population random_breeder::breed(const population &generation, const std::vector<double> &fitnesses) const { using namespace std; population ret; tree_crossover_reproducer repr; node_crossover_reproducer mrepr; builder random_builder; experimental_parameters e = exp_params(); const uint32_t growth_tree_min = e["growth_tree_min"]; const uint32_t growth_tree_max = e["growth_tree_max"]; while(ret.size() < generation.size()) { const agent &mother = generation[rand() % generation.size()]; const agent &father = generation[rand() % generation.size()]; agent mutant = random_builder.grow(program_types_set, growth_tree_min, growth_tree_max); const vector<agent> children = repr.reproduce(vector<agent> { mother, father }); if(children.size() > 0) { agent res0 = mrepr.reproduce(vector<agent> { children[0], mutant })[0]; ret.push_back(res0); } if(children.size() > 1) { agent res1 = mrepr.reproduce(vector<agent> { children[1], mutant })[0]; ret.push_back(res1); } } return ret; }
family_vector rnd_selector::select(const population&p,const int fcount) { family_vector result(fcount); for(int i=0;i<fcount;i++) result[i]=std::make_pair(m_random.uniform(0,p.size()-1), m_random.uniform(0,p.size()-1)); return result; }
void adapt_population(population& p) { float F_min = min_element(p.begin(),p.end(),eval_comp)->eval; for(unsigned int i=0; i<p.size(); i++) { float sum = 0.0; for(unsigned int j=0; j<p.size(); j++) sum += p[j].eval - F_min; p[i].adapt = (p[i].eval - F_min)/sum; } }
void report(population& p) { switch(cfg.report_every) { case config::report::none: break; case config::report::avg: { float avg = 0.0; for(auto i = p.begin(); i != p.end(); ++i) avg += i->eval; avg /= static_cast<float>(p.size()); std::cout << iter << ' ' << avg << '\n'; } break; case config::report::best: std::cout << iter << ' ' << p[0].eval << '\n'; break; } if(cfg.report_var) { std::cout << iter << ' ' << statistics::variance(p) << '\n'; } }
std::vector<std::pair<population::size_type,std::vector<population::individual_type>::size_type> > random_r_policy::select(const std::vector<population::individual_type> &immigrants, const population &dest) const { const population::size_type rate_limit = std::min<population::size_type>(get_n_individuals(dest),boost::numeric_cast<population::size_type>(immigrants.size())); // Temporary vectors to store sorted indices of the populations. std::vector<population::size_type> immigrants_idx(boost::numeric_cast<std::vector<population::size_type>::size_type>(immigrants.size())); std::vector<population::size_type> dest_idx(boost::numeric_cast<std::vector<population::size_type>::size_type>(dest.size())); // Fill in the arrays of indices. iota(immigrants_idx.begin(),immigrants_idx.end(),population::size_type(0)); iota(dest_idx.begin(),dest_idx.end(),population::size_type(0)); // Permute the indices (immigrants). for (population::size_type i = 0; i < rate_limit; ++i) { population::size_type next_idx = i + (m_urng() % (rate_limit - i)); if (next_idx != i) { std::swap(immigrants_idx[i], immigrants_idx[next_idx]); } } // Permute the indices (destination). for (population::size_type i = 0; i < rate_limit; ++i) { population::size_type next_idx = i + (m_urng() % (dest.size() - i)); if (next_idx != i) { std::swap(dest_idx[i], dest_idx[next_idx]); } } // Return value. std::vector<std::pair<population::size_type,std::vector<population::individual_type>::size_type> > retval; for (population::size_type i = 0; i < rate_limit; ++i) { retval.push_back(std::make_pair(dest_idx[i],immigrants_idx[i])); } return retval; }
/** * @param[in] pop input population. * * @return the number of individuals to be migrated from/to the population according to the current migration rate and type. */ population::size_type base::get_n_individuals(const population &pop) const { population::size_type retval = 0; switch (m_type) { case absolute: retval = boost::numeric_cast<population::size_type>(m_rate); if (retval > pop.size()) { pagmo_throw(value_error,"absolute migration rate is higher than population size"); } break; case fractional: retval = boost::numeric_cast<population::size_type>(double_to_int::convert(m_rate * pop.size())); pagmo_assert(retval <= pop.size()); } return retval; }
