void cvc_propt::lcnf(const bvt &bv) { if(bv.empty()) return; bvt new_bv; std::set<literalt> s; new_bv.reserve(bv.size()); for(bvt::const_iterator it=bv.begin(); it!=bv.end(); it++) { if(s.insert(*it).second) new_bv.push_back(*it); if(s.find(lnot(*it))!=s.end()) return; // clause satisfied assert(it->var_no()<_no_variables); } assert(!new_bv.empty()); out << "%% lcnf" << std::endl; out << "ASSERT "; for(bvt::const_iterator it=new_bv.begin(); it!=new_bv.end(); it++) { if(it!=new_bv.begin()) out << " OR "; out << cvc_literal(*it); } out << ";" << std::endl << std::endl; }
void boolbv_mapt::get_literals( const irep_idt &identifier, const typet &type, const unsigned width, bvt &literals) { map_entryt &map_entry=get_map_entry(identifier, type); assert(literals.size()==width); Forall_literals(it, literals) { literalt &l=*it; const unsigned bit=it-literals.begin(); assert(bit<map_entry.literal_map.size()); map_bitt &mb=map_entry.literal_map[bit]; if(mb.is_set) { l=mb.l; continue; } l=prop.new_variable(); mb.is_set=true; mb.l=l; #ifdef DEBUG std::cout << "NEW: " << identifier << ":" << bit << "=" << l << std::endl; #endif }
void dplib_propt::lcnf(const bvt &bv) { if(bv.empty()) return; bvt new_bv; std::set<literalt> s; new_bv.reserve(bv.size()); for(bvt::const_iterator it=bv.begin(); it!=bv.end(); it++) { if(s.insert(*it).second) new_bv.push_back(*it); if(s.find(!*it)!=s.end()) return; // clause satisfied assert(it->var_no()<=_no_variables); } assert(!new_bv.empty()); out << "// lcnf\n"; out << "AXIOM "; for(bvt::const_iterator it=new_bv.begin(); it!=new_bv.end(); it++) { if(it!=new_bv.begin()) out << " | "; out << dplib_literal(*it); } out << ";\n\n"; }
void z3_propt::eliminate_duplicates(const bvt &bv, bvt &dest) { std::set<literalt> s; dest.reserve(bv.size()); for(bvt::const_iterator it=bv.begin(); it!=bv.end(); it++) { if(s.insert(*it).second) dest.push_back(*it); } }
literalt cvc_propt::lor(const bvt &bv) { out << "%% lor" << std::endl; literalt literal=def_cvc_literal(); forall_literals(it, bv) { if(it!=bv.begin()) out << " OR "; out << cvc_literal(*it); } out << ";" << std::endl << std::endl; return literal; }
literalt dplib_propt::lor(const bvt &bv) { out << "// lor\n"; literalt literal=def_dplib_literal(); forall_literals(it, bv) { if(it!=bv.begin()) out << " | "; out << dplib_literal(*it); } out << "\n\n"; return literal; }
bool z3_propt::process_clause(const bvt &bv, bvt &dest) { dest.clear(); // empty clause! this is UNSAT if(bv.empty()) return false; std::set<literalt> s; dest.reserve(bv.size()); for(bvt::const_iterator it=bv.begin(); it!=bv.end(); it++) { literalt l=*it; // we never use index 0 assert(l.var_no()!=0); if(l.is_true()) return true; // clause satisfied if(l.is_false()) continue; if(l.var_no()>=_no_variables) std::cout << "l.var_no()=" << l.var_no() << " _no_variables=" << _no_variables << std::endl; assert(l.var_no()<_no_variables); // prevent duplicate literals if(s.insert(l).second) dest.push_back(l); if(s.find(lnot(l))!=s.end()) return true; // clause satisfied } return false; }
void smt1_propt::lcnf(const bvt &bv) { out << std::endl; out << ":assumption ; lcnf" << std::endl; out << " "; if(bv.empty()) out << "false ; the empty clause"; else if(bv.size()==1) out << smt1_literal(bv.front()); else { out << "(or"; for(bvt::const_iterator it=bv.begin(); it!=bv.end(); it++) out << " " << smt1_literal(*it); out << ")"; } out << std::endl; }
