leveldb::Slice slice_block_hash(const hash_digest& block_hash) { // Cut first 16 bytes of block hash BITCOIN_ASSERT(block_hash.size() == 32); return leveldb::Slice( reinterpret_cast<const char*>(block_hash.data() + 16), 16); }
stealth_bitfield calculate_bitfield(const data_chunk& stealth_data) { // Calculate stealth bitfield const hash_digest index = generate_sha256_hash(stealth_data); auto deserial = make_deserializer( index.begin(), index.begin() + bitfield_size); stealth_bitfield bitfield = deserial.read_uint_auto<stealth_bitfield>(); return bitfield; }
bool verify_signature(const ec_point& public_key, hash_digest hash, const endorsement& signature) { init.init(); return 1 == secp256k1_ecdsa_verify(hash.data(), hash.size(), signature.data(), signature.size(), public_key.data(), public_key.size() ); }
bool read_hash(hash_digest& hash, const data_chunk& raw_hash) { if (raw_hash.size() != hash.size()) { log_warning(LOG_SUBSCRIBER) << "Wrong size for hash. Dropping."; return false; } std::copy(raw_hash.begin(), raw_hash.end(), hash.begin()); return true; }
bool verify_signature(const ec_point& public_key, hash_digest hash, const data_chunk& signature) { std::reverse(hash.begin(), hash.end()); init.init(); return 1 == secp256k1_ecdsa_verify( hash.data(), hash.size(), signature.data(), signature.size(), public_key.data(), public_key.size() ); }
bool elliptic_curve_key::verify(hash_digest hash, const data_chunk& signature) { BITCOIN_ASSERT(key_ != nullptr); // SSL likes a reversed hash std::reverse(hash.begin(), hash.end()); // -1 = error, 0 = bad sig, 1 = good if (ECDSA_verify(0, hash.data(), hash.size(), signature.data(), signature.size(), key_) == 1) return true; return false; }
int get_block_hash(Db*, const Dbt*, const Dbt* data, Dbt* second_key) { std::stringstream ss(std::string( reinterpret_cast<const char*>(data->get_data()), data->get_size())); protobuf::Block proto_block; proto_block.ParseFromIstream(&ss); message::block serial_block = protobuf_to_block_header(proto_block); second_hash = hash_block_header(serial_block); second_key->set_data(second_hash.data()); second_key->set_size(second_hash.size()); return 0; }
data_chunk elliptic_curve_key::sign(hash_digest hash) const { BITCOIN_ASSERT(key_ != nullptr); // SSL likes a reversed hash std::reverse(hash.begin(), hash.end()); data_chunk signature(ECDSA_size(key_)); unsigned int signature_length = signature.size(); if (!ECDSA_sign(0, hash.data(), hash.size(), signature.data(), &signature_length, key_)) return data_chunk(); signature.resize(signature_length); return signature; }
compact_signature sign_compact(ec_secret secret, hash_digest hash, ec_secret nonce) { init.init(); compact_signature out; if (0 < secp256k1_ecdsa_sign_compact(hash.data(), hash.size(), out.signature.data(), secret.data(), nonce.data(), &out.recid)) { return out; } // Error case: return compact_signature{{{0}}, 0}; }
compact_signature sign_compact(ec_secret secret, hash_digest hash) { init.init(); compact_signature out; ec_secret nonce; unsigned index = 0; do { nonce = create_nonce(secret, hash, index++); } while (secp256k1_ecdsa_sign_compact(hash.data(), hash.size(), out.signature.data(), secret.data(), nonce.data(), &out.recid) <= 0); return out; }
endorsement sign(ec_secret secret, hash_digest hash, ec_secret nonce) { init.init(); int out_size = max_endorsement_size; endorsement signature(out_size); if (0 < secp256k1_ecdsa_sign(hash.data(), hash.size(), signature.data(), &out_size, secret.data(), nonce.data())) { signature.resize(out_size); return signature; } // Error case: return endorsement(); }
/** * Copy `binary` data from protobuf's storage format (std::string) * to libbitcoin's storage format (hash_digest). */ static bool unpack_hash(hash_digest& out, const std::string& in) { if (in.size() != hash_size) return false; std::copy(in.begin(), in.end(), out.begin()); return true; }
data_chunk sign(ec_secret secret, hash_digest hash, ec_secret nonce) { std::reverse(hash.begin(), hash.end()); init.init(); int out_size = 72; data_chunk signature(out_size); if (!verify_private_key(nonce)) // Needed because of upstream bug return data_chunk(); bool valid = secp256k1_ecdsa_sign(hash.data(), hash.size(), signature.data(), &out_size, secret.data(), nonce.data()) == 1; if (!valid) return data_chunk(); signature.resize(out_size); return signature; }
endorsement sign(ec_secret secret, hash_digest hash) { init.init(); int out_size = max_endorsement_size; endorsement signature(out_size); ec_secret nonce; unsigned index = 0; do { nonce = create_nonce(secret, hash, index++); } while (secp256k1_ecdsa_sign(hash.data(), hash.size(), signature.data(), &out_size, secret.data(), nonce.data()) <= 0); signature.resize(out_size); return signature; }