void ms::evolve(population &pop) const { // Let's store some useful variables. const population::size_type NP = pop.size(); // Get out if there is nothing to do. if (m_starts == 0 || NP == 0) { return; } // Local population used in the algorithm iterations. population working_pop(pop); //ms main loop for (int i=0; i< m_starts; ++i) { working_pop.reinit(); m_algorithm->evolve(working_pop); if (working_pop.problem().compare_fc(working_pop.get_individual(working_pop.get_best_idx()).cur_f,working_pop.get_individual(working_pop.get_best_idx()).cur_c, pop.get_individual(pop.get_worst_idx()).cur_f,pop.get_individual(pop.get_worst_idx()).cur_c ) ) { //update best population replacing its worst individual with the good one just produced. pop.set_x(pop.get_worst_idx(),working_pop.get_individual(working_pop.get_best_idx()).cur_x); pop.set_v(pop.get_worst_idx(),working_pop.get_individual(working_pop.get_best_idx()).cur_v); } if (m_screen_output) { std::cout << i << ". " << "\tCurrent iteration best: " << working_pop.get_individual(working_pop.get_best_idx()).cur_f << "\tOverall champion: " << pop.champion().f << std::endl; } } }
/// Evolve method. void monte_carlo::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const problem::base::size_type prob_dimension = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(); const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub(); const population::size_type pop_size = pop.size(); // Get out if there is nothing to do. if (pop_size == 0 || m_max_eval == 0) { return; } // Initialise temporary decision vector, fitness vector and decision vector. decision_vector tmp_x(prob_dimension); fitness_vector tmp_f(prob.get_f_dimension()); constraint_vector tmp_c(prob.get_c_dimension()); // Main loop. for (std::size_t i = 0; i < m_max_eval; ++i) { // Generate a random decision vector. for (problem::base::size_type j = 0; j < prob_dimension - prob_i_dimension; ++j) { tmp_x[j] = boost::uniform_real<double>(lb[j],ub[j])(m_drng); } for (problem::base::size_type j = prob_dimension - prob_i_dimension; j < prob_dimension; ++j) { tmp_x[j] = boost::uniform_int<int>(lb[j],ub[j])(m_urng); } // Compute fitness and constraints. prob.objfun(tmp_f,tmp_x); prob.compute_constraints(tmp_c,tmp_x); // Locate the worst individual. const population::size_type worst_idx = pop.get_worst_idx(); if (prob.compare_fc(tmp_f,tmp_c,pop.get_individual(worst_idx).cur_f,pop.get_individual(worst_idx).cur_c)) { pop.set_x(worst_idx,tmp_x); } } }
void reallocate_stra(population &pop,int stra_idx,int size,double val) { int pop_size=pop.size(); int i; for ( i=0;i<pop_size;i++ ) pop[i].stra[stra_idx].assign(size,val); }
void allocate_pop(population &pop,size_t NumDims,int stra_num,int num_obj) { size_t pop_size=pop.size(); size_t i; for ( i=0;i<pop_size;i++ ) allocate_ind(pop[i],NumDims,stra_num,num_obj); }
void reallocate_stra(population &pop,population &trial_pop,int stra_idx,int size,double val) { int pop_size=pop.size(); int tri_pop_size=trial_pop.size(); if ( pop_size!=tri_pop_size ) { stringstream ss_err; ss_err<<"\n" <<"Error in reallocate_stra:" <<"pop and trial_pop's size mismatch." <<"\n"; throw logic_error(ss_err.str()); } int i; for ( i=0;i<pop_size;i++ ) { pop[i].stra[stra_idx].assign(size,val); trial_pop[i].stra[stra_idx].assign(size,val); } }
family_vector niche_ga::select(const population&p,int count) { dna_cmeans::u_vector data=fill_data_vector(p); int cluster_count=static_cast<int>(p.size()*0.10); dna_cmeans::result r; if(call_nums>=10){ call_nums=0; cm.m_center_sequence.erase(cm.m_center_sequence.begin(),cm.m_center_sequence.end()); } if(cm.m_center_sequence.size()==0){ r=cm.cluster(dna_distance,cluster_count,data.begin(),data.end(),data.size(),1.0); } else{ r=cm.cluster(dna_distance,data.begin(),data.end(),data.size()); } call_nums++; clusters cls=dna_cmeans::u2clsuters(r.u); Random rnd; family_vector result(count); int c=0; // сколько мы уже отобрали для скрещивания while(c!=count){ int father_cluster=rnd.uniform(0,cls.size()-1); if(cls[father_cluster].size()<2) continue; int father_index=rnd.uniform(0,cls[father_cluster].size()-1); int mather_cluster=father_cluster; int mather_index=rnd.uniform(0,cls[mather_cluster].size()-1); result[c]=std::make_pair(cls[father_cluster][father_index].first, cls[mather_cluster][mather_index].first); c++; } return result; }
