void InterfaceElem1d :: drawScalar(oofegGraphicContext &context) { int i, indx, result = 0; GaussPoint *gp; IntegrationRule *iRule = integrationRulesArray [ giveDefaultIntegrationRule() ]; TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); FloatArray gcoord(3), v1; WCRec p [ 1 ]; IntArray map; GraphicObj *go; double val [ 1 ]; if ( !context.testElementGraphicActivity(this) ) { return; } if ( context.getInternalVarsDefGeoFlag() ) { double defScale = context.getDefScale(); p [ 0 ].x = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(1, tStep, EID_MomentumBalance, defScale) + this->giveNode(2)->giveUpdatedCoordinate(1, tStep, EID_MomentumBalance, defScale) ); p [ 0 ].y = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(2, tStep, EID_MomentumBalance, defScale) + this->giveNode(2)->giveUpdatedCoordinate(2, tStep, EID_MomentumBalance, defScale) ); p [ 0 ].z = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(3, tStep, EID_MomentumBalance, defScale) + this->giveNode(2)->giveUpdatedCoordinate(3, tStep, EID_MomentumBalance, defScale) ); } else { p [ 0 ].x = ( FPNum )( this->giveNode(1)->giveCoordinate(1) ); p [ 0 ].y = ( FPNum )( this->giveNode(1)->giveCoordinate(2) ); p [ 0 ].z = ( FPNum )( this->giveNode(1)->giveCoordinate(3) ); } result += giveIPValue(v1, iRule->getIntegrationPoint(0), context.giveIntVarType(), tStep); for ( i = 0; i < iRule->getNumberOfIntegrationPoints(); i++ ) { result = 0; gp = iRule->getIntegrationPoint(i); result += giveIPValue(v1, gp, context.giveIntVarType(), tStep); result += this->giveIntVarCompFullIndx( map, context.giveIntVarType() ); if ( result != 2 ) { continue; } if ( ( indx = map.at( context.giveIntVarIndx() ) ) == 0 ) { return; } val [ 0 ] = v1.at(indx); context.updateFringeTableMinMax(val, 1); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); EASValsSetMType(FILLED_CIRCLE_MARKER); go = CreateMarkerWD3D(p, val [ 0 ]); EGWithMaskChangeAttributes(LAYER_MASK | FILL_MASK | MTYPE_MASK, go); EMAddGraphicsToModel(ESIModel(), go); //} } }
void IntElPoint :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int indx, result = 0; IntegrationRule *iRule = this->giveDefaultIntegrationRulePtr(); FloatArray gcoord(3), v1; WCRec p [ 1 ]; GraphicObj *go; double val [ 1 ]; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.getInternalVarsDefGeoFlag() ) { double defScale = gc.getDefScale(); p [ 0 ].x = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(1, tStep, defScale) + this->giveNode(2)->giveUpdatedCoordinate(1, tStep, defScale) ); p [ 0 ].y = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(2, tStep, defScale) + this->giveNode(2)->giveUpdatedCoordinate(2, tStep, defScale) ); p [ 0 ].z = ( FPNum ) 0.5 * ( this->giveNode(1)->giveUpdatedCoordinate(3, tStep, defScale) + this->giveNode(2)->giveUpdatedCoordinate(3, tStep, defScale) ); } else { p [ 0 ].x = ( FPNum ) ( this->giveNode(1)->giveCoordinate(1) ); p [ 0 ].y = ( FPNum ) ( this->giveNode(1)->giveCoordinate(2) ); p [ 0 ].z = ( FPNum ) ( this->giveNode(1)->giveCoordinate(3) ); } result += giveIPValue(v1, iRule->getIntegrationPoint(0), gc.giveIntVarType(), tStep); for ( GaussPoint *gp: *iRule ) { result = 0; result += giveIPValue(v1, gp, gc.giveIntVarType(), tStep); if ( result != 1 ) { continue; } indx = gc.giveIntVarIndx(); val [ 0 ] = v1.at(indx); gc.updateFringeTableMinMax(val, 1); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); EASValsSetMType(FILLED_CIRCLE_MARKER); go = CreateMarkerWD3D(p, val [ 0 ]); EGWithMaskChangeAttributes(LAYER_MASK | FILL_MASK | MTYPE_MASK, go); EMAddGraphicsToModel(ESIModel(), go); //} } }
void LSpace :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int i, indx, result = 0; WCRec p [ 8 ]; GraphicObj *tr; FloatArray v [ 8 ]; double s [ 8 ], defScale = 0.0; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarMode() == ISM_recovered ) { for ( i = 1; i <= 8; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], gc.giveIntVarType(), gc.giveIntVarMode(), i, tStep); } if ( result != 8 ) { return; } } else if ( gc.giveIntVarMode() == ISM_local ) { return; } indx = gc.giveIntVarIndx(); for ( i = 1; i <= 8; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } EASValsSetEdgeColor( gc.getElementEdgeColor() ); EASValsSetEdgeFlag(true); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( gc.getScalarAlgo() == SA_ISO_SURF ) { for ( i = 0; i < 8; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale); } else { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3); } } gc.updateFringeTableMinMax(s, 8); tr = CreateHexahedronWD(p, s); EGWithMaskChangeAttributes(LAYER_MASK | EDGE_COLOR_MASK | EDGE_FLAG_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } }
void Brick1_ht :: drawScalar(oofegGraphicContext &context) { int indx, result = 0; WCRec p [ 8 ]; GraphicObj *tr; TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); FloatArray v [ 8 ]; double s [ 8 ]; if ( !context.testElementGraphicActivity(this) ) { return; } if ( context.giveIntVarMode() == ISM_recovered ) { for ( int i = 1; i <= 8; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep); } if ( result != 8 ) { return; } } else if ( context.giveIntVarMode() == ISM_local ) { return; } indx = context.giveIntVarIndx(); for ( int i = 1; i <= 8; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } EASValsSetEdgeColor( context.getElementEdgeColor() ); EASValsSetEdgeFlag(true); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( context.getScalarAlgo() == SA_ISO_SURF ) { for ( int i = 0; i < 8; i++ ) { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3); } context.updateFringeTableMinMax(s, 8); tr = CreateHexahedronWD(p, s); EGWithMaskChangeAttributes(LAYER_MASK | EDGE_COLOR_MASK | EDGE_FLAG_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } }
void Tetrah1_ht :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int i, indx, result = 0; WCRec p [ 4 ]; GraphicObj *tr; FloatArray v [ 4 ]; double s [ 4 ]; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarMode() == ISM_recovered ) { for ( i = 1; i <= 4; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], gc.giveIntVarType(), gc.giveIntVarMode(), i, tStep); } if ( result != 4 ) { return; } } else if ( gc.giveIntVarMode() == ISM_local ) { return; } indx = gc.giveIntVarIndx(); for ( i = 1; i <= 4; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } EASValsSetEdgeColor( gc.getElementEdgeColor() ); EASValsSetEdgeFlag(true); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( gc.getScalarAlgo() == SA_ISO_SURF ) { for ( i = 0; i < 4; i++ ) { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3); } gc.updateFringeTableMinMax(s, 4); tr = CreateTetraWD(p, s); EGWithMaskChangeAttributes(LAYER_MASK | EDGE_COLOR_MASK | EDGE_FLAG_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } }
