vec mix::process(bvec ce, mat x) { vec y; int N; bvec one = ("1"); #if (DEBUG_LEVEL==3) cout << "***** mix::process *****" << endl; cout << "ce=" << ce << endl; cout << "x=" << x << endl; sleep(1000); #endif N=ce.length(); if (x.rows()!=N) { throw sci_exception("mix::process - ce.size <> x.rows()", x.rows() ); } if (x.cols()!=2) { throw sci_exception("mix::process - x=[x1,x1] - x.cols()!=2", x.cols() ); } y.set_length(N); for (int i=0; i<N; i++) { if ( bool(ce[i])) { y0 = G.process(one, to_vec(x(i,0)*x(i,1)))(0); } y[i]=y0; } #if (DEBUG_LEVEL==3) cout << "y=" << y << endl; cout << "+++++ mix::process +++++" << endl; sleep(1000); #endif return (y); }
cvec fir_x::process(bvec ce, cvec x) { cvec y; int N; #if (DEBUG_LEVEL==3) cout << "***** fir_x::proc *****" << endl; cout << "ce=" << ce << endl; cout << "x=" << x << endl; sleep(1000); #endif N=ce.length(); if (x.length()!=N) { throw sci_exception("fir_x::process - ce.size <> x.size", x.length() ); } y.set_size(N); for (int i=0; i<N; i++) { if (bool(ce[i])) y0=update(x[i]); y[i]=y0; } #if (DEBUG_LEVEL==3) cout << "y=" << y << endl; cout << "+++++ fir_x::proc +++++" << endl; sleep(1000); #endif return (y); }
bvec Extended_Golay::decode(const bvec &coded_bits) { int no_bits = coded_bits.length(); int no_blocks = (int)floor((double)no_bits/24); bvec output(12*no_blocks); int i; int j; bvec S(12),BS(12),r(12),temp(12),e(24),c(24); bmat eyetemp = eye_b(12); for (i=0; i<no_blocks; i++) { r = coded_bits.mid(i*24,24); // Step 1. Compute S=G*r. S = G*r; // Step 2. w(S)<=3. e=(S,0). Goto 8. if( weight(S) <= 3 ) { e = concat(S, zeros_b(12)); goto Step8; } // Step 3. w(S+Ii)<=2. e=(S+Ii,yi). Goto 8. for (j=0; j<12; j++) { temp = S + B.get_col(j); if ( weight(temp) <=2 ) { e = concat(temp, eyetemp.get_row(j)); goto Step8; } } // STEP 4. Compute B*S BS = B*S; // Step 5. w(B*S)<=3. e=(0,BS). Goto8. if ( weight(BS) <=3 ) { e = concat(zeros_b(12), BS); goto Step8; } // Step 6. w(BS+Ri)<=2. e=(xi,BS+Ri). Goto 8. for (j=0; j<12; j++) { temp = BS + B.get_row(j); if ( weight(temp) <=2 ) { e = concat(eyetemp.get_row(j), temp); goto Step8; } } // Step 7. Uncorrectable erreor pattern. Choose the first 12 bits. e = zeros_b(24); goto Step8; Step8: // Step 8. c=r+e. STOP c = r + e; output.replace_mid(i*12, c.left(12)); } return output; }
void BERC::estimate_delay(const bvec &in1, const bvec &in2, int mindelay, int maxdelay) { int num, start1, start2; int min_input_length = std::min(in1.length(), in2.length()); int bestdelay = mindelay; double correlation; double bestcorr = 0; for (int i = mindelay; i < maxdelay; i++) { num = min_input_length - std::abs(i) - ignorefirst - ignorelast; start1 = (i < 0) ? -i : 0; start2 = (i > 0) ? i : 0; correlation = fabs(sum(to_vec(elem_mult(in1.mid(start1, num), in2.mid(start2, num))))); if (correlation > bestcorr) { bestdelay = i; bestcorr = correlation; } } delay = bestdelay; }
bvec Extended_Golay::encode(const bvec &uncoded_bits) { int no_bits = uncoded_bits.length(); int no_blocks = (int)floor((double)no_bits/12); bvec output(24*no_blocks); int i; for (i=0; i<no_blocks; i++) output.replace_mid(24*i, uncoded_bits.mid(i*12,12)*G); return output; }