std::vector<population::individual_type> best_kill_s_policy::select(population &pop) const { pagmo_assert(get_n_individuals(pop) <= pop.size()); // Gets the number of individuals to select const population::size_type migration_rate = get_n_individuals(pop); // Create a temporary array of individuals. std::vector<population::individual_type> result; // Gets the indexes of the best individuals std::vector<population::size_type> best_idx = pop.get_best_idx(migration_rate); // Puts the best individuals in results for (population::size_type i =0; i< migration_rate; ++i) { result.push_back(pop.get_individual(best_idx[i])); } // Remove them from the original population // (note: the champion will still carry information on the best guy ...) for (population::size_type i=0 ; i<migration_rate; ++i) { pop.reinit(best_idx[i]); } return result; }
// perform (\lambda+\mu) -> (\lambda) selection void dgea_alg::select(population& pop, population& child_pop) { int pop_size=pop.size(); int num_dims=m_ppara->get_dim(); int i; population pop_merged(pop_size); vector<vector<double> > prev_x(pop_size); for ( i=0;i<pop_size;i++ ) { prev_x[i].resize(num_dims); pop_merged[i]=pop[i]; // record previous x prev_x[i]=pop[i].x; }// for every individual // push child population at the tail of merged population copy( child_pop.begin(),child_pop.end(),back_inserter(pop_merged) ); nth_element(pop_merged.begin(), pop_merged.begin()+pop_size, pop_merged.end()); //// heap sorting //make_heap(pop_merged.begin(),pop_merged.end()); //for ( i=0;i<pop_size;i++ ) //{ // // record delta x for stat purpose // pop_heap(pop_merged.begin(),pop_merged.end()); // pop_merged.pop_back(); // const individual& new_ind=pop_merged.front(); // pop[i]=new_ind; // m_alg_stat.delta_x[i]=pop[i].x-prev_x[i];// pop_merged:{parents,offsprings} //} for ( i=0;i<pop_size;i++ ) { pop[i]=pop_merged[i]; // record delta x m_alg_stat.delta_x[i] = (pop[i].x-prev_x[i]); }// for every individual }// end function select
/** * Updates the constraints scaling vector with the given population. * @param[in] population pop. */ void cstrs_self_adaptive::update_c_scaling(const population &pop) { if(*m_original_problem != pop.problem()) { pagmo_throw(value_error,"The problem linked to the population is not the same as the problem given in argument."); } // Let's store some useful variables. const population::size_type pop_size = pop.size(); // get the constraints dimension //constraint_vector c(m_original_problem->get_c_dimension(), 0.); problem::base::c_size_type prob_c_dimension = m_original_problem->get_c_dimension(); problem::base::c_size_type number_of_eq_constraints = m_original_problem->get_c_dimension() - m_original_problem->get_ic_dimension(); const std::vector<double> &c_tol = m_original_problem->get_c_tol(); m_c_scaling.resize(m_original_problem->get_c_dimension()); std::fill(m_c_scaling.begin(),m_c_scaling.end(),0.); // evaluates the scaling factor for(population::size_type i=0; i<pop_size; i++) { // updates the current constraint vector const population::individual_type ¤t_individual = pop.get_individual(i); const constraint_vector &c = current_individual.cur_c; // computes scaling with the right definition of the constraints (can be in base problem? currently used // by con2mo as well) for(problem::base::c_size_type j=0; j<number_of_eq_constraints; j++) { m_c_scaling[j] = std::max(m_c_scaling[j], std::max(0., (std::abs(c.at(j)) - c_tol.at(j))) ); } for(problem::base::c_size_type j=number_of_eq_constraints; j<prob_c_dimension; j++) { m_c_scaling[j] = std::max(m_c_scaling[j], std::max(0., c.at(j) - c_tol.at(j)) ); } } }
