if profiling is enabled while the instance is on the stack (in // which case profiling will be enabled when the instance becomes inactive // and gets called again). if (!instance_->profilingEnabled()) { MOZ_ASSERT(done()); return; } initFromFP(activation); }
ProfilingFrameIterator::ProfilingFrameIterator(const WasmActivation& activation, const RegisterState& state) : instance_(&activation.instance()), codeRange_(nullptr), callerFP_(nullptr), callerPC_(nullptr), stackAddress_(nullptr), exitReason_(ExitReason::None) { // If profiling hasn't been enabled for this instance, then CallerFPFromFP // will be trash, so ignore the entire activation. In practice, this only // happens if profiling is enabled while the instance is on the stack (in // which case profiling will be enabled when the instance becomes inactive // and gets called again). if (!instance_->profilingEnabled()) { MOZ_ASSERT(done()); return; } // If pc isn't in the instance's code, we must have exited the code via an // exit trampoline or signal handler. if (!instance_->codeSegment().containsCodePC(state.pc)) { initFromFP(activation); return; } // Note: fp may be null while entering and leaving the activation. uint8_t* fp = activation.fp(); const CodeRange* codeRange = instance_->lookupCodeRange(state.pc); switch (codeRange->kind()) { case CodeRange::Function: case CodeRange::CallThunk: case CodeRange::ImportJitExit: case CodeRange::ImportInterpExit: { // When the pc is inside the prologue/epilogue, the innermost // call's AsmJSFrame is not complete and thus fp points to the the // second-to-innermost call's AsmJSFrame. Since fp can only tell you // about its caller (via ReturnAddressFromFP(fp)), naively unwinding // while pc is in the prologue/epilogue would skip the second-to- // innermost call. To avoid this problem, we use the static structure of // the code in the prologue and epilogue to do the Right Thing. MOZ_ASSERT(instance_->codeSegment().containsCodePC(state.pc)); uint32_t offsetInModule = (uint8_t*)state.pc - instance_->codeSegment().code(); MOZ_ASSERT(offsetInModule >= codeRange->begin()); MOZ_ASSERT(offsetInModule < codeRange->end()); uint32_t offsetInCodeRange = offsetInModule - codeRange->begin(); void** sp = (void**)state.sp; #if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64) if (offsetInCodeRange < PushedRetAddr || InThunk(*codeRange, offsetInModule)) { // First instruction of the ARM/MIPS function; the return address is // still in lr and fp still holds the caller's fp. callerPC_ = state.lr; callerFP_ = fp; AssertMatchesCallSite(*instance_, callerPC_, callerFP_, sp - 2); } else if (offsetInModule == codeRange->profilingReturn() - PostStorePrePopFP) { // Second-to-last instruction of the ARM/MIPS function; fp points to // the caller's fp; have not yet popped AsmJSFrame. callerPC_ = ReturnAddressFromFP(sp); callerFP_ = CallerFPFromFP(sp); AssertMatchesCallSite(*instance_, callerPC_, callerFP_, sp); } else #endif if (offsetInCodeRange < PushedFP || offsetInModule == codeRange->profilingReturn() || InThunk(*codeRange, offsetInModule)) { // The return address has been pushed on the stack but not fp; fp // still points to the caller's fp. callerPC_ = *sp; callerFP_ = fp; AssertMatchesCallSite(*instance_, callerPC_, callerFP_, sp - 1); } else if (offsetInCodeRange < StoredFP) { // The full AsmJSFrame has been pushed; fp still points to the // caller's frame. MOZ_ASSERT(fp == CallerFPFromFP(sp)); callerPC_ = ReturnAddressFromFP(sp); callerFP_ = CallerFPFromFP(sp); AssertMatchesCallSite(*instance_, callerPC_, callerFP_, sp); } else { // Not in the prologue/epilogue. callerPC_ = ReturnAddressFromFP(fp); callerFP_ = CallerFPFromFP(fp); AssertMatchesCallSite(*instance_, callerPC_, callerFP_, fp); } break; } case CodeRange::Entry: { // The entry trampoline is the final frame in an WasmActivation. The entry // trampoline also doesn't GeneratePrologue/Epilogue so we can't use // the general unwinding logic above. MOZ_ASSERT(!fp); callerPC_ = nullptr; callerFP_ = nullptr; break; } case CodeRange::Inline: { // The throw stub clears WasmActivation::fp on it's way out. if (!fp) { MOZ_ASSERT(done()); return; } // Most inline code stubs execute after the prologue/epilogue have // completed so we can simply unwind based on fp. The only exception is // the async interrupt stub, since it can be executed at any time. // However, the async interrupt is super rare, so we can tolerate // skipped frames. Thus, we use simply unwind based on fp. callerPC_ = ReturnAddressFromFP(fp); callerFP_ = CallerFPFromFP(fp); AssertMatchesCallSite(*instance_, callerPC_, callerFP_, fp); break; } } codeRange_ = codeRange; stackAddress_ = state.sp; MOZ_ASSERT(!done()); }