void Hamming_Code::encode(const bvec &uncoded_bits, bvec &coded_bits) { int length = uncoded_bits.length(); int Itterations = floor_i(static_cast<double>(length) / k); bmat Gt = G.T(); int i; coded_bits.set_size(Itterations * n, false); //Code all codewords for (i = 0; i < Itterations; i++) coded_bits.replace_mid(n*i, Gt * uncoded_bits.mid(i*k, k)); }
void BLERC::count(const bvec &in1, const bvec &in2) { it_assert(setup_done == true, "BLERC::count(): Block size has to be setup before counting errors."); int min_input_length = std::min(in1.length(), in2.length()); it_assert(blocksize <= min_input_length, "BLERC::count(): Block size must not be longer than input vectors."); for (int i = 0; i < (min_input_length / blocksize); i++) { CORR = true; for (int j = 0; j < blocksize; j++) { if (in1(i * blocksize + j) != in2(i * blocksize + j)) { CORR = false; break; } } if (CORR) { corrects++; } else { errors++; } } }
double BERC::count_errors(const bvec &in1, const bvec &in2, int indelay, int inignorefirst, int inignorelast) { int countlength = std::min(in1.length(), in2.length()) - std::abs(indelay) - inignorefirst - inignorelast; int local_errors = 0; if (indelay >= 0) { for (int i = 0; i < countlength; i++) { if (in1(i + inignorefirst) != in2(i + inignorefirst + indelay)) { local_errors++; } } } else { for (int i = 0; i < countlength; i++) { if (in1(i + inignorefirst - indelay) != in2(i + inignorefirst)) { local_errors++; } } } return local_errors; }
char sigma2::bvec2char(bvec &bv, int pos) { char ret = 0; int a[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}; if(pos > bv.length() - 8) { cout << "Can sua loi nay"; return 0; } for(int i = pos; i < pos + 8; i++) { if(bv[i] == 1) ret = ret | a[7 - i + pos]; } return ret; }
vec spreading(bvec data,vec code) { vec result; vec code_neg=code*-1; for(int i=0; i<data.length();i++) { if(data[i]==1) { result=concat(result,code); } else { result=concat(result,code_neg); } } return result; }
void Reed_Solomon::encode(const bvec &uncoded_bits, bvec &coded_bits) { int i, j, iterations = floor_i(static_cast<double>(uncoded_bits.length()) / (k * m)); GFX mx(q, k), cx(q, n); GFX r(n + 1, n - k); GFX uncoded_shifted(n + 1, n); GF mpow; bvec mbit(k * m), cbit(m); coded_bits.set_size(iterations * n * m, false); if (systematic) for (i = 0; i < n - k; i++) uncoded_shifted[i] = GF(n + 1, -1); for (i = 0; i < iterations; i++) { //Fix the message polynom m(x). for (j = 0; j < k; j++) { mpow.set(q, uncoded_bits.mid((i * m * k) + (j * m), m)); mx[j] = mpow; if (systematic) { cx[j] = mx[j]; uncoded_shifted[j + n - k] = mx[j]; } } //Fix the outputbits cbit. if (systematic) { r = modgfx(uncoded_shifted, g); for (j = k; j < n; j++) { cx[j] = r[j - k]; } } else { cx = g * mx; } for (j = 0; j < n; j++) { cbit = cx[j].get_vectorspace(); coded_bits.replace_mid((i * n * m) + (j * m), cbit); } } }