bool simpleLSM_job::eval_population_fitness(population &pop) { char pwd[FILENAME_MAX]; getcwd(pwd, sizeof(pwd)); log.debug("Current working directory", pwd); float cputime=0; float walltime=0; for (sample &s : pop) { prepare_work_dir_for_sample(s); boost::timer::cpu_timer timer; eval_sample_fitness(s); boost::timer::cpu_times elapsed = timer.elapsed(); log.debug(" CPU TIME: ", (elapsed.user + elapsed.system) / 1e9, " seconds", ", WALLCLOCK TIME: ", elapsed.wall / 1e9, " seconds"); cputime+=((elapsed.user + elapsed.system) / 1e9); walltime+=(elapsed.wall / 1e9); } log.debug("total CPU TIME:", cputime, "total WALLCLOCK TIME:", walltime); log.debug("avergae CPU TIME:", cputime/pop.size(), "avergae WALLCLOCK TIME:", walltime/pop.size()); return true; }
void snopt::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_c_dimension = prob.get_c_dimension(), prob_f_dimension = prob.get_f_dimension(); const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub(); const population::size_type NP = pop.size(); const problem::base::size_type Dc = D - prob_i_dimension; const std::vector<double>::size_type D_ineqc = prob.get_ic_dimension(); const std::vector<double>::size_type D_eqc = prob_c_dimension - D_ineqc; const std::string name = prob.get_name(); //We perform some checks to determine wether the problem/population are suitable for SNOPT if ( prob_i_dimension != 0 ) { pagmo_throw(value_error,"No integer part allowed yet...."); } if ( Dc == 0 ) { pagmo_throw(value_error,"No continuous part...."); } if ( prob_f_dimension != 1 ) { pagmo_throw(value_error,"The problem is not single objective and SNOPT is not suitable to solve it"); } // Get out if there is nothing to do. if (NP == 0 || m_major == 0) { return; } // We allocate memory for the decision vector that will be used in the snopt_function_ di_comodo.x.resize(Dc); di_comodo.c.resize(prob_c_dimension); di_comodo.f.resize(prob_f_dimension); // We construct a SnoptProblem_PAGMO passing the pointers to the problem and the allocated //memory area for the di_comodo vector snoptProblem_PAGMO SnoptProblem(prob, &di_comodo); // Allocate and initialize; integer n = Dc; // Box-constrained non-linear optimization integer neF = 1 + prob_c_dimension; //Memory sizing of A integer lenA = Dc * (1 + prob_c_dimension); //overestimate integer *iAfun = new integer[lenA]; integer *jAvar = new integer[lenA]; doublereal *A = new doublereal[lenA]; //Memory sizing of G int lenG =Dc * (1 + prob_c_dimension); //overestimate integer *iGfun = new integer[lenG]; integer *jGvar = new integer[lenG]; //Decision vector memory allocation doublereal *x = new doublereal[n]; doublereal *xlow = new doublereal[n]; doublereal *xupp = new doublereal[n]; doublereal *xmul = new doublereal[n]; integer *xstate = new integer[n]; //Objective function memory allocation doublereal *F = new doublereal[neF]; doublereal *Flow = new doublereal[neF]; doublereal *Fupp = new doublereal[neF]; doublereal *Fmul = new doublereal[neF]; integer *Fstate = new integer[neF]; integer nxnames = 1; integer nFnames = 1; char *xnames = new char[nxnames*8]; char *Fnames = new char[nFnames*8]; integer ObjRow = 0; doublereal ObjAdd = 0; // Set the upper and lower bounds. And The initial Guess int bestidx = pop.get_best_idx(); for (pagmo::problem::base::size_type i = 0; i < Dc; i++) { xlow[i] = lb[i]; xupp[i] = ub[i]; xstate[i] = 0; x[i] = pop.get_individual(bestidx).cur_x[i]; } // Set the bounds for objective, equality and inequality constraints // 1 - Objective function Flow[0] = -std::numeric_limits<double>::max(); Fupp[0] = std::numeric_limits<double>::max(); F[0] = pop.get_individual(bestidx).cur_f[0]; // 2 - Equality constraints for (pagmo::problem::base::size_type i=0; i<D_eqc; ++i) { Flow[i+1] = 0; Fupp[i+1] = 0; } // 3 - Inequality constraints for (pagmo::problem::base::size_type i=0; i<D_ineqc; ++i) { Flow[i+1+D_eqc] = -std::numeric_limits<double>::max(); Fupp[i+1+D_eqc] = 0; } // Load the data for SnoptProblem ... SnoptProblem.setProblemSize( n, neF ); SnoptProblem.setNeG( lenG ); SnoptProblem.setNeA( lenA ); SnoptProblem.setA ( lenA, iAfun, jAvar, A ); SnoptProblem.setG ( lenG, iGfun, jGvar ); SnoptProblem.setObjective ( ObjRow, ObjAdd ); SnoptProblem.setX ( x, xlow, xupp, xmul, xstate ); SnoptProblem.setF ( F, Flow, Fupp, Fmul, Fstate ); SnoptProblem.setXNames ( xnames, nxnames ); SnoptProblem.setFNames ( Fnames, nFnames ); SnoptProblem.setProbName ( name.c_str() ); //This is limited to be 8 characters!!! SnoptProblem.setUserFun ( snopt_function_ ); //We set some parameters if (m_screen_output) SnoptProblem.setIntParameter("Summary file",6); if (m_file_out) SnoptProblem.setPrintFile ( name.c_str() ); SnoptProblem.setIntParameter ( "Derivative option", 0 ); SnoptProblem.setIntParameter ( "Major iterations limit", m_major); SnoptProblem.setIntParameter ( "Iterations limit",100000); SnoptProblem.setRealParameter( "Major feasibility tolerance", m_feas); SnoptProblem.setRealParameter( "Major optimality tolerance", m_opt); //We set the sparsity structure int neG; try { std::vector<int> iGfun_vect, jGvar_vect; prob.set_sparsity(neG,iGfun_vect,jGvar_vect); for (int i=0; i < neG; i++) { iGfun[i] = iGfun_vect[i]; jGvar[i] = jGvar_vect[i]; } SnoptProblem.setNeG( neG ); SnoptProblem.setNeA( 0 ); SnoptProblem.setG( lenG, iGfun, jGvar ); } //the user did implement the sparsity in the problem catch (not_implemented_error) { SnoptProblem.computeJac(); neG = SnoptProblem.getNeG(); } //the user did not implement the sparsity in the problem if (m_screen_output) { std::cout << "PaGMO 4 SNOPT:" << std::endl << std::endl; std::cout << "Sparsity pattern set, NeG = " << neG << std::endl; std::cout << "iGfun: ["; for (int i=0; i<neG-1; ++i) std::cout << iGfun[i] << ","; std::cout << iGfun[neG-1] << "]" << std::endl; std::cout << "jGvar: ["; for (int i=0; i<neG-1; ++i) std::cout << jGvar[i] << ","; std::cout << jGvar[neG-1] << "]" << std::endl; } integer Cold = 0; //HERE WE CALL snoptA routine!!!!! SnoptProblem.solve( Cold ); //Save the final point making sure it is within the linear bounds std::copy(x,x+n,di_comodo.x.begin()); decision_vector newx = di_comodo.x; std::transform(di_comodo.x.begin(), di_comodo.x.end(), pop.get_individual(bestidx).cur_x.begin(), di_comodo.x.begin(),std::minus<double>()); for (integer i=0; i<n; i++) { newx[i] = std::min(std::max(lb[i],newx[i]),ub[i]); } pop.set_x(bestidx,newx); pop.set_v(bestidx,di_comodo.x); //Clean up memory allocated to call the snoptA routine delete []iAfun; delete []jAvar; delete []A; delete []iGfun; delete []jGvar; delete []x; delete []xlow; delete []xupp; delete []xmul; delete []xstate; delete []F; delete []Flow; delete []Fupp; delete []Fmul; delete []Fstate; delete []xnames; delete []Fnames; }
void bee_colony::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const problem::base::size_type prob_i_dimension = prob.get_i_dimension(), D = prob.get_dimension(), Dc = D - prob_i_dimension, prob_c_dimension = prob.get_c_dimension(); const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub(); const population::size_type NP = (int) pop.size(); //We perform some checks to determine wether the problem/population are suitable for ABC if ( Dc == 0 ) { pagmo_throw(value_error,"There is no continuous part in the problem decision vector for ABC to optimise"); } if ( prob.get_f_dimension() != 1 ) { pagmo_throw(value_error,"The problem is not single objective and ABC is not suitable to solve it"); } if ( prob_c_dimension != 0 ) { pagmo_throw(value_error,"The problem is not box constrained and ABC is not suitable to solve it"); } if (NP < 2) { pagmo_throw(value_error,"for ABC at least 2 individuals in the population are needed"); } // Get out if there is nothing to do. if (m_iter == 0) { return; } // Some vectors used during evolution are allocated here. fitness_vector fnew(prob.get_f_dimension()); decision_vector dummy(D,0); //used for initialisation purposes std::vector<decision_vector > X(NP,dummy); //set of food sources std::vector<fitness_vector> fit(NP); //food sources fitness decision_vector temp_solution(D,0); std::vector<int> trial(NP,0); std::vector<double> probability(NP); population::size_type neighbour = 0; decision_vector::size_type param2change = 