void Lattice2d :: drawSpecial(oofegGraphicContext &gc, TimeStep *tStep) { WCRec p [ 2 ]; GraphicObj *tr; GaussPoint *gp; FloatArray crackStatuses, cf; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarType() == IST_CrackState ) { gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0); this->giveIPValue(crackStatuses, gp, IST_CrackStatuses, tStep); if ( crackStatuses(0) == 1. || crackStatuses(0) == 2. || crackStatuses(0) == 3 || crackStatuses(0) == 4 ) { FloatArray coords; this->giveCrossSectionCoordinates(coords); p [ 0 ].x = ( FPNum ) coords.at(1); p [ 0 ].y = ( FPNum ) coords.at(2); p [ 0 ].z = ( FPNum ) coords.at(3); p [ 1 ].x = ( FPNum ) coords.at(4); p [ 1 ].y = ( FPNum ) coords.at(5); p [ 1 ].z = ( FPNum ) coords.at(6); EASValsSetLayer(OOFEG_CRACK_PATTERN_LAYER); EASValsSetLineWidth(OOFEG_CRACK_PATTERN_WIDTH); if ( ( crackStatuses(0) == 1. ) ) { EASValsSetColor( gc.getActiveCrackColor() ); } else if ( crackStatuses(0) == 2. ) { EASValsSetColor( gc.getCrackPatternColor() ); } else if ( crackStatuses(0) == 3. ) { EASValsSetColor( gc.getActiveCrackColor() ); } else if ( crackStatuses(0) == 4. ) { EASValsSetColor( gc.getActiveCrackColor() ); } tr = CreateLine3D(p); EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); EGAttachObject(tr, ( EObjectP ) this); EMAddGraphicsToModel(ESIModel(), tr); } } }
void IntElLine2 :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int indx, result = 0; IntegrationRule *iRule = this->giveDefaultIntegrationRulePtr(); FloatArray gcoord(3), v1; WCRec p [ 1 ]; GraphicObj *go; double val [ 1 ]; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarMode() == ISM_recovered ) { return; } for ( GaussPoint *gp: *iRule ) { result = 0; result += giveIPValue(v1, gp, gc.giveIntVarType(), tStep); if ( result != 1 ) { continue; } indx = gc.giveIntVarIndx(); result += this->computeGlobalCoordinates( gcoord, gp->giveNaturalCoordinates() ); p [ 0 ].x = ( FPNum ) gcoord.at(1); p [ 0 ].y = ( FPNum ) gcoord.at(2); p [ 0 ].z = 0.; val [ 0 ] = v1.at(indx); gc.updateFringeTableMinMax(val, 1); //if (val[0] > 0.) { EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); EASValsSetMType(FILLED_CIRCLE_MARKER); go = CreateMarkerWD3D(p, val [ 0 ]); EGWithMaskChangeAttributes(LAYER_MASK | FILL_MASK | MTYPE_MASK, go); EMAddGraphicsToModel(ESIModel(), go); //} } }
void TrPlaneStress2dXFEM :: drawScalar(oofegGraphicContext &context) { if ( !context.testElementGraphicActivity(this) ) { return; } XfemManager *xf = this->giveDomain()->giveXfemManager(); if ( !xf->isElementEnriched(this) ) { TrPlaneStress2d :: drawScalar(context); } else { if ( context.giveIntVarMode() == ISM_local ) { int indx; double val; FloatArray s(3), v; indx = context.giveIntVarIndx(); TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); PatchIntegrationRule *iRule; for ( int i = 0; i < numberOfIntegrationRules; i++ ) { iRule = dynamic_cast< PatchIntegrationRule * >( integrationRulesArray [ i ] ); #if 0 val = iRule->giveMaterial(); #else val = 0.0; for ( int j = 0; j < iRule->giveNumberOfIntegrationPoints(); j++ ) { GaussPoint *gp = iRule->getIntegrationPoint(0); giveIPValue(v, gp, context.giveIntVarType(), tStep); val += v.at(indx); } val /= iRule->giveNumberOfIntegrationPoints(); #endif s.at(1) = s.at(2) = s.at(3) = val; // TODO: Implement visualization. // iRule->givePatch()->drawWD(context, s); } } else { TrPlaneStress2d :: drawScalar(context); } } }
void TrPlaneStress2dXFEM :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { if ( !gc.testElementGraphicActivity(this) ) { return; } XfemManager *xf = this->giveDomain()->giveXfemManager(); if ( !xf->isElementEnriched(this) ) { TrPlaneStress2d :: drawScalar(gc, tStep); } else { if ( gc.giveIntVarMode() == ISM_local ) { int indx; double val; FloatArray s(3), v; indx = gc.giveIntVarIndx(); for ( auto &ir: integrationRulesArray ) { PatchIntegrationRule *iRule = dynamic_cast< PatchIntegrationRule * >(ir); #if 0 val = iRule->giveMaterial(); #else val = 0.0; for ( GaussPoint *gp: *iRule ) { giveIPValue(v, gp, gc.giveIntVarType(), tStep); val += v.at(indx); } val /= iRule->giveNumberOfIntegrationPoints(); #endif s.at(1) = s.at(2) = s.at(3) = val; // TODO: Implement visualization. // iRule->givePatch()->drawWD(gc, s); } } else { TrPlaneStress2d :: drawScalar(gc, tStep); } } }
void QTrPlaneStrain :: drawScalar(oofegGraphicContext &context) { int t, n [ 3 ], i, indx, result = 0; WCRec p [ 3 ]; GraphicObj *tr; TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); FloatArray v [ 6 ]; double s [ 6 ], ss [ 3 ], defScale; IntArray map; if ( !context.testElementGraphicActivity(this) ) { return; } if ( context.giveIntVarMode() == ISM_recovered ) { for ( i = 1; i <= 6; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep); } } else if ( context.giveIntVarMode() == ISM_local ) { return; } if ( result != 6 ) { return; } result = this->giveIntVarCompFullIndx( map, context.giveIntVarType() ); if ( ( !result ) || ( indx = map.at( context.giveIntVarIndx() ) ) == 0 ) { return; } for ( i = 1; i <= 6; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( context.getScalarAlgo() == SA_ISO_SURF ) { for ( t = 1; t <= 4; t++ ) { if ( t == 1 ) { n [ 0 ] = 1; n [ 1 ] = 4; n [ 2 ] = 6; } else if ( t == 2 ) { n [ 0 ] = 2; n [ 1 ] = 5; n [ 2 ] = 4; } else if ( t == 3 ) { n [ 0 ] = 3; n [ 1 ] = 6; n [ 2 ] = 5; } else { n [ 0 ] = 4; n [ 1 ] = 5; n [ 2 ] = 6; } for ( i = 0; i < 3; i++ ) { if ( context.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = context.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(1, tStep, EID_MomentumBalance, defScale); p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(2, tStep, EID_MomentumBalance, defScale); p [ i ].z = 0.; } else { p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(2); p [ i ].z = 0.; } } //EASValsSetColor(gc.getYieldPlotColor(ratio)); ss [ 0 ] = s [ n [ 0 ] - 1 ]; ss [ 1 ] = s [ n [ 1 ] - 1 ]; ss [ 2 ] = s [ n [ 2 ] - 1 ]; context.updateFringeTableMinMax(ss, 3); tr = CreateTriangleWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } /* } else if (context.getScalarAlgo() == SA_ISO_LINE) { * * EASValsSetColor(context.getActiveCrackColor()); * EASValsSetLineWidth(OOFEG_ISO_LINE_WIDTH); * * for (t=1; t<=4; t++) { * if (t==1) {n[0] = 1; n[1]=4; n[2]=6;} * else if (t==2) {n[0]=2; n[1]=5; n[2]=4;} * else if (t==3) {n[0]=3; n[1]=6; n[2]=5;} * else {n[0]=4; n[1]=5; n[2]=6;} * * * for (i=0; i< 3; i++) { * if (context.getInternalVarsDefGeoFlag()) { * // use deformed geometry * defScale = context.getDefScale(); * p[i].x = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(1,tStep,EID_MomentumBalance,defScale); * p[i].y = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(2,tStep,EID_MomentumBalance,defScale); * p[i].z = 0.; * * } else { * p[i].x = (FPNum) this->giveNode(n[i])->giveCoordinate(1); * p[i].y = (FPNum) this->giveNode(n[i])->giveCoordinate(2); * p[i].z = 0.; * } * } * sv[0]=s[n[0]-1]; * sv[1]=s[n[1]-1]; * sv[2]=s[n[2]-1]; * * // isoline implementation * oofeg_drawIsoLinesOnTriangle (p, sv); * } */ } }