static one_byte point_sign(uint8_t byte, const hash_digest& hash) { static constexpr uint8_t low_bit_mask = 0x01; const uint8_t last_byte = hash.back(); const uint8_t last_byte_odd_field = last_byte & low_bit_mask; const uint8_t sign_byte = byte ^ last_byte_odd_field; return to_array(sign_byte); }
bool extract_ephemeral_key(hash_digest& out_unsigned_ephemeral_key, const script& script) { if (!is_stealth_script(script)) return false; const auto& data = script.operations[1].data; std::copy(data.begin(), data.begin() + hash_size, out_unsigned_ephemeral_key.begin()); return true; }
bool sign(ec_signature& out, const ec_secret& secret, const hash_digest& hash) { secp256k1_ecdsa_signature signature; const auto context = signing.context(); if (secp256k1_ecdsa_sign(context, &signature, hash.data(), secret.data(), secp256k1_nonce_function_rfc6979, nullptr) != 1) return false; std::copy_n(std::begin(signature.data), out.size(), out.begin()); return true; }
bool recover_public(const secp256k1_context* context, byte_array<Size>& out, const recoverable_signature& recoverable, const hash_digest& hash) { secp256k1_pubkey pubkey; secp256k1_ecdsa_recoverable_signature sign; const auto recovery_id = static_cast<int>(recoverable.recovery_id); return secp256k1_ecdsa_recoverable_signature_parse_compact(context, &sign, recoverable.signature.data(), recovery_id) == 1 && secp256k1_ecdsa_recover(context, &pubkey, &sign, hash.data()) == 1 && serialize(context, out, pubkey); }
ec_point recover_compact(compact_signature signature, hash_digest hash, bool compressed) { init.init(); size_t public_key_size = ec_uncompressed_size; if (compressed) public_key_size = ec_compressed_size; ec_point out(public_key_size); int out_size; if (0 < secp256k1_ecdsa_recover_compact(hash.data(), hash.size(), signature.signature.data(), out.data(), &out_size, compressed, signature.recid)) { BITCOIN_ASSERT(public_key_size == static_cast<size_t>(out_size)); return out; } // Error case: return ec_point(); }
bool decode_hash(hash_digest& out, const std::string& in) { if (in.size() != 2 * hash_size) return false; hash_digest result; if (!decode_base16_private(result.data(), result.size(), in.data())) return false; // Reverse: std::reverse_copy(result.begin(), result.end(), out.begin()); return true; }
bool verify_signature(const secp256k1_context* context, const secp256k1_pubkey point, const hash_digest& hash, const ec_signature& signature) { // Copy to avoid exposing external types. secp256k1_ecdsa_signature parsed; std::copy(signature.begin(), signature.end(), std::begin(parsed.data)); // secp256k1_ecdsa_verify rejects non-normalized (low-s) signatures, but // bitcoin does not have such a limitation, so we always normalize. secp256k1_ecdsa_signature normal; secp256k1_ecdsa_signature_normalize(context, &normal, &parsed); return secp256k1_ecdsa_verify(context, &normal, hash.data(), &point) == 1; }
BC_API ec_secret create_nonce(ec_secret secret, hash_digest hash) { std::reverse(hash.begin(), hash.end()); init.init(); hash_digest K {{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}; hash_digest V {{ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }}; K = hmac_sha256_hash(V + byte_array<1>{{0x00}} + secret + hash, K); V = hmac_sha256_hash(V, K); K = hmac_sha256_hash(V + byte_array<1>{{0x01}} + secret + hash, K); V = hmac_sha256_hash(V, K); while (true) { V = hmac_sha256_hash(V, K); if (verify_private_key(V)) return V; K = hmac_sha256_hash(V + byte_array<1>{{0x00}}, K); V = hmac_sha256_hash(V, K); } }
bool sign_recoverable(recoverable_signature& out, const ec_secret& secret, const hash_digest& hash) { int recovery_id; const auto context = signing.context(); secp256k1_ecdsa_recoverable_signature signature; const auto result = secp256k1_ecdsa_sign_recoverable(context, &signature, hash.data(), secret.data(), secp256k1_nonce_function_rfc6979, nullptr) == 1 && secp256k1_ecdsa_recoverable_signature_serialize_compact(context, out.signature.data(), &recovery_id, &signature) == 1; BITCOIN_ASSERT(recovery_id >= 0 && recovery_id <= 3); out.recovery_id = static_cast<uint8_t>(recovery_id); return result; }
bool message::dequeue(hash_digest& value) { if (queue_.empty()) return false; const auto& front = queue_.front(); if (front.size() == hash_size) { std::copy(front.begin(), front.end(), value.begin()); queue_.pop(); return true; } queue_.pop(); return false; }