void boolbvt::convert_mult(const exprt &expr, bvt &bv) { unsigned width=boolbv_width(expr.type()); if(width==0) return conversion_failed(expr, bv); bv.resize(width); const exprt::operandst &operands=expr.operands(); if(operands.size()==0) throw "mult without operands"; const exprt &op0=expr.op0(); bool no_overflow=expr.id()=="no-overflow-mult"; if(expr.type().id()==ID_fixedbv) { if(op0.type()!=expr.type()) throw "multiplication with mixed types"; bv=convert_bv(op0); if(bv.size()!=width) throw "convert_mult: unexpected operand width"; unsigned fraction_bits= to_fixedbv_type(expr.type()).get_fraction_bits(); // do a sign extension by fraction_bits bits bv=bv_utils.sign_extension(bv, bv.size()+fraction_bits); for(exprt::operandst::const_iterator it=operands.begin()+1; it!=operands.end(); it++) { if(it->type()!=expr.type()) throw "multiplication with mixed types"; bvt op=convert_bv(*it); if(op.size()!=width) throw "convert_mult: unexpected operand width"; op=bv_utils.sign_extension(op, bv.size()); bv=bv_utils.signed_multiplier(bv, op); } // cut it down again bv.erase(bv.begin(), bv.begin()+fraction_bits); return; } else if(expr.type().id()==ID_floatbv) { if(op0.type()!=expr.type()) throw "multiplication with mixed types"; bv=convert_bv(op0); if(bv.size()!=width) throw "convert_mult: unexpected operand width"; float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(expr.type()); for(exprt::operandst::const_iterator it=operands.begin()+1; it!=operands.end(); it++) { if(it->type()!=expr.type()) throw "multiplication with mixed types"; const bvt &op=convert_bv(*it); if(op.size()!=width) throw "convert_mult: unexpected operand width"; bv=float_utils.mul(bv, op); } return; } else if(expr.type().id()==ID_unsignedbv || expr.type().id()==ID_signedbv) { if(op0.type()!=expr.type()) throw "multiplication with mixed types"; bv_utilst::representationt rep= expr.type().id()==ID_signedbv?bv_utilst::SIGNED: bv_utilst::UNSIGNED; bv=convert_bv(op0); if(bv.size()!=width) throw "convert_mult: unexpected operand width"; for(exprt::operandst::const_iterator it=operands.begin()+1; it!=operands.end(); it++) { if(it->type()!=expr.type()) throw "multiplication with mixed types"; const bvt &op=convert_bv(*it); if(op.size()!=width) throw "convert_mult: unexpected operand width"; if(no_overflow) bv=bv_utils.multiplier_no_overflow(bv, op, rep); else bv=bv_utils.multiplier(bv, op, rep); } return; } conversion_failed(expr, bv); }
bool boolbvt::type_conversion( const typet &src_type, const bvt &src, const typet &dest_type, bvt &dest) { bvtypet dest_bvtype=get_bvtype(dest_type); bvtypet src_bvtype=get_bvtype(src_type); if(src_bvtype==IS_C_BIT_FIELD) return type_conversion( c_bit_field_replacement_type(to_c_bit_field_type(src_type), ns), src, dest_type, dest); if(dest_bvtype==IS_C_BIT_FIELD) return type_conversion( src_type, src, c_bit_field_replacement_type(to_c_bit_field_type(dest_type), ns), dest); std::size_t src_width=src.size(); std::size_t dest_width=boolbv_width(dest_type); if(dest_width==0 || src_width==0) return true; dest.clear(); dest.reserve(dest_width); if(dest_type.id()==ID_complex) { if(src_type==dest_type.subtype()) { forall_literals(it, src) dest.push_back(*it); // pad with zeros for(std::size_t i=src.size(); i<dest_width; i++) dest.push_back(const_literal(false)); return false; } else if(src_type.id()==ID_complex) { // recursively do both halfs bvt lower, upper, lower_res, upper_res; lower.assign(src.begin(), src.begin()+src.size()/2); upper.assign(src.begin()+src.size()/2, src.end()); type_conversion(ns.follow(src_type.subtype()), lower, ns.follow(dest_type.subtype()), lower_res); type_conversion(ns.follow(src_type.subtype()), upper, ns.follow(dest_type.subtype()), upper_res); assert(lower_res.size()+upper_res.size()==dest_width); dest=lower_res; dest.insert(dest.end(), upper_res.begin(), upper_res.end()); return false; } } if(src_type.id()==ID_complex) { assert(dest_type.id()!