0; std::vector<double> selectionfitness(NP), cumsum(NP), cumsumTemp(NP); std::vector <population::size_type> selection(NP); double r = 0; // Copy the food sources position and their fitness for ( population::size_type i = 0; i<NP; i++ ) { X[i] = pop.get_individual(i).cur_x; fit[i] = pop.get_individual(i).cur_f; } // Main ABC loop for (int j = 0; j < m_iter; ++j) { //1- Send employed bees for (population::size_type ii = 0; ii< NP; ++ii) { //selects a random component (only of the continuous part) of the decision vector param2change = boost::uniform_int<decision_vector::size_type>(0,Dc-1)(m_urng); //randomly chose a solution to be used to produce a mutant solution of solution ii //randomly selected solution must be different from ii do{ neighbour = boost::uniform_int<population::size_type>(0,NP-1)(m_urng); } while(neighbour == ii); //copy local solution into temp_solution (the whole decision_vector, also the integer part) for(population::size_type i=0; i<D; ++i) { temp_solution[i] = X[ii][i]; } //mutate temp_solution temp_solution[param2change] = X[ii][param2change] + boost::uniform_real<double>(-1,1)(m_drng) * (X[ii][param2change] - X[neighbour][param2change]); //if generated parameter value is out of boundaries, it is shifted onto the boundaries*/ if (temp_solution[param2change]<lb[param2change]) { temp_solution[param2change] = lb[param2change]; } if (temp_solution[param2change]>ub[param2change]) { temp_solution[param2change] = ub[param2change]; } //Calling void prob.objfun(fitness_vector,decision_vector) is more efficient as no memory allocation occur //A call to fitness_vector prob.objfun(decision_vector) allocates memory for the return value. prob.objfun(fnew,temp_solution); //If the new solution is better than the old one replace it with the mutant one and reset its trial counter if(prob.compare_fitness(fnew, fit[ii])) { X[ii][param2change] = temp_solution[param2change]; pop.set_x(ii,X[ii]); prob.objfun(fit[ii], X[ii]); //update the fitness vector trial[ii] = 0; } else { trial[ii]++; //if the solution can't be improved incrase its trial counter } } //End of loop on the population members //2 - Send onlooker bees //We scale all fitness values from 0 (worst) to absolute value of the best fitness fitness_vector worstfit=fit[0]; for (pagmo::population::size_type i = 1; i < NP;i++) { if (prob.compare_fitness(worstfit,fit[i])) worstfit=fit[i]; } for (pagmo::population::size_type i = 0; i < NP; i++) { selectionfitness[i] = fabs(worstfit[0] - fit[i][0]) + 1.; } // We build and normalise the cumulative sum cumsumTemp[0] = selectionfitness[0]; for (pagmo::population::size_type i = 1; i< NP; i++) { cumsumTemp[i] = cumsumTemp[i - 1] + selectionfitness[i]; } for (pagmo::population::size_type i = 0; i < NP; i++) { cumsum[i] = cumsumTemp[i]/cumsumTemp[NP-1]; } for (pagmo::population::size_type i = 0; i < NP; i++) { r = m_drng(); for (pagmo::population::size_type j = 0; j < NP; j++) { if (cumsum[j] > r) { selection[i]=j; break; } } } for(pagmo::population::size_type t = 0; t < NP; ++t) { r = m_drng(); pagmo::population::size_type ii = selection[t]; //selects a random component (only of the continuous part) of the decision vector param2change = boost::uniform_int<decision_vector::size_type>(0,Dc-1)(m_urng); //randomly chose a solution to be used to produce a mutant solution of solution ii //randomly selected solution must be different from ii do{ neighbour = boost::uniform_int<population::size_type>(0,NP-1)(m_urng); } while(neighbour == ii); //copy local solution into temp_solution (also integer part) for(population::size_type i=0; i<D; ++i) { temp_solution[i] = X[ii][i]; } //mutate temp_solution temp_solution[param2change] = X[ii][param2change] + boost::uniform_real<double>(-1,1)(m_drng) * (X[ii][param2change] - X[neighbour][param2change]); /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/ if (temp_solution[param2change]<lb[param2change]) { temp_solution[param2change] = lb[param2change]; } if (temp_solution[param2change]>ub[param2change]) { temp_solution[param2change] = ub[param2change]; } //Calling void prob.objfun(fitness_vector,decision_vector) is more