void hashtable_database_writer::store(const hash_digest& key_hash, size_t value_size, write_value_function write) { // Calculate the end of the last record. const uint64_t header_size = 24 + buckets_ * 8; const uint64_t records_end_offset = header_size + total_records_size_; // [ tx hash ] 32 // [ varuint value size ] // [ ... value data ... ] // [ next tx in bucket ] 8 const size_t record_size = 32 + variable_uint_size(value_size) + value_size + 8; // If a record crosses a page boundary then we align it with // the beginning of the next page. const size_t record_begin = align_if_crossing_page(page_size_, records_end_offset, record_size); BITCOIN_ASSERT(file_.size() >= record_begin + record_size); // We will insert new transactions at the beginning of the bucket's list. // I assume that more recent transactions in the blockchain are used // more often than older ones. // We lookup the existing value in the bucket first. const uint64_t bucket_index = remainder(key_hash.data(), buckets_); BITCOIN_ASSERT(bucket_index < buckets_); const uint64_t previous_bucket_value = read_bucket_value(bucket_index); // Now begin writing the record itself. uint8_t* entry = file_.data() + record_begin; auto serial = make_serializer(entry); serial.write_hash(key_hash); serial.write_variable_uint(value_size); // Call the supplied callback to serialize the data. write(serial.iterator()); serial.set_iterator(serial.iterator() + value_size); serial.write_8_bytes(previous_bucket_value); BITCOIN_ASSERT(serial.iterator() == entry + record_size); // Change file size value at file start. // This must be done first so any subsequent writes don't // overwrite this record in case of a crash or interruption. BITCOIN_ASSERT(record_begin >= header_size); const uint64_t alignment_padding = record_begin - header_size - total_records_size_; BITCOIN_ASSERT(alignment_padding <= page_size_); total_records_size_ += record_size + alignment_padding; // Now add record to bucket. const uint64_t record_begin_offset = record_begin - header_size; link_record(bucket_index, record_begin_offset); }
bool verify_signature(data_slice point, const hash_digest& hash, const ec_signature& signature) { // Copy to avoid exposing external types. secp256k1_ecdsa_signature parsed; std::copy(signature.begin(), signature.end(), std::begin(parsed.data)); // secp256k1_ecdsa_verify rejects non-normalized (low-s) signatures, but // bitcoin does not have such a limitation, so we always normalize. secp256k1_ecdsa_signature normal; const auto context = verification.context(); secp256k1_ecdsa_signature_normalize(context, &normal, &parsed); // This uses a data slice and calls secp256k1_ec_pubkey_parse() in place of // parse() so that we can support the der_verify data_chunk optimization. secp256k1_pubkey pubkey; const auto size = point.size(); return secp256k1_ec_pubkey_parse(context, &pubkey, point.data(), size) == 1 && secp256k1_ecdsa_verify(context, &normal, hash.data(), &pubkey) == 1; }
const hashtable_database_reader::get_result hashtable_database_reader::get( const hash_digest& key_hash) const { uint64_t bucket_index = remainder(key_hash.data(), writer_.buckets()); BITCOIN_ASSERT(bucket_index < writer_.buckets()); uint64_t record_offset = read_record_offset(file_.data(), bucket_index); const uint64_t header_size = 24 + writer_.buckets() * 8; const uint8_t* all_records_begin = file_.data() + header_size; const uint8_t* all_records_end = all_records_begin + writer_.records_size(); const uint8_t* record_begin = all_records_begin + record_offset; // We don't know the end of a record, so we use the end of all records // for the deserializer. // We will be jumping around the records since it's a chained // list per bucket. // Begin iterating the list. while (true) { auto deserial = make_deserializer(record_begin, all_records_end); const hash_digest current_hash = deserial.read_hash(); uint64_t value_size = deserial.read_variable_uint(); if (current_hash != key_hash) { // Move to next record in bucket. // Skip the transaction data. deserial.set_iterator(deserial.iterator() + value_size); uint64_t next_record = deserial.read_8_bytes(); if (next_record == record_doesnt_exist) return {nullptr, nullptr}; record_begin = all_records_begin + next_record; continue; } // We have the record! return {deserial.iterator(), deserial.iterator() + value_size}; } BITCOIN_ASSERT_MSG(false, "Broke out of unbreakable loop!"); return {nullptr, nullptr}; }
static std::string pack_hash(hash_digest in) { return std::string(in.begin(), in.end()); }
void hash_number::set_hash(const hash_digest& hash) { std::copy(hash.begin(), hash.end(), hash_.begin()); }
void append_hash(czmqpp::message& message, const hash_digest& hash) { message.append(data_chunk(hash.begin(), hash.end())); }