=ID_complex); if(dest_type.id()==ID_signedbv || dest_type.id()==ID_unsignedbv || dest_type.id()==ID_floatbv || dest_type.id()==ID_fixedbv || dest_type.id()==ID_c_enum || dest_type.id()==ID_c_enum_tag || dest_type.id()==ID_bool) { // A cast from complex x to real T // is (T) __real__ x. bvt tmp_src(src); tmp_src.resize(src.size()/2); // cut off imag part return type_conversion(src_type.subtype(), tmp_src, dest_type, dest); } } switch(dest_bvtype) { case IS_RANGE: if(src_bvtype==IS_UNSIGNED || src_bvtype==IS_SIGNED || src_bvtype==IS_C_BOOL) { mp_integer dest_from=to_range_type(dest_type).get_from(); if(dest_from==0) { // do zero extension dest.resize(dest_width); for(std::size_t i=0; i<dest.size(); i++) dest[i]=(i<src.size()?src[i]:const_literal(false)); return false; } } else if(src_bvtype==IS_RANGE) // range to range { mp_integer src_from=to_range_type(src_type).get_from(); mp_integer dest_from=to_range_type(dest_type).get_from(); if(dest_from==src_from) { // do zero extension, if needed dest=bv_utils.zero_extension(src, dest_width); return false; } else { // need to do arithmetic: add src_from-dest_from mp_integer offset=src_from-dest_from; dest= bv_utils.add( bv_utils.zero_extension(src, dest_width), bv_utils.build_constant(offset, dest_width)); } return false; } break; case IS_FLOAT: // to float { float_utilst float_utils(prop); switch(src_bvtype) { case IS_FLOAT: // float to float // we don't have a rounding mode here, // which is why we refuse. break; case IS_SIGNED: // signed to float case IS_C_ENUM: float_utils.spec=to_floatbv_type(dest_type); dest=float_utils.from_signed_integer(src); return false; case IS_UNSIGNED: // unsigned to float case IS_C_BOOL: // _Bool to float float_utils.spec=to_floatbv_type(dest_type); dest=float_utils.from_unsigned_integer(src); return false; case IS_BV: assert(src_width==dest_width); dest=src; return false; default: if(src_type.id()==ID_bool) { // bool to float // build a one ieee_floatt f; f.spec=to_floatbv_type(dest_type); f.from_integer(1); dest=convert_bv(f.to_expr()); assert(src_width==1); Forall_literals(it, dest) *it=prop.land(*it, src[0]); return false; } } } break; case IS_FIXED: if(src_bvtype==IS_FIXED) { // fixed to fixed std::size_t dest_fraction_bits=to_fixedbv_type(dest_type).get_fraction_bits(), dest_int_bits=dest_width-dest_fraction_bits; std::size_t op_fraction_bits=to_fixedbv_type(src_type).get_fraction_bits(), op_int_bits=src_width-op_fraction_bits; dest.resize(dest_width); // i == position after dot // i == 0: first position after dot for(std::size_t i=0; i<dest_fraction_bits; i++) { // position in bv std::size_t p=dest_fraction_bits-i-1; if(i<op_fraction_bits) dest[p]=src[op_fraction_bits-i-1]; else dest[p]=const_literal(false); // zero padding } for(std::size_t i=0; i<dest_int_bits; i++) { // position in bv std::size_t p=dest_fraction_bits+i; assert(p<dest_width); if(i<op_int_bits) dest[p]=src[i+op_fraction_bits]; else dest[p]=src[src_width-1]; // sign extension } return false; } else if(src_bvtype==IS_BV) { assert(src_width==dest_width); dest=src; return false; } else if(src_bvtype==IS_UNSIGNED || src_bvtype==IS_SIGNED || src_bvtype==IS_C_BOOL || src_bvtype==IS_C_ENUM) { // integer to fixed std::size_t dest_fraction_bits= to_fixedbv_type(dest_type).get_fraction_bits(); for(std::size_t i=0; i<dest_fraction_bits; i++) dest.push_back(const_literal(false)); // zero padding for(std::size_t i=0; i<dest_width-dest_fraction_bits; i++) { literalt l; if(i<src_width) l=src[i]; else { if(src_bvtype==IS_SIGNED || src_bvtype==IS_C_ENUM) l=src[src_width-1]; // sign extension else l=const_literal(false); // zero extension } dest.push_back(l); } return false; } else if(src_type.id()==ID_bool) { // bool to fixed std::size_t