efficient as no memory allocation occur //A call to fitness_vector prob.objfun(decision_vector) allocates memory for the return value. prob.objfun(fnew,temp_solution); //If the new solution is better than the old one replace it with the mutant one and reset its trial counter if(prob.compare_fitness(fnew, fit[ii])) { X[ii][param2change] = temp_solution[param2change]; pop.set_x(ii,X[ii]); prob.objfun(fit[ii], X[ii]); //update the fitness vector trial[ii] = 0; } else { trial[ii]++; //if the solution can't be improved incrase its trial counter } } //3 - Send scout bees int maxtrialindex = 0; for (population::size_type ii=1; ii<NP; ++ii) { if (trial[ii] > trial[maxtrialindex]) { maxtrialindex = ii; } } if(trial[maxtrialindex] >= m_limit) { //select a new random solution for(problem::base::size_type jj = 0; jj < Dc; ++jj) { X[maxtrialindex][jj] = boost::uniform_real<double>(lb[jj],ub[jj])(m_drng); } trial[maxtrialindex] = 0; pop.set_x(maxtrialindex,X[maxtrialindex]); } } // end of main ABC loop }
/** * Run the co-evolution algorithm * * @param[in,out] pop input/output pagmo::population to be evolved. */ void cstrs_co_evolution::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const population::size_type pop_size = pop.size(); const problem::base::size_type prob_dimension = prob.get_dimension(); // get the constraints dimension problem::base::c_size_type prob_c_dimension = prob.get_c_dimension(); //We perform some checks to determine wether the problem/population are suitable for co-evolution if(prob_c_dimension < 1) { pagmo_throw(value_error,"The problem is not constrained and co-evolution is not suitable to solve it"); } if(prob.get_f_dimension() != 1) { pagmo_throw(value_error,"The problem is multiobjective and co-evolution is not suitable to solve it"); } // Get out if there is nothing to do. if(pop_size == 0) { return; } //get the dimension of the chromosome of P2 unsigned int pop_2_dim = 0; switch(m_method) { case algorithm::cstrs_co_evolution::SIMPLE: { pop_2_dim = 2; break; } case algorithm::cstrs_co_evolution::SPLIT_NEQ_EQ: { pop_2_dim = 4; break; } case algorithm::cstrs_co_evolution::SPLIT_CONSTRAINTS: pop_2_dim = 2*prob.get_c_dimension(); break; default: pagmo_throw(value_error,"The constraints co-evolutionary method is not valid."); break; } // split the population into two populations // the population P1 associated to the modified problem with penalized fitness // and population P2 encoding the penalty weights // Populations size population::size_type pop_1_size = pop_size; population::size_type pop_2_size = m_pop_penalties_size; //Creates problem associated to P2 problem::cstrs_co_evolution_penalty prob_2(prob,pop_2_dim,pop_2_size); prob_2.set_bounds(m_pen_lower_bound,m_pen_upper_bound); //random initialization of the P2 chromosome (needed for the fist generation) std::vector<decision_vector> pop_2_x(pop_2_size); std::vector<fitness_vector> pop_2_f(pop_2_size); for(population::size_type j=0; j<pop_2_size; j++) { pop_2_x[j] = decision_vector(pop_2_dim,0.); // choose random coefficients between lower bound and upper bound for(population::size_type i=0; i<pop_2_dim;i++) { pop_2_x[j][i] = boost::uniform_real<double>(m_pen_lower_bound,m_pen_upper_bound)(m_drng); } } //vector of the population P1. Initialized with clones of the original population std::vector<population> pop_1_vector; for(population::size_type i=0; i<pop_2_size; i++){ pop_1_vector.push_back(population(pop)); } // Main Co-Evolution loop for(int k=0; k<m_gen; k++) { // for each individuals of pop 2, evolve the current population, // and store the position of the feasible idx for(population::size_type j=0; j<pop_2_size; j++) { problem::cstrs_co_evolution prob_1(prob, pop_1_vector.at(j), m_method); // modify the problem by setting decision vector encoding penalty // coefficients w1 and w2 in prob 1 prob_1.set_penalty_coeff(pop_2_x.at(j)); // creating the POPULATION 1 instance based on the // updated prob 1 // prob_1 is a BASE_META???? THE CLONE OF prob_1 IN POP_1 IS AT THE LEVEL OF // THE BASE CLASS AND NOT AT THE LEVEL OF THE BASE_META, NO?!? population