void Quad10_2D_SUPG :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int i, indx, result = 0; WCRec p [ 3 ]; GraphicObj *tr; FloatArray v1, v2, v3; double s [ 3 ]; if ( !gc.testElementGraphicActivity(this) ) { return; } EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); // if ((gc.giveIntVarMode() == ISM_local) && (gc.giveIntVarType() == IST_VOFFraction)) { if ( ( gc.giveIntVarType() == IST_VOFFraction ) && ( gc.giveIntVarMode() == ISM_local ) ) { Polygon matvolpoly; //this->formMaterialVolumePoly(matvolpoly, NULL, temp_normal, temp_p, false); EASValsSetColor( gc.getStandardSparseProfileColor() ); //GraphicObj *go = matvolpoly.draw(gc,true,OOFEG_VARPLOT_PATTERN_LAYER); matvolpoly.draw(gc, true, OOFEG_VARPLOT_PATTERN_LAYER); return; } if ( gc.giveIntVarMode() == ISM_recovered ) { result += this->giveInternalStateAtNode(v1, gc.giveIntVarType(), gc.giveIntVarMode(), 1, tStep); result += this->giveInternalStateAtNode(v2, gc.giveIntVarType(), gc.giveIntVarMode(), 2, tStep); result += this->giveInternalStateAtNode(v3, gc.giveIntVarType(), gc.giveIntVarMode(), 3, tStep); } else if ( gc.giveIntVarMode() == ISM_local ) { GaussPoint *gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0); result += giveIPValue(v1, gp, gc.giveIntVarType(), tStep); v2 = v1; v3 = v1; result *= 3; } if ( result != 3 ) { return; } indx = gc.giveIntVarIndx(); s [ 0 ] = v1.at(indx); s [ 1 ] = v2.at(indx); s [ 2 ] = v3.at(indx); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( gc.getScalarAlgo() == SA_ISO_SURF ) { for ( i = 0; i < 3; i++ ) { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = 0.; } //EASValsSetColor(gc.getYieldPlotColor(ratio)); gc.updateFringeTableMinMax(s, 3); tr = CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } else if ( ( gc.getScalarAlgo() == SA_ZPROFILE ) || ( gc.getScalarAlgo() == SA_COLORZPROFILE ) ) { double landScale = gc.getLandScale(); for ( i = 0; i < 3; i++ ) { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = s [ i ] * landScale; } if ( gc.getScalarAlgo() == SA_ZPROFILE ) { EASValsSetColor( gc.getDeformedElementColor() ); EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH); EASValsSetFillStyle(FILL_SOLID); tr = CreateTriangle3D(p); EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | FILL_MASK | LAYER_MASK, tr); } else { gc.updateFringeTableMinMax(s, 3); EASValsSetFillStyle(FILL_SOLID); tr = CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]); EGWithMaskChangeAttributes(FILL_MASK | LAYER_MASK, tr); } EMAddGraphicsToModel(ESIModel(), tr); } }
void Truss1d :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int i, indx, result = 0; WCRec p [ 2 ]; GraphicObj *tr; FloatArray v1, v2; double s [ 2 ], defScale; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarMode() == ISM_recovered ) { result += this->giveInternalStateAtNode(v1, gc.giveIntVarType(), gc.giveIntVarMode(), 1, tStep); result += this->giveInternalStateAtNode(v2, gc.giveIntVarType(), gc.giveIntVarMode(), 2, tStep); } else if ( gc.giveIntVarMode() == ISM_local ) { GaussPoint *gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0); result += giveIPValue(v1, gp, gc.giveIntVarType(), tStep); v2 = v1; result *= 2; } if ( result != 2 ) { return; } indx = gc.giveIntVarIndx(); s [ 0 ] = v1.at(indx); s [ 1 ] = v2.at(indx); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( ( gc.getScalarAlgo() == SA_ISO_SURF ) || ( gc.getScalarAlgo() == SA_ISO_LINE ) ) { for ( i = 0; i < 2; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); p [ i ].y = 0.; p [ i ].z = 0.; } else { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = 0.; p [ i ].z = 0.; } } //EASValsSetColor(gc.getYieldPlotColor(ratio)); tr = CreateLine3D(p); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } else if ( ( gc.getScalarAlgo() == SA_ZPROFILE ) || ( gc.getScalarAlgo() == SA_COLORZPROFILE ) ) { double landScale = gc.getLandScale(); for ( i = 0; i < 2; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); p [ i ].y = 0.0; p [ i ].z = s [ i ] * landScale; } else { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = 0.0; p [ i ].z = s [ i ] * landScale; } } if ( gc.getScalarAlgo() == SA_ZPROFILE ) { /* * EASValsSetColor(gc.getDeformedElementColor()); * EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH); * tr = CreateLine3D(p); * EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); */ WCRec pp [ 4 ]; pp [ 0 ].x = p [ 0 ].x; pp [ 0 ].y = 0.0; pp [ 0 ].z = 0.0; pp [ 1 ].x = p [ 0 ].x; pp [ 1 ].y = 0.0; pp [ 1 ].z = p [ 0 ].z; pp [ 2 ].x = p [ 1 ].x; pp [ 2 ].y = 0.0; pp [ 2 ].z = p [ 1 ].z; pp [ 3 ].x = p [ 1 ].x; pp [ 3 ].y = 0.0; pp [ 3 ].z = 0.0; tr = CreateQuad3D(pp); EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH); EASValsSetColor( gc.getDeformedElementColor() ); //EASValsSetLayer(OOFEG_DEFORMED_GEOMETRY_LAYER); EASValsSetFillStyle(FILL_HOLLOW); EGWithMaskChangeAttributes(WIDTH_MASK | FILL_MASK | COLOR_MASK | LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } else { //tr = CreateTriangleWD3D(p, s[0], s[1], s[2]); EASValsSetColor( gc.getDeformedElementColor() ); tr = CreateLine3D(p); EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } }
void Lattice2d :: drawSpecial(oofegGraphicContext &gc, TimeStep *tStep) { WCRec l [ 2 ]; GraphicObj *tr; GaussPoint *gp; FloatArray crackStatuses, cf; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarType() == IST_CrackState ) { gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0); this->giveIPValue(crackStatuses, gp, IST_CrackStatuses, tStep); if ( crackStatuses(0) == 1. || crackStatuses(0) == 2. || crackStatuses(0) == 3 || crackStatuses(0) == 4 ) { double x1, y1, x2, y2; x1 = this->giveNode(1)->giveCoordinate(1); y1 = this->giveNode(1)->giveCoordinate(2); x2 = this->giveNode(2)->giveCoordinate(1); y2 = this->giveNode(2)->giveCoordinate(2); //Compute normal and shear direction FloatArray normalDirection; FloatArray shearDirection; normalDirection.resize(2); normalDirection.zero(); shearDirection.resize(2); shearDirection.zero(); normalDirection.at(1) = x2 - x1; normalDirection.at(2) = y2 - y1; normalDirection.normalize(); if ( normalDirection.at(2) == 0. ) { shearDirection.at(1) = 0.; shearDirection.at(2) = 1.; } else { shearDirection.at(1) = 1.0; shearDirection.at(2) = -normalDirection.at(1) / normalDirection.at(2); } shearDirection.normalize(); l [ 0 ].x = ( FPNum ) this->gpCoords.at(1) - shearDirection.at(1) * this->width / 2.; l [ 0 ].y = ( FPNum ) this->gpCoords.at(2) - shearDirection.at(2) * this->width / 2.; l [ 0 ].z = 0.; l [ 1 ].x = ( FPNum ) this->gpCoords.at(1) + shearDirection.at(1) * this->width / 2.; ; l [ 1 ].y = ( FPNum ) this->gpCoords.at(2) + shearDirection.at(2) * this->width / 2.; l [ 1 ].z = 0.; EASValsSetLayer(OOFEG_CRACK_PATTERN_LAYER); EASValsSetLineWidth(OOFEG_CRACK_PATTERN_WIDTH); if ( ( crackStatuses(0) == 1. ) ) { EASValsSetColor( gc.getActiveCrackColor() ); } else if ( crackStatuses(0) == 2. ) { EASValsSetColor( gc.getCrackPatternColor() ); } else if ( crackStatuses(0) == 3. ) { EASValsSetColor( gc.getActiveCrackColor() ); } else if ( crackStatuses(0) == 4. ) { EASValsSetColor( gc.getActiveCrackColor() ); } tr = CreateLine3D(l); EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } }
void LSpace :: drawSpecial(oofegGraphicContext &gc, TimeStep *tStep) { int i, j, k; WCRec q [ 4 ]; GraphicObj *tr; FloatArray crackStatuses, cf; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarType() == IST_CrackState ) { int crackStatus; FloatArray gpc; double length; FloatArray crackDir; for ( GaussPoint *gp: *this->giveDefaultIntegrationRulePtr() ) { if ( this->giveIPValue(cf, gp, IST_CrackedFlag, tStep) == 0 ) { return; } if ( ( int ) cf.at(1) == 0 ) { return; } // // obtain gp global coordinates this->computeGlobalCoordinates( gpc, * gp->giveNaturalCoordinates() ); length = 0.3333 * cbrt(this->computeVolumeAround(gp)); if ( this->giveIPValue(crackDir, gp, IST_CrackDirs, tStep) ) { this->giveIPValue(crackStatuses, gp, IST_CrackStatuses, tStep); for ( i = 1; i <= 3; i++ ) { crackStatus = ( int ) crackStatuses.at(i); if ( ( crackStatus != pscm_NONE ) && ( crackStatus != pscm_CLOSED ) ) { // draw a crack // this element is 3d element if ( i == 1 ) { j = 2; k = 3; } else if ( i == 2 ) { j = 3; k = 1; } else { j = 1; k = 2; } q [ 0 ].x = ( FPNum ) gpc.at(1) + 0.5 * crackDir.at(0 + j) * length + 0.5 * crackDir.at(0 + k) * length; q [ 0 ].y = ( FPNum ) gpc.at(2) + 0.5 * crackDir.at(3 + j) * length + 0.5 * crackDir.at(3 + k) * length; q [ 0 ].z = ( FPNum ) gpc.at(3) + 0.5 * crackDir.at(6 + j) * length + 0.5 * crackDir.at(6 + k) * length; q [ 1 ].x = ( FPNum ) gpc.at(1) + 0.5 * crackDir.at(0 + j) * length - 0.5 * crackDir.at(0 + k) * length; q [ 1 ].y = ( FPNum ) gpc.at(2) + 0.5 * crackDir.at(3 + j) * length - 0.5 * crackDir.at(3 + k) * length; q [ 1 ].z = ( FPNum ) gpc.at(3) + 0.5 * crackDir.at(6 + j) * length - 0.5 * crackDir.at(6 + k) * length; q [ 2 ].x = ( FPNum ) gpc.at(1) - 0.5 * crackDir.at(0 + j) * length - 0.5 * crackDir.at(0 + k) * length; q [ 2 ].y = ( FPNum ) gpc.at(2) - 0.5 * crackDir.at(3 + j) * length - 0.5 * crackDir.at(3 + k) * length; q [ 2 ].z = ( FPNum ) gpc.at(3) - 0.5 * crackDir.at(6 + j) * length - 0.5 * crackDir.at(6 + k) * length; q [ 3 ].x = ( FPNum ) gpc.at(1) - 0.5 * crackDir.at(0 + j) * length + 0.5 * crackDir.at(0 + k) * length; q [ 3 ].y = ( FPNum ) gpc.at(2) - 0.5 * crackDir.at(3 + j) * length + 0.5 * crackDir.at(3 + k) * length; q [ 3 ].z = ( FPNum ) gpc.at(3) - 0.5 * crackDir.at(6 + j) * length + 0.5 * crackDir.at(6 + k) * length; EASValsSetLayer(OOFEG_CRACK_PATTERN_LAYER); EASValsSetLineWidth(OOFEG_CRACK_PATTERN_WIDTH); if ( ( crackStatus == pscm_SOFTENING ) || ( crackStatus == pscm_OPEN ) ) { EASValsSetColor( gc.getActiveCrackColor() ); } else { EASValsSetColor( gc.getCrackPatternColor() ); } // EASValsSetFillStyle (FILL_HOLLOW); tr = CreateQuad3D(q); EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } } } // end loop over gp } }
void CohesiveSurface3d :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { if ( !gc.testElementGraphicActivity(this) ) { return; } FloatArray val; GaussPoint *gp = integrationRulesArray [ 0 ]->getIntegrationPoint(0); if ( !giveIPValue(val, gp, gc.giveIntVarType(), tStep) ) { return; } int indx = gc.giveIntVarIndx(); double s [ 8 ]; for ( int i = 0; i < 8; i++ ) { s [ i ] = val.at(indx); } gc.updateFringeTableMinMax(s, 1); WCRec p [ 8 ]; Particle *nodeA = ( Particle * ) giveNode(1); Particle *nodeB = ( Particle * ) giveNode(2); if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry double defScale = gc.getDefScale(); p [ 0 ].x = nodeA->giveUpdatedCoordinate(1, tStep, defScale); p [ 0 ].y = nodeA->giveUpdatedCoordinate(2, tStep, defScale); p [ 0 ].z = nodeA->giveUpdatedCoordinate(3, tStep, defScale); p [ 2 ].x = nodeB->giveUpdatedCoordinate(1, tStep, defScale); p [ 2 ].y = nodeB->giveUpdatedCoordinate(2, tStep, defScale); p [ 2 ].z = nodeB->giveUpdatedCoordinate(3, tStep, defScale); // handle special elements crossing the boundary of the periodic cell if ( giveNumberOfNodes() == 3 ) { Node *nodeC = ( Particle * ) giveNode(3); p [ 2 ].x += kxa + kxa * defScale * ( nodeC->giveDofWithID(D_u)->giveUnknown(VM_Total, tStep) ) + kyb * defScale * ( nodeC->giveDofWithID(R_u)->giveUnknown(VM_Total, tStep) ); p [ 2 ].y += kyb + kyb * defScale * ( nodeC->giveDofWithID(D_v)->giveUnknown(VM_Total, tStep) ) + kzc * defScale * ( nodeC->giveDofWithID(R_v)->giveUnknown(VM_Total, tStep) ); p [ 2 ].z += kzc + kzc * defScale * ( nodeC->giveDofWithID(D_w)->giveUnknown(VM_Total, tStep) ) + kxa * defScale * ( nodeC->giveDofWithID(R_w)->giveUnknown(VM_Total, tStep) ); } } else { // use initial geometry p [ 0 ].x = nodeA->giveCoordinate(1); p [ 0 ].y = nodeA->giveCoordinate(2); p [ 0 ].z = nodeA->giveCoordinate(3); p [ 2 ].x = nodeB->giveCoordinate(1); p [ 2 ].y = nodeB->giveCoordinate(2); p [ 2 ].z = nodeB->giveCoordinate(3); // handle special elements crossing the boundary of the periodic cell if ( giveNumberOfNodes() == 3 ) { p [ 2 ].x += kxa; p [ 2 ].y += kyb; p [ 2 ].z += kzc; } } double r1 = nodeA->giveRadius(); double r2 = nodeB->giveRadius(); double d = 0.1 * ( r1 + r2 ); p [ 1 ].x = 0.5 * ( p [ 0 ].x + p [ 2 ].x - d * lcs.at(2, 1) - d * lcs.at(3, 1) ); p [ 1 ].y = 0.5 * ( p [ 0 ].y + p [ 2 ].y - d * lcs.at(2, 2) - d * lcs.at(3, 2) ); p [ 1 ].z = 0.5 * ( p [ 0 ].z + p [ 2 ].z - d * lcs.at(2, 3) - d * lcs.at(3, 3) ); p [ 3 ].x = p [ 1 ].x + d *lcs.at(2, 1); p [ 3 ].y = p [ 1 ].y + d *lcs.at(2, 2); p [ 3 ].z = p [ 1 ].z + d *lcs.at(2, 3); for ( int i = 5; i < 8; i += 2 ) { p [ i ].x = p [ i - 4 ].x + d *lcs.at(3, 1); p [ i ].y = p [ i - 4 ].y + d *lcs.at(3, 2); p [ i ].z = p [ i - 4 ].z + d *lcs.at(3, 3); } p [ 4 ] = p [ 0 ]; p [ 6 ] = p [ 2 ]; GraphicObj *go = CreateHexahedronWD(p, s); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); EASValsSetLineWidth(2 * OOFEG_DEFORMED_GEOMETRY_WIDTH); EASValsSetFillStyle(FILL_SOLID); //EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, go); EGWithMaskChangeAttributes(WIDTH_MASK | FILL_MASK | LAYER_MASK, go); EMAddGraphicsToModel(ESIModel(), go); }