fraction_bits= to_fixedbv_type(dest_type).get_fraction_bits(); assert(src_width==1); for(std::size_t i=0; i<dest_width; i++) { if(i==fraction_bits) dest.push_back(src[0]); else dest.push_back(const_literal(false)); } return false; } break; case IS_UNSIGNED: case IS_SIGNED: case IS_C_ENUM: switch(src_bvtype) { case IS_FLOAT: // float to integer // we don't have a rounding mode here, // which is why we refuse. break; case IS_FIXED: // fixed to integer { std::size_t op_fraction_bits= to_fixedbv_type(src_type).get_fraction_bits(); for(std::size_t i=0; i<dest_width; i++) { if(i<src_width-op_fraction_bits) dest.push_back(src[i+op_fraction_bits]); else { if(dest_bvtype==IS_SIGNED) dest.push_back(src[src_width-1]); // sign extension else dest.push_back(const_literal(false)); // zero extension } } // we might need to round up in case of negative numbers // e.g., (int)(-1.00001)==1 bvt fraction_bits_bv=src; fraction_bits_bv.resize(op_fraction_bits); literalt round_up= prop.land(prop.lor(fraction_bits_bv), src.back()); dest=bv_utils.incrementer(dest, round_up); return false; } case IS_UNSIGNED: // integer to integer case IS_SIGNED: case IS_C_ENUM: case IS_C_BOOL: { // We do sign extension for any source type // that is signed, independently of the // destination type. // E.g., ((short)(ulong)(short)-1)==-1 bool sign_extension= src_bvtype==IS_SIGNED || src_bvtype==IS_C_ENUM; for(std::size_t i=0; i<dest_width; i++) { if(i<src_width) dest.push_back(src[i]); else if(sign_extension) dest.push_back(src[src_width-1]); // sign extension else dest.push_back(const_literal(false)); } return false; } case IS_VERILOG_UNSIGNED: // verilog_unsignedbv to signed/unsigned/enum { for(std::size_t i=0; i<dest_width; i++) { std::size_t src_index=i*2; // we take every second bit if(src_index<src_width) dest.push_back(src[src_index]); else // always zero-extend dest.push_back(const_literal(false)); } return false; } break; case IS_VERILOG_SIGNED: // verilog_signedbv to signed/unsigned/enum { for(std::size_t i=0; i<dest_width; i++) { std::size_t src_index=i*2; // we take every second bit if(src_index<src_width) dest.push_back(src[src_index]); else // always sign-extend dest.push_back(src.back()); } return false; } break; default: if(src_type.id()==ID_bool) { // bool to integer assert(src_width==1); for(std::size_t i=0; i<dest_width; i++) { if(i==0) dest.push_back(src[0]); else dest.push_back(const_literal(false)); } return false; } } break; case IS_VERILOG_UNSIGNED: if(src_bvtype==IS_UNSIGNED || src_bvtype==IS_C_BOOL || src_type.id()==ID_bool) { for(std::size_t i=0, j=0; i<dest_width; i+=2, j++) { if(j<src_width) dest.push_back(src[j]); else dest.push_back(const_literal(false)); dest.push_back(const_literal(false)); } return false; } else if(src_bvtype==IS_SIGNED) { for(std::size_t i=0, j=0; i<dest_width; i+=2, j++) { if(j<src_width) dest.push_back(src[j]); else dest.push_back(src.back()); dest.push_back(const_literal(false)); } return false; } else if(src_bvtype==IS_VERILOG_UNSIGNED) { // verilog_unsignedbv to verilog_unsignedbv dest=src; if(dest_width<src_width) dest.resize(dest_width); else { dest=src; while(dest.size()<dest_width) { dest.push_back(const_literal(false)); dest.push_back(const_literal(false)); } } return false; } break; case IS_BV: assert(src_width==dest_width); dest=src; return false; case IS_C_BOOL: dest.resize(dest_width, const_literal(false)); if(src_bvtype==IS_FLOAT) { float_utilst float_utils(prop); float_utils.spec=to_floatbv_type(src_type); dest[0]=!float_utils.is_zero(src); } else if(src_bvtype==IS_C_BOOL) dest[0]=src[0]; else dest[0]=!bv_utils.is_zero(src); return false; default: if(dest_type.id()==ID_array) { if(src_width==dest_width) { dest=src; return false; } } else