void cofdm_map::set_pilots(bvec x) { int K = x.length(); complex<double> p1 ( PA , 0.0); complex<double> p0 (-PA , 0.0); int L = zero_carriers.length(); complex<double> c0 (0.0 , 0.0); int i; if( K == pilots_carriers.length() ) { for (i=0; i<K; i++) { y0(pilots_carriers(i))=x(i)?p1:p0; } for (i=0; i<L; i++) { y0(zero_carriers(i))=c0; } } else { throw sci_exception("cofdm_map::set_pilots - x.size() <> pilots_carriers.size()=", pilots_carriers.length()); } }
cvec qam_mod::process(bvec ce, ivec x) { cvec y; int N; ivec iv; cvec cv; #if (DEBUG_LEVEL==3) cout << "***** qam_mod::process *****" << endl; cout << "ce=" << ce << endl; cout << "x=" << x << endl; sleep(1000); #endif iv.set_length(1); cv.set_length(1); N=ce.length(); y.set_length(N); if (x.length()!=N) { throw sci_exception("qam_mod::process - ce.size <> x.size", x.length() ); } for (int i=0; i<N; i++) { if ( bool(ce[i])) { iv[0] = x[i]; cv = modulate(iv); y0 = scale * cv[0]; } y[i]=y0; } #if (DEBUG_LEVEL==3) cout << "y=" << y << endl; cout << "+++++ qam_mod::process +++++" << endl; sleep(1000); #endif return (y); }
bmat int2bin::process(bvec ce, ivec x) { bmat y; int N; #if (DEBUG_LEVEL==3) cout << "***** int2bin::process *****" << endl; cout << "ce=" << ce << endl; cout << "x=" << x << endl; sleep(1000); #endif N=ce.length(); if (x.length()!=N) { throw sci_exception("int2bin::process - ce.size <> x.rows()", x.length() ); } y.set_size(N,symbol_size); for (int i=0; i<N; i++) { if ( bool(ce[i])) { y0 = dec2bin(symbol_size, x[i]); if (! msb_first) { y0 = reverse(y0); } } y.set_row(i,y0); } #if (DEBUG_LEVEL==3) cout << "y=" << y << endl; cout << "+++++ int2bin::process +++++" << endl; sleep(1000); #endif return (y); }
bool any(const bvec &testvec) { for (int i = 0; i < testvec.length(); i++) if (testvec(i)) return true; return false; }
bool Reed_Solomon::decode(const bvec &coded_bits, const ivec &erasure_positions, bvec &decoded_message, bvec &cw_isvalid) { bool decoderfailure, no_dec_failure; int j, i, kk, l, L, foundzeros, iterations = floor_i(static_cast<double>(coded_bits.length()) / (n * m)); bvec mbit(m * k); decoded_message.set_size(iterations * k * m, false); cw_isvalid.set_length(iterations); GFX rx(q, n - 1), cx(q, n - 1), mx(q, k - 1), ex(q, n - 1), S(q, 2 * t), Xi(q, 2 * t), Gamma(q), Lambda(q), Psiprime(q), OldLambda(q), T(q), Omega(q); GFX dummy(q), One(q, (char*)"0"), Omegatemp(q); GF delta(q), tempsum(q), rtemp(q), temp(q), Xk(q), Xkinv(q); ivec errorpos; if ( erasure_positions.length() ) { it_assert(max(erasure_positions) < iterations*n, "Reed_Solomon::decode: erasure position is invalid."); } no_dec_failure = true; for (i = 0; i < iterations; i++) { decoderfailure = false; //Fix the received polynomial r(x) for (j = 0; j < n; j++) { rtemp.set(q, coded_bits.mid(i * n * m + j * m, m)); rx[j] = rtemp; } // Fix the Erasure polynomial Gamma(x) // and replace erased coordinates with zeros rtemp.set(q, -1); ivec alphapow = - ones_i(2); Gamma = One; for (j = 0; j < erasure_positions.length(); j++) { rx[erasure_positions(j)] = rtemp; alphapow(1) = erasure_positions(j); Gamma *= (One - GFX(q, alphapow)); } //Fix