//-------------------------------------------------------------- void ofApp::audioIn(ofSoundBuffer & input){ sb = input; for (int i = 0; i < input.getNumFrames(); i++){ left[i] = input[i*2]; right[i] = input[i*2+1]; mono[i] = (left[i] + right[i]) / 2; } }
//-------------------------------------------------------------- void ofApp::audioOut(ofSoundBuffer & buffer){ if(spectrum->playing){ // float *ptr = output; for (int i = 0; i < buffer.getNumFrames(); i++){ wave = 0.0; for(int n=0; n<BIT; n++){ if (amp[n]>0.00001) { phases[n] += 512./(44100.0/(hertzScale[n])); if ( phases[n] >= 511 ) phases[n] -=512; if ( phases[n] < 0 ) phases[n] = 0; //remainder = phases[n] - floor(phases[n]); //wave+=(float) ((1-remainder) * sineBuffer[1+ (long) phases[n]] + remainder * sineBuffer[2+(long) phases[n]])*amp[n]; wave += ( sineBuffer[1 + (long) phases[n]] ) * amp[n]; } } wave/=10.0; if(wave>1.0) wave=1.0; if(wave<-1.0) wave=-1.0; buffer[i * buffer.getNumChannels() ] = wave * volume; buffer[i * buffer.getNumChannels() + 1] = wave * volume; // outp[i] = wave; // *ptr++ = wave * volume; } } else { // for (int i = 0; i < bufferSize; i++){ // output[i*nChannels ] = 0; // output[i*nChannels + 1] = 0; // outp[i] = 0; // } } }
//---------- void Focus::audioOut(ofSoundBuffer & out) { int intervalFrames; { lock_guard<mutex> lock(this->resultMutex); if(!this->result.active) { return; } auto interval = 1.0f / pow (2.0f, this->result.valueNormalised / 0.12f); intervalFrames = int(interval * 44100.0f); } auto & soundEngine = ofxRulr::Utils::SoundEngine::X(); auto & assetRegister = ofxAssets::Register::X(); auto tickBig = assetRegister.getSoundPointer("ofxRulr::tick_big"); auto tickSmall = assetRegister.getSoundPointer("ofxRulr::tick_small"); auto numFrames = out.getNumFrames(); for(int i=0; i<numFrames; i++) { //check if this frame we start a tick if(this->ticks.framesUntilNext <= 0) { //select the tick sound auto isBigTick = this->ticks.index++ == 0; this->ticks.index %= 6; auto tickSoundAsset = isBigTick ? tickBig : tickSmall; //add it to the active sounds (delayed by 1 buffer always) ofxRulr::Utils::SoundEngine::ActiveSound activeSound; activeSound.delay = i; activeSound.sound = tickSoundAsset; soundEngine.play(activeSound); //set the next tick sound this->ticks.framesUntilNext = intervalFrames; } //check interval doesn't go too long if(this->ticks.framesUntilNext > intervalFrames) { //e.g. this might happen at next buffer fill this->ticks.framesUntilNext = intervalFrames; } this->ticks.framesUntilNext--; } }
//-------------------------------------------------------------- void ofApp::audioOut(ofSoundBuffer &outBuffer) { // base frequency of the lowest sine wave in cycles per second (hertz) float frequency = 172.5; // mapping frequencies from Hz into full oscillations of sin() (two pi) float wavePhaseStep = (frequency / sampleRate) * TWO_PI; float pulsePhaseStep = (0.5 / sampleRate) * TWO_PI; // this loop builds a buffer of audio containing 3 sine waves at different // frequencies, and pulses the volume of each sine wave individually. In // other words, 3 oscillators and 3 LFOs. for(int i = 0; i < outBuffer.getNumFrames(); i++) { // build up a chord out of sine waves at 3 different frequencies float sampleLow = sin(wavePhase); float sampleMid = sin(wavePhase * 1.5); float sampleHi = sin(wavePhase * 2.0); // pulse each sample's volume sampleLow *= sin(pulsePhase); sampleMid *= sin(pulsePhase * 1.04); sampleHi *= sin(pulsePhase * 1.09); float fullSample = (sampleLow + sampleMid + sampleHi); // reduce the full sample's volume so it doesn't exceed 1 fullSample *= 0.3; // write the computed sample to the left and right channels outBuffer.getSample(i, 0) = fullSample; outBuffer.getSample(i, 1) = fullSample; // get the two phase variables ready for the next sample wavePhase += wavePhaseStep; pulsePhase += pulsePhaseStep; } ofScopedLock lock(audioMutex); lastBuffer = outBuffer; }
void ofxBasicSoundPlayer::audioOut(ofSoundBuffer& outputBuffer){ if(bIsPlaying){ int nFrames = outputBuffer.getNumFrames(); int nChannels = outputBuffer.getNumChannels(); if (playerNumChannels != nChannels || playerNumFrames != nFrames || playerSampleRate != outputBuffer.getSampleRate()) { audioOutBuffersChanged(nFrames, nChannels, outputBuffer.getSampleRate()); } if(streaming){ int samplesRead = soundFile.readTo(buffer,nFrames); if ( samplesRead==0 ){ bIsPlaying=false; soundFile.seekTo(0); } else{ buffer.stereoPan(volumesLeft.back(),volumesRight.back()); newBufferE.notify(this,buffer); buffer.copyTo(outputBuffer); } }else{ if (positions.size() == 1 && abs(speed - 1)<FLT_EPSILON) { buffer.copyTo(outputBuffer,nFrames,nChannels,positions[0],loop); }else{ for(int i=0;i<(int)positions.size();i++){ //assert( resampledBuffer.getNumFrames() == bufferSize*relativeSpeed[i] ); if(abs(relativeSpeed[i] - 1)<FLT_EPSILON){ buffer.copyTo(resampledBuffer,nFrames,nChannels,positions[i],loop); }else{ buffer.resampleTo(resampledBuffer,positions[i],nFrames,relativeSpeed[i],loop, ofSoundBuffer::Linear); } resampledBuffer.stereoPan(volumesLeft[i],volumesRight[i]); newBufferE.notify(this,resampledBuffer); resampledBuffer.addTo(outputBuffer,0,loop); } } updatePositions(nFrames); } } }
void ofxGSTT::audioIn(ofSoundBuffer & buffer){ //TODO make better use of soundbuffer obj audioIn(&buffer[0], buffer.getNumFrames(), buffer.getNumChannels(), OFXGSTT_DEFAULTDEVICE_ID); //TODO multidevice business }
void ofBaseSoundOutput::audioOut( ofSoundBuffer& buffer ){ audioOut(&buffer[0], buffer.getNumFrames(), buffer.getNumChannels(), buffer.getDeviceID(), buffer.getTickCount()); }