if(dest_type.id()==ID_struct) { const struct_typet &dest_struct = to_struct_type(dest_type); if(src_type.id()==ID_struct) { // we do subsets dest.resize(dest_width, const_literal(false)); const struct_typet &op_struct = to_struct_type(src_type); const struct_typet::componentst &dest_comp= dest_struct.components(); const struct_typet::componentst &op_comp= op_struct.components(); // build offset maps offset_mapt op_offsets, dest_offsets; build_offset_map(op_struct, op_offsets); build_offset_map(dest_struct, dest_offsets); // build name map typedef std::map<irep_idt, unsigned> op_mapt; op_mapt op_map; for(std::size_t i=0; i<op_comp.size(); i++) op_map[op_comp[i].get_name()]=i; // now gather required fields for(std::size_t i=0; i<dest_comp.size(); i++) { std::size_t offset=dest_offsets[i]; std::size_t comp_width=boolbv_width(dest_comp[i].type()); if(comp_width==0) continue; op_mapt::const_iterator it= op_map.find(dest_comp[i].get_name()); if(it==op_map.end()) { // not found // filling with free variables for(std::size_t j=0; j<comp_width; j++) dest[offset+j]=prop.new_variable(); } else { // found if(dest_comp[i].type()!=dest_comp[it->second].type()) { // filling with free variables for(std::size_t j=0; j<comp_width; j++) dest[offset+j]=prop.new_variable(); } else { std::size_t op_offset=op_offsets[it->second]; for(std::size_t j=0; j<comp_width; j++) dest[offset+j]=src[op_offset+j]; } } } return false; } } } return true; }
void boolbvt::convert_floatbv_op(const exprt &expr, bvt &bv) { const exprt::operandst &operands=expr.operands(); if(operands.size()!=3) throw "operator "+expr.id_string()+" takes three operands"; const exprt &op0=expr.op0(); // first operand const exprt &op1=expr.op1(); // second operand const exprt &op2=expr.op2(); // rounding mode bvt bv0=convert_bv(op0); bvt bv1=convert_bv(op1); bvt bv2=convert_bv(op2); const typet &type=ns.follow(expr.type()); if(op0.type()!=type || op1.type()!=type) { std::cerr << expr.pretty() << std::endl; throw "float op with mixed types"; } float_utilst float_utils(prop); float_utils.set_rounding_mode(bv2); if(type.id()==ID_floatbv) { float_utils.spec=to_floatbv_type(expr.type()); if(expr.id()==ID_floatbv_plus) bv=float_utils.add_sub(bv0, bv1, false); else if(expr.id()==ID_floatbv_minus) bv=float_utils.add_sub(bv0, bv1, true); else if(expr.id()==ID_floatbv_mult) bv=float_utils.mul(bv0, bv1); else if(expr.id()==ID_floatbv_div) bv=float_utils.div(bv0, bv1); else if(expr.id()==ID_floatbv_rem) bv=float_utils.rem(bv0, bv1); else assert(false); } else if(type.id()==ID_vector || type.id()==ID_complex) { const typet &subtype=ns.follow(type.subtype()); if(subtype.id()==ID_floatbv) { float_utils.spec=to_floatbv_type(subtype); std::size_t width=boolbv_width(type); std::size_t sub_width=boolbv_width(subtype); if(sub_width==0 || width%sub_width!=0) throw "convert_floatbv_op: unexpected vector operand width"; std::size_t size=width/sub_width; bv.resize(width); for(std::size_t i=0; i<size; i++) { bvt tmp_bv0, tmp_bv1, tmp_bv; tmp_bv0.assign(bv0.begin()+i*sub_width, bv0.begin()+(i+1)*sub_width); tmp_bv1.assign(bv1.begin()+i*sub_width, bv1.begin()+(i+1)*sub_width); if(expr.id()==ID_floatbv_plus) tmp_bv=float_utils.add_sub(tmp_bv0, tmp_bv1, false); else if(expr.id()==ID_floatbv_minus) tmp_bv=float_utils.add_sub(tmp_bv0, tmp_bv1, true); else if(expr.id()==ID_floatbv_mult) tmp_bv=float_utils.mul(tmp_bv0, tmp_bv1); else if(expr.id()==ID_floatbv_div) tmp_bv=float_utils.div(tmp_bv0, tmp_bv1); else assert(false); assert(tmp_bv.size()==sub_width); assert(i*sub_width+sub_width-1<bv.size()); std::copy(tmp_bv.begin(), tmp_bv.end(), bv.begin()+i*sub_width); } } else return conversion_failed(expr, bv); } else return conversion_failed(expr, bv); }