void LTRSpace :: drawSpecial(oofegGraphicContext &gc, TimeStep *tStep) { int i, j, k; WCRec q [ 4 ]; GraphicObj *tr; double defScale = gc.getDefScale(); FloatArray crackStatuses, cf; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarType() == IST_CrackState ) { int crackStatus; double xc, yc, zc, length; FloatArray crackDir; if ( numberOfGaussPoints != 1 ) { return; } // for (GaussPoint *gp: *integrationRulesArray [ 0 ] ) { { IntegrationRule *iRule = integrationRulesArray [ 0 ]; GaussPoint *gp = iRule->getIntegrationPoint(0); if ( this->giveIPValue(cf, gp, IST_CrackedFlag, tStep) == 0 ) { return; } if ( ( int ) cf.at(1) == 0 ) { return; } // // obtain gp global coordinates - here only one exists // it is in centre of gravity. xc = yc = zc = 0.; for ( i = 0; i < 4; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry xc += ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); yc += ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); zc += ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale); } else { xc += ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); yc += ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); zc += ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3); } } xc = xc / 4.; yc = yc / 4.; zc = zc / 4.; length = TR_LENGHT_REDUCT * pow(this->computeVolumeAround(gp), 1. / 3.) / 2.0; if ( this->giveIPValue(crackDir, gp, IST_CrackDirs, tStep) ) { this->giveIPValue(crackStatuses, gp, IST_CrackStatuses, tStep); for ( i = 1; i <= 3; i++ ) { crackStatus = ( int ) crackStatuses.at(i); if ( ( crackStatus != pscm_NONE ) && ( crackStatus != pscm_CLOSED ) ) { // draw a crack // this element is 3d element if ( i == 1 ) { j = 2; k = 3; } else if ( i == 2 ) { j = 3; k = 1; } else { j = 1; k = 2; } q [ 0 ].x = ( FPNum ) xc + 0.5 * crackDir.at(0 + j) * length + 0.5 * crackDir.at(0 + k) * length; q [ 0 ].y = ( FPNum ) yc + 0.5 * crackDir.at(3 + j) * length + 0.5 * crackDir.at(3 + k) * length; q [ 0 ].z = ( FPNum ) zc + 0.5 * crackDir.at(6 + j) * length + 0.5 * crackDir.at(6 + k) * length; q [ 1 ].x = ( FPNum ) xc + 0.5 * crackDir.at(0 + j) * length - 0.5 * crackDir.at(0 + k) * length; q [ 1 ].y = ( FPNum ) yc + 0.5 * crackDir.at(3 + j) * length - 0.5 * crackDir.at(3 + k) * length; q [ 1 ].z = ( FPNum ) zc + 0.5 * crackDir.at(6 + j) * length - 0.5 * crackDir.at(6 + k) * length; q [ 2 ].x = ( FPNum ) xc - 0.5 * crackDir.at(0 + j) * length - 0.5 * crackDir.at(0 + k) * length; q [ 2 ].y = ( FPNum ) yc - 0.5 * crackDir.at(3 + j) * length - 0.5 * crackDir.at(3 + k) * length; q [ 2 ].z = ( FPNum ) zc - 0.5 * crackDir.at(6 + j) * length - 0.5 * crackDir.at(6 + k) * length; q [ 3 ].x = ( FPNum ) xc - 0.5 * crackDir.at(0 + j) * length + 0.5 * crackDir.at(0 + k) * length; q [ 3 ].y = ( FPNum ) yc - 0.5 * crackDir.at(3 + j) * length + 0.5 * crackDir.at(3 + k) * length; q [ 3 ].z = ( FPNum ) zc - 0.5 * crackDir.at(6 + j) * length + 0.5 * crackDir.at(6 + k) * length; EASValsSetLayer(OOFEG_CRACK_PATTERN_LAYER); EASValsSetLineWidth(OOFEG_CRACK_PATTERN_WIDTH); if ( ( crackStatus == pscm_SOFTENING ) || ( crackStatus == pscm_OPEN ) ) { EASValsSetColor( gc.getActiveCrackColor() ); } else { EASValsSetColor( gc.getCrackPatternColor() ); } // EASValsSetFillStyle (FILL_HOLLOW); tr = CreateQuad3D(q); EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } } } } }
void Quad1_ht :: drawScalar(oofegGraphicContext &context) { int i, indx, result = 0; WCRec p [ 4 ]; GraphicObj *tr; TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); double s [ 4 ]; FloatArray v [ 4 ]; InternalStateType itype = context.giveIntVarType(); if ( !context.testElementGraphicActivity(this) ) { return; } EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( itype == IST_HydrationDegree ) { for ( i = 1; i <= 4; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep); } if ( result != 4 ) { return; } indx = context.giveIntVarIndx(); for ( i = 1; i <= 4; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } if ( context.getScalarAlgo() == SA_ISO_SURF ) { for ( i = 0; i < 4; i++ ) { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = 0.; } context.updateFringeTableMinMax(s, 4); tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } else if ( ( ( ( emode == HeatTransferEM ) || ( emode == HeatMass1TransferEM ) ) && ( itype == IST_Temperature ) ) || ( ( emode == HeatMass1TransferEM ) && ( itype == IST_MassConcentration_1 ) ) ) { IntArray dofMask(1); if ( itype == IST_Temperature ) { dofMask.at(1) = T_f; } else { dofMask.at(1) = C_1; } FloatArray r; for ( i = 0; i < 4; i++ ) { this->giveNode(i + 1)->giveUnknownVector(r, dofMask, VM_Total, tStep); s [ i ] = r.at(1); p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = 0.; } context.updateFringeTableMinMax(s, 4); tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } }
void QTrPlaneStress2d :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int t, n [ 3 ], i, indx, result = 0; WCRec p [ 3 ]; GraphicObj *tr; FloatArray v [ 6 ]; double s [ 6 ], ss [ 3 ], defScale; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( gc.giveIntVarMode() == ISM_recovered ) { // ========= plot recovered values ========= for ( i = 1; i <= 6; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], gc.giveIntVarType(), gc.giveIntVarMode(), i, tStep); } if ( result != 6 ) { return; } indx = gc.giveIntVarIndx(); for ( i = 1; i <= 6; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( gc.getScalarAlgo() == SA_ISO_SURF ) { for ( t = 1; t <= 4; t++ ) { if ( t == 1 ) { n [ 0 ] = 1; n [ 1 ] = 4; n [ 2 ] = 6; } else if ( t == 2 ) { n [ 0 ] = 2; n [ 1 ] = 5; n [ 2 ] = 4; } else if ( t == 3 ) { n [ 0 ] = 3; n [ 1 ] = 6; n [ 2 ] = 5; } else { n [ 0 ] = 4; n [ 1 ] = 5; n [ 2 ] = 6; } for ( i = 0; i < 3; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(1, tStep, defScale); p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveUpdatedCoordinate(2, tStep, defScale); p [ i ].z = 0.; } else { // use initial geometry p [ i ].x = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(n [ i ])->giveCoordinate(2); p [ i ].z = 0.; } } //EASValsSetColor(gc.getYieldPlotColor(ratio)); ss [ 0 ] = s [ n [ 0 ] - 1 ]; ss [ 1 ] = s [ n [ 1 ] - 1 ]; ss [ 2 ] = s [ n [ 2 ] - 1 ]; gc.updateFringeTableMinMax(ss, 3); tr = CreateTriangleWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } /* } else if (gc.getScalarAlgo() == SA_ISO_LINE) { * * EASValsSetColor(context.getActiveCrackColor()); * EASValsSetLineWidth(OOFEG_ISO_LINE_WIDTH); * * for (t=1; t<=4; t++) { * if (t==1) {n[0] = 1; n[1]=4; n[2]=6;} * else if (t==2) {n[0]=2; n[1]=5; n[2]=4;} * else if (t==3) {n[0]=3; n[1]=6; n[2]=5;} * else {n[0]=4; n[1]=5; n[2]=6;} * * * for (i=0; i< 3; i++) { * if (gc.getInternalVarsDefGeoFlag()) { * // use deformed geometry * defScale = gc.getDefScale(); * p[i].x = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(1,tStep,defScale); * p[i].y = (FPNum) this->giveNode(n[i])->giveUpdatedCoordinate(2,tStep,defScale); * p[i].z = 0.; * * } else { * p[i].x = (FPNum) this->giveNode(n[i])->giveCoordinate(1); * p[i].y = (FPNum) this->giveNode(n[i])->giveCoordinate(2); * p[i].z = 0.; * } * } * sv[0]=s[n[0]-1]; * sv[1]=s[n[1]-1]; * sv[2]=s[n[2]-1]; * * // isoline implementation * oofeg_drawIsoLinesOnTriangle (p, sv); * } */ } } else if ( gc.giveIntVarMode() == ISM_local ) { // ========= plot local values ========= // (so far implemented for 4 Gauss points only) if ( numberOfGaussPoints != 4 ) { return; } IntArray ind(3); WCRec pp [ 6 ]; for ( i = 0; i < 6; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); pp [ i ].z = 0.; } else { // use initial geometry pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); pp [ i ].z = 0.; } } for ( GaussPoint *gp: *integrationRulesArray [ 0 ] ) { //gpCoords = gp->giveNaturalCoordinates(); switch ( gp->giveNumber() ) { case 3: ind.at(1) = 0; ind.at(2) = 3; ind.at(3) = 5; break; case 4: ind.at(1) = 1; ind.at(2) = 4; ind.at(3) = 3; break; case 2: ind.at(1) = 2; ind.at(2) = 5; ind.at(3) = 4; break; case 5: default: ind.at(1) = 3; ind.at(2) = 4; ind.at(3) = 5; } if ( giveIPValue(v [ 0 ], gp, gc.giveIntVarType(), tStep) == 0 ) { return; } indx = gc.giveIntVarIndx(); for ( i = 1; i <= 3; i++ ) { s [ i - 1 ] = v [ 0 ].at(indx); } for ( i = 0; i < 3; i++ ) { p [ i ].x = pp [ ind.at(i + 1) ].x; p [ i ].y = pp [ ind.at(i + 1) ].y; p [ i ].z = pp [ ind.at(i + 1) ].z; } gc.updateFringeTableMinMax(s, 3); EASValsSetFillStyle(FILL_SOLID); tr = CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]); EGWithMaskChangeAttributes(FILL_MASK | LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } }
void TR_SHELL01 :: drawScalar(oofegGraphicContext &context) { int i, indx, result = 0; WCRec p [ 3 ]; GraphicObj *tr; TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); FloatArray v1, v2, v3; double s [ 3 ], defScale; if ( !context.testElementGraphicActivity(this) ) { return; } if ( !this->giveMaterial()->isActivated(tStep) ) { return; } if ( context.giveIntVarMode() == ISM_recovered ) { result += this->giveInternalStateAtNode(v1, context.giveIntVarType(), context.giveIntVarMode(), 1, tStep); result += this->giveInternalStateAtNode(v2, context.giveIntVarType(), context.giveIntVarMode(), 2, tStep); result += this->giveInternalStateAtNode(v3, context.giveIntVarType(), context.giveIntVarMode(), 3, tStep); } else if ( context.giveIntVarMode() == ISM_local ) { int nip = plate->giveDefaultIntegrationRulePtr()->giveNumberOfIntegrationPoints(); FloatArray a, v(12); v.zero(); for (int _i=1; _i<= nip; _i++) { this->giveIPValue(a, plate->giveDefaultIntegrationRulePtr()->getIntegrationPoint(_i-1), IST_ShellForceMomentumTensor, tStep); v += a; } v.times(1./nip); v1 = v; v2 =v; v3 =v; } indx = context.giveIntVarIndx(); s [ 0 ] = v1.at(indx); s [ 1 ] = v2.at(indx); s [ 2 ] = v3.at(indx); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( context.getScalarAlgo() == SA_ISO_SURF ) { for ( i = 0; i < 3; i++ ) { if ( context.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = context.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale); } else { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3); } } // //EASValsSetColor(gc.getYieldPlotColor(ratio)); context.updateFringeTableMinMax(s, 3); tr = CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } }
void L4Axisymm :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int i, indx, result = 0; WCRec p [ 4 ]; GraphicObj *tr; FloatArray v [ 4 ]; double s [ 4 ], defScale; if ( !gc.testElementGraphicActivity(this) ) { return; } EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( gc.giveIntVarMode() == ISM_recovered ) { for ( i = 1; i <= 4; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], gc.giveIntVarType(), gc.giveIntVarMode(), i, tStep); } if ( result != 4 ) { return; } indx = gc.giveIntVarIndx(); for ( i = 1; i <= 4; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } if ( gc.getScalarAlgo() == SA_ISO_SURF ) { for ( i = 0; i < 4; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); p [ i ].z = 0.; } else { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = 0.; } } //EASValsSetColor(gc.getYieldPlotColor(ratio)); gc.updateFringeTableMinMax(s, 4); tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); /* * } else if (gc.getScalarAlgo() == SA_ISO_LINE) { * * EASValsSetColor(context.getActiveCrackColor()); * EASValsSetLineWidth(OOFEG_ISO_LINE_WIDTH); * * for (i=0; i< 4; i++) { * if (gc.getInternalVarsDefGeoFlag()) { * // use deformed geometry * defScale = gc.getDefScale(); * p[i].x = (FPNum) this->giveNode(i+1)->giveUpdatedCoordinate(1,tStep,defScale); * p[i].y = (FPNum) this->giveNode(i+1)->giveUpdatedCoordinate(2,tStep,defScale); * p[i].z = 0.; * * } else { * p[i].x = (FPNum) this->giveNode(i+1)->giveCoordinate(1); * p[i].y = (FPNum) this->giveNode(i+1)->giveCoordinate(2); * p[i].z = 0.; * } * } * * // isoline implementation * oofeg_drawIsoLinesOnQuad (p, s); * */ } } else if ( gc.giveIntVarMode() == ISM_local ) { if ( numberOfGaussPoints != 4 ) { return; } IntArray ind(4); FloatArray *gpCoords; WCRec pp [ 9 ]; for ( i = 0; i < 4; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); pp [ i ].z = 0.; } else { pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); pp [ i ].z = 0.; } } for ( i = 0; i < 3; i++ ) { pp [ i + 4 ].x = 0.5 * ( pp [ i ].x + pp [ i + 1 ].x ); pp [ i + 4 ].y = 0.5 * ( pp [ i ].y + pp [ i + 1 ].y ); pp [ i + 4 ].z = 0.5 * ( pp [ i ].z + pp [ i + 1 ].z ); } pp [ 7 ].x = 0.5 * ( pp [ 3 ].x + pp [ 0 ].x ); pp [ 7 ].y = 0.5 * ( pp [ 3 ].y + pp [ 0 ].y ); pp [ 7 ].z = 0.5 * ( pp [ 3 ].z + pp [ 0 ].z ); pp [ 8 ].x = 0.25 * ( pp [ 0 ].x + pp [ 1 ].x + pp [ 2 ].x + pp [ 3 ].x ); pp [ 8 ].y = 0.25 * ( pp [ 0 ].y + pp [ 1 ].y + pp [ 2 ].y + pp [ 3 ].y ); pp [ 8 ].z = 0.25 * ( pp [ 0 ].z + pp [ 1 ].z + pp [ 2 ].z + pp [ 3 ].z ); for ( GaussPoint *gp: *this->giveDefaultIntegrationRulePtr() ) { gpCoords = gp->giveNaturalCoordinates(); if ( ( gpCoords->at(1) > 0. ) && ( gpCoords->at(2) > 0. ) ) { ind.at(1) = 0; ind.at(2) = 4; ind.at(3) = 8; ind.at(4) = 7; } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) > 0. ) ) { ind.at(1) = 4; ind.at(2) = 1; ind.at(3) = 5; ind.at(4) = 8; } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) < 0. ) ) { ind.at(1) = 5; ind.at(2) = 2; ind.at(3) = 6; ind.at(4) = 8; } else { ind.at(1) = 6; ind.at(2) = 3; ind.at(3) = 7; ind.at(4) = 8; } if ( giveIPValue(v [ 0 ], gp, gc.giveIntVarType(), tStep) == 0 ) { return; } indx = gc.giveIntVarIndx(); for ( i = 1; i <= 4; i++ ) { s [ i - 1 ] = v [ 0 ].at(indx); } for ( i = 0; i < 4; i++ ) { p [ i ].x = pp [ ind.at(i + 1) ].x; p [ i ].y = pp [ ind.at(i + 1) ].y; p [ i ].z = pp [ ind.at(i + 1) ].z; } gc.updateFringeTableMinMax(s, 4); tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } }
void QPlaneStress2d :: drawScalar(oofegGraphicContext &context) { int i, indx, n [ 4 ], result = 0; WCRec p [ 4 ], pp [ 9 ]; GraphicObj *tr; TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); FloatArray v [ 8 ]; double s [ 9 ], ss [ 4 ], defScale; int ip; GaussPoint *gp; if ( !context.testElementGraphicActivity(this) ) { return; } EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( context.giveIntVarMode() == ISM_recovered ) { // ============ plot the recovered values (smoothed data) =============== for ( i = 1; i <= 8; i++ ) { result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep); } if ( result != 8 ) { return; } indx = context.giveIntVarIndx(); for ( i = 1; i <= 8; i++ ) { s [ i - 1 ] = v [ i - 1 ].at(indx); } // auxiliary value at an added central node // computed as average of the values at all Gauss points s [ 8 ] = 0.; for ( ip = 1; ip <= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints(); ip++ ) { gp = integrationRulesArray [ 0 ]->getIntegrationPoint(ip - 1); if ( giveIPValue(v [ 0 ], gp, context.giveIntVarType(), tStep) == 0 ) { return; } s [ 8 ] += v [ 0 ].at(indx); } s [ 8 ] /= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints(); //s[8] = (s[4]+s[5]+s[6]+s[7])/4.; for ( i = 0; i < 8; i++ ) { if ( context.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = context.getDefScale(); pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); pp [ i ].z = 0.; } else { // use initial geometry pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); pp [ i ].z = 0.; } } pp [ 8 ].x = ( pp [ 4 ].x + pp [ 5 ].x + pp [ 6 ].x + pp [ 7 ].x ) / 4.; pp [ 8 ].y = ( pp [ 4 ].y + pp [ 5 ].y + pp [ 6 ].y + pp [ 7 ].y ) / 4.; pp [ 8 ].z = 0.; for ( int t = 1; t <= 4; t++ ) { if ( t == 1 ) { n [ 0 ] = 0; n [ 1 ] = 4; n [ 2 ] = 8; n [ 3 ] = 7; } else if ( t == 2 ) { n [ 0 ] = 4; n [ 1 ] = 1; n [ 2 ] = 5; n [ 3 ] = 8; } else if ( t == 3 ) { n [ 0 ] = 5; n [ 1 ] = 2; n [ 2 ] = 6; n [ 3 ] = 8; } else { n [ 0 ] = 6; n [ 1 ] = 3; n [ 2 ] = 7; n [ 3 ] = 8; } ss [ 0 ] = s [ n [ 0 ] ]; ss [ 1 ] = s [ n [ 1 ] ]; ss [ 2 ] = s [ n [ 2 ] ]; ss [ 3 ] = s [ n [ 3 ] ]; for ( i = 0; i < 4; i++ ) { p [ i ].x = pp [ n [ i ] ].x; p [ i ].y = pp [ n [ i ] ].y; p [ i ].z = 0.; } if ( context.getScalarAlgo() == SA_ISO_SURF ) { /* * for ( i = 0; i < 4; i++ ) { * if ( context.getInternalVarsDefGeoFlag() ) { * // use deformed geometry * defScale = context.getDefScale(); * p [ i ].x = ( FPNum ) this->giveNode(n[i] + 1)->giveUpdatedCoordinate(1, tStep, defScale); * p [ i ].y = ( FPNum ) this->giveNode(n[i] + 1)->giveUpdatedCoordinate(2, tStep, defScale); * p [ i ].z = 0.; * } else { * // use initial geometry * p [ i ].x = ( FPNum ) this->giveNode(n[i] + 1)->giveCoordinate(1); * p [ i ].y = ( FPNum ) this->giveNode(n[i] + 1)->giveCoordinate(2); * p [ i ].z = 0.; * } * } */ //EASValsSetColor(gc.getYieldPlotColor(ratio)); context.updateFringeTableMinMax(ss, 4); tr = CreateQuadWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ], ss [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } else if ( ( context.getScalarAlgo() == SA_ZPROFILE ) || ( context.getScalarAlgo() == SA_COLORZPROFILE ) ) { //double landScale = context.getLandScale(); for ( i = 0; i < 4; i++ ) { /* * if ( context.getInternalVarsDefGeoFlag() ) { * // use deformed geometry * defScale = context.getDefScale(); * p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); * p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); * p [ i ].z = ss [ i ] * landScale; * } else { * // use initial geometry * p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); * p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); * p [ i ].z = ss [ i ] * landScale; * } */ // this fixes a bug in ELIXIR if ( fabs(ss [ i ]) < 1.0e-6 ) { ss [ i ] = 1.0e-6; } } if ( context.getScalarAlgo() == SA_ZPROFILE ) { EASValsSetColor( context.getDeformedElementColor() ); EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH); tr = CreateQuad3D(p); EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); } else { context.updateFringeTableMinMax(s, 4); tr = CreateQuadWD3D(p, ss [ 0 ], ss [ 1 ], ss [ 2 ], ss [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); } EMAddGraphicsToModel(ESIModel(), tr); } } } else if ( context.giveIntVarMode() == ISM_local ) { // ========== plot the local values (raw data) ===================== if ( numberOfGaussPoints != 4 ) { return; } IntArray ind(4); FloatArray *gpCoords; WCRec pp [ 9 ]; for ( i = 0; i < 8; i++ ) { if ( context.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = context.getDefScale(); pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); pp [ i ].z = 0.; } else { pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); pp [ i ].z = 0.; } } pp [ 8 ].x = 0.25 * ( pp [ 0 ].x + pp [ 1 ].x + pp [ 2 ].x + pp [ 3 ].x ); pp [ 8 ].y = 0.25 * ( pp [ 0 ].y + pp [ 1 ].y + pp [ 2 ].y + pp [ 3 ].y ); pp [ 8 ].z = 0.; for ( ip = 1; ip <= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints(); ip++ ) { gp = integrationRulesArray [ 0 ]->getIntegrationPoint(ip - 1); gpCoords = gp->giveCoordinates(); if ( ( gpCoords->at(1) > 0. ) && ( gpCoords->at(2) > 0. ) ) { ind.at(1) = 0; ind.at(2) = 4; ind.at(3) = 8; ind.at(4) = 7; } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) > 0. ) ) { ind.at(1) = 4; ind.at(2) = 1; ind.at(3) = 5; ind.at(4) = 8; } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) < 0. ) ) { ind.at(1) = 5; ind.at(2) = 2; ind.at(3) = 6; ind.at(4) = 8; } else { ind.at(1) = 6; ind.at(2) = 3; ind.at(3) = 7; ind.at(4) = 8; } if ( giveIPValue(v [ 0 ], gp, context.giveIntVarType(), tStep) == 0 ) { return; } indx = context.giveIntVarIndx(); for ( i = 1; i <= 4; i++ ) { s [ i - 1 ] = v [ 0 ].at(indx); } for ( i = 0; i < 4; i++ ) { p [ i ].x = pp [ ind.at(i + 1) ].x; p [ i ].y = pp [ ind.at(i + 1) ].y; p [ i ].z = pp [ ind.at(i + 1) ].z; } context.updateFringeTableMinMax(s, 4); tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } }
void TR_SHELL02 :: drawScalar(oofegGraphicContext &gc, TimeStep *tStep) { int i, indx, result = 0; WCRec p [ 3 ]; GraphicObj *tr; FloatArray v1, v2, v3; double s [ 3 ], defScale; if ( !gc.testElementGraphicActivity(this) ) { return; } if ( !this->giveMaterial()->isActivated(tStep) ) { return; } if ( gc.giveIntVarMode() == ISM_recovered ) { result += this->giveInternalStateAtNode(v1, gc.giveIntVarType(), gc.giveIntVarMode(), 1, tStep); result += this->giveInternalStateAtNode(v2, gc.giveIntVarType(), gc.giveIntVarMode(), 2, tStep); result += this->giveInternalStateAtNode(v3, gc.giveIntVarType(), gc.giveIntVarMode(), 3, tStep); } else if ( gc.giveIntVarMode() == ISM_local ) { double tot_w = 0.; FloatArray a, v; for ( GaussPoint *gp: *plate->giveDefaultIntegrationRulePtr() ) { this->giveIPValue(a, gp, IST_ShellMomentumTensor, tStep); v.add(gp->giveWeight(), a); tot_w += gp->giveWeight(); } v.times(1. / tot_w); v1 = v; v2 = v; v3 = v; } indx = gc.giveIntVarIndx(); s [ 0 ] = v1.at(indx); s [ 1 ] = v2.at(indx); s [ 2 ] = v3.at(indx); EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( gc.getScalarAlgo() == SA_ISO_SURF ) { for ( i = 0; i < 3; i++ ) { if ( gc.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = gc.getDefScale(); p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(3, tStep, defScale); } else { p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); p [ i ].z = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(3); } } // //EASValsSetColor(gc.getYieldPlotColor(ratio)); gc.updateFringeTableMinMax(s, 3); tr = CreateTriangleWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } }
void QPlaneStrain :: drawScalar(oofegGraphicContext &context) { int i, indx; WCRec p [ 4 ]; GraphicObj *tr; TimeStep *tStep = this->giveDomain()->giveEngngModel()->giveCurrentStep(); FloatArray v [ 4 ]; double s [ 4 ], defScale; if ( !context.testElementGraphicActivity(this) ) { return; } EASValsSetLayer(OOFEG_VARPLOT_PATTERN_LAYER); if ( context.giveIntVarMode() == ISM_recovered ) { // ============ plot the recovered values (smoothed data) =============== /* * for ( i = 1; i <= 4; i++ ) { * result += this->giveInternalStateAtNode(v [ i - 1 ], context.giveIntVarType(), context.giveIntVarMode(), i, tStep); * } * * if ( result != 4 ) { * return; * } * * indx = context.giveIntVarIndx(); * * for ( i = 1; i <= 4; i++ ) { * s [ i - 1 ] = v [ i - 1 ].at(indx); * } * * if ( context.getScalarAlgo() == SA_ISO_SURF ) { * for ( i = 0; i < 4; i++ ) { * if ( context.getInternalVarsDefGeoFlag() ) { * // use deformed geometry * defScale = context.getDefScale(); * p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); * p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); * p [ i ].z = 0.; * } else { * p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); * p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); * p [ i ].z = 0.; * } * } * * //EASValsSetColor(gc.getYieldPlotColor(ratio)); * context.updateFringeTableMinMax(s, 4); * tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); * EGWithMaskChangeAttributes(LAYER_MASK, tr); * EMAddGraphicsToModel(ESIModel(), tr); * } else if ( ( context.getScalarAlgo() == SA_ZPROFILE ) || ( context.getScalarAlgo() == SA_COLORZPROFILE ) ) { * double landScale = context.getLandScale(); * * for ( i = 0; i < 4; i++ ) { * if ( context.getInternalVarsDefGeoFlag() ) { * // use deformed geometry * defScale = context.getDefScale(); * p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); * p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); * p [ i ].z = s [ i ] * landScale; * } else { * p [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); * p [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); * p [ i ].z = s [ i ] * landScale; * } * * // this fixes a bug in ELIXIR * if ( fabs(s [ i ]) < 1.0e-6 ) { * s [ i ] = 1.0e-6; * } * } * * if ( context.getScalarAlgo() == SA_ZPROFILE ) { * EASValsSetColor( context.getDeformedElementColor() ); * EASValsSetLineWidth(OOFEG_DEFORMED_GEOMETRY_WIDTH); * tr = CreateQuad3D(p); * EGWithMaskChangeAttributes(WIDTH_MASK | COLOR_MASK | LAYER_MASK, tr); * } else { * context.updateFringeTableMinMax(s, 4); * tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); * EGWithMaskChangeAttributes(LAYER_MASK, tr); * } * * EMAddGraphicsToModel(ESIModel(), tr); * } */ } else if ( context.giveIntVarMode() == ISM_local ) { // ========== plot the local values (raw data) ===================== if ( numberOfGaussPoints != 4 ) { return; } int ip; GaussPoint *gp; IntArray ind(4); FloatArray *gpCoords; WCRec pp [ 9 ]; for ( i = 0; i < 8; i++ ) { if ( context.getInternalVarsDefGeoFlag() ) { // use deformed geometry defScale = context.getDefScale(); pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(1, tStep, defScale); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveUpdatedCoordinate(2, tStep, defScale); pp [ i ].z = 0.; } else { pp [ i ].x = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(1); pp [ i ].y = ( FPNum ) this->giveNode(i + 1)->giveCoordinate(2); pp [ i ].z = 0.; } } pp [ 8 ].x = 0.25 * ( pp [ 0 ].x + pp [ 1 ].x + pp [ 2 ].x + pp [ 3 ].x ); pp [ 8 ].y = 0.25 * ( pp [ 0 ].y + pp [ 1 ].y + pp [ 2 ].y + pp [ 3 ].y ); pp [ 8 ].z = 0.; for ( ip = 1; ip <= integrationRulesArray [ 0 ]->giveNumberOfIntegrationPoints(); ip++ ) { gp = integrationRulesArray [ 0 ]->getIntegrationPoint(ip - 1); gpCoords = gp->giveCoordinates(); if ( ( gpCoords->at(1) > 0. ) && ( gpCoords->at(2) > 0. ) ) { ind.at(1) = 0; ind.at(2) = 4; ind.at(3) = 8; ind.at(4) = 7; } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) > 0. ) ) { ind.at(1) = 4; ind.at(2) = 1; ind.at(3) = 5; ind.at(4) = 8; } else if ( ( gpCoords->at(1) < 0. ) && ( gpCoords->at(2) < 0. ) ) { ind.at(1) = 5; ind.at(2) = 2; ind.at(3) = 6; ind.at(4) = 8; } else { ind.at(1) = 6; ind.at(2) = 3; ind.at(3) = 7; ind.at(4) = 8; } if ( giveIPValue(v [ 0 ], gp, context.giveIntVarType(), tStep) == 0 ) { return; } indx = context.giveIntVarIndx(); for ( i = 1; i <= 4; i++ ) { s [ i - 1 ] = v [ 0 ].at(indx); } for ( i = 0; i < 4; i++ ) { p [ i ].x = pp [ ind.at(i + 1) ].x; p [ i ].y = pp [ ind.at(i + 1) ].y; p [ i ].z = pp [ ind.at(i + 1) ].z; } context.updateFringeTableMinMax(s, 4); tr = CreateQuadWD3D(p, s [ 0 ], s [ 1 ], s [ 2 ], s [ 3 ]); EGWithMaskChangeAttributes(LAYER_MASK, tr); EMAddGraphicsToModel(ESIModel(), tr); } } }