the syndrome polynomial S(x). S.clear(); for (j = 1; j <= 2 * t; j++) { S[j] = rx(GF(q, b + j - 1)); } // calculate the modified syndrome polynomial Xi(x) = Gamma * (1+S) - 1 Xi = Gamma * (One + S) - One; // Apply Berlekam-Massey algorithm if (Xi.get_true_degree() >= 1) { //Errors in the received word // Iterate to find Lambda(x), which hold all error locations kk = 0; Lambda = One; L = 0; T = GFX(q, (char*)"-1 0"); while (kk < 2 * t) { kk = kk + 1; tempsum = GF(q, -1); for (l = 1; l <= L; l++) { tempsum += Lambda[l] * Xi[kk - l]; } delta = Xi[kk] - tempsum; if (delta != GF(q, -1)) { OldLambda = Lambda; Lambda -= delta * T; if (2 * L < kk) { L = kk - L; T = OldLambda / delta; } } T = GFX(q, (char*)"-1 0") * T; } // Find the zeros to Lambda(x) errorpos.set_size(Lambda.get_true_degree()); foundzeros = 0; for (j = q - 2; j >= 0; j--) { if (Lambda(GF(q, j)) == GF(q, -1)) { errorpos(foundzeros) = (n - j) % n; foundzeros += 1; if (foundzeros >= Lambda.get_true_degree()) { break; } } } if (foundzeros != Lambda.get_true_degree()) { decoderfailure = true; } else { // Forney algorithm... //Compute Omega(x) using the key equation for RS-decoding Omega.set_degree(2 * t); Omegatemp = Lambda * (One + Xi); for (j = 0; j <= 2 * t; j++) { Omega[j] = Omegatemp[j]; } //Find the error/erasure magnitude polynomial by treating them the same Psiprime = formal_derivate(Lambda*Gamma); errorpos = concat(errorpos, erasure_positions); ex.clear(); for (j = 0; j < errorpos.length(); j++) { Xk = GF(q, errorpos(j)); Xkinv = GF(q, 0) / Xk; // we calculate ex = - error polynomial, in order to avoid the // subtraction when recunstructing the corrected codeword ex[errorpos(j)] = (Xk * Omega(Xkinv)) / Psiprime(Xkinv); if (b != 1) { // non-narrow-sense code needs corrected error magnitudes int correction_exp = ( errorpos(j)*(1-b) ) % n; ex[errorpos(j)] *= GF(q, correction_exp + ( (correction_exp < 0) ? n : 0 )); } } //Reconstruct the corrected codeword. // instead of subtracting the error/erasures, we calculated // the negative error with 'ex' above cx = rx + ex; //Code word validation S.clear(); for (j = 1; j <= 2 * t; j++) { S[j] = cx(GF(q, b + j - 1)); } if (S.get_true_degree() >= 1) { decoderfailure = true; } } } else { cx = rx; decoderfailure = false; } //Find the message polynomial mbit.clear(); if (decoderfailure == false) { if (cx.get_true_degree() >= 1) { // A nonzero codeword was transmitted if (systematic) { for (j = 0; j < k; j++) { mx[j] = cx[j]; } } else { mx = divgfx(cx, g); } for (j = 0; j <= mx.get_true_degree(); j++) { mbit.replace_mid(j * m, mx[j].get_vectorspace()); } } } else { //Decoder failure. // for a systematic code it is better to extract the undecoded message // from the received code word, i.e. obtaining a bit error // prob. p_b << 1/2, than setting all-zero (p_b = 1/2) if (systematic) { mbit = coded_bits.mid(i * n * m, k * m); } else { mbit = zeros_b(k); } no_dec_failure = false; } decoded_message.replace_mid(i * m * k, mbit); cw_isvalid(i) = (!decoderfailure); } return no_dec_failure; }