pop_1(prob_1,0); // initialize P1 chromosomes. The fitnesses related to problem 1 are computed for(population::size_type i=0; i<pop_1_size; i++) { pop_1.push_back(pop_1_vector.at(j).get_individual(i).cur_x); } // evolve the P1 instance m_original_algo->evolve(pop_1); //updating the original problem population (computation of fitness and constraints) pop_1_vector.at(j).clear(); for(population::size_type i=0; i<pop_1_size; i++){ pop_1_vector.at(j).push_back(pop_1.get_individual(i).cur_x); } // set up penalization variables needs for the population 2 // the constraints has not been evaluated yet. prob_2.update_penalty_coeff(j,pop_2_x.at(j),pop_1_vector.at(j)); } // creating the POPULATION 2 instance based on the // updated prob 2 population pop_2(prob_2,0); // compute the fitness values of the second population for(population::size_type i=0; i<pop_2_size; i++) { pop_2.push_back(pop_2_x[i]); } m_original_algo_penalties->evolve(pop_2); // store the new chromosomes for(population::size_type i=0; i<pop_2_size; i++) { pop_2_x[i] = pop_2.get_individual(i).cur_x; pop_2_f[i] = pop_2.get_individual(i).cur_f; } // Check the exit conditions (every 40 generations, just as DE) if(k % 40 == 0) { // finds the best population population::size_type best_idx = 0; for(population::size_type j=1; j<pop_2_size; j++) { if(pop_2_f[j][0] < pop_2_f[best_idx][0]) { best_idx = j; } } const population ¤t_population = pop_1_vector.at(best_idx); decision_vector tmp(prob_dimension); double dx = 0; for(decision_vector::size_type i=0; i<prob_dimension; i++) { tmp[i] = current_population.get_individual(current_population.get_worst_idx()).best_x[i] - current_population.get_individual(current_population.get_best_idx()).best_x[i]; dx += std::fabs(tmp[i]); } if(dx < m_xtol ) { if (m_screen_output) { std::cout << "Exit condition -- xtol < " << m_xtol << std::endl; } break; } double mah = std::fabs(current_population.get_individual(current_population.get_worst_idx()).best_f[0] - current_population.get_individual(current_population.get_best_idx()).best_f[0]); if(mah < m_ftol) { if(m_screen_output) { std::cout << "Exit condition -- ftol < " << m_ftol << std::endl; } break; } // outputs current values if(m_screen_output) { std::cout << "Generation " << k << " ***" << std::endl; std::cout << " Best global fitness: " << current_population.champion().f << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; } } } // find the best fitness population in the final pop population::size_type best_idx = 0; for(population::size_type j=1; j<pop_2_size; j++) { if(pop_2_f[j][0] < pop_2_f[best_idx][0]) { best_idx = j; } } // store the final population in the main population // can't avoid to recompute the vectors here, otherwise we // clone the problem stored in the population with the // pop = operator! pop.clear(); for(population::size_type i=0; i<pop_1_size; i++) { pop.push_back(pop_1_vector.at(best_idx).get_individual(i).cur_x); } }
population choosiness_breeder::breed(const population &generation, const std::vector<double> &fitnesses) const { using namespace std; population ret; tree_crossover_reproducer repr; node_crossover_reproducer mrepr; builder random_builder; deque<const agent *> mut_gen; for(const auto &a : generation) mut_gen.push_back(&a); experimental_parameters e = exp_params(); const uint32_t growth_tree_min = e["growth_tree_min"]; const uint32_t growth_tree_max = e["growth_tree_max"]; const double max_dist = sqrt(_maze.rows() * _maze.rows() + _maze.columns() * _maze.columns()); _phenotypes.clear(); for(const auto &a : mut_gen) _phenotypes.at(a->final_state().row, a->final_state().col).push_back(a); map<const agent *, vector<const agent *> > matches; for(auto ait = mut_gen.begin(); ait != mut_gen.end();) { const agent *const a = *ait; const vector<vector<const agent *> > plausible_mates = _phenotypes.find_in_range(a->final_state().row, a->final_state().col, a->chromosomes()[0]); vector<const agent *> flattened_mates; for(const auto &v : plausible_mates) flattened_mates.insert(flattened_mates.end(), v.begin(), v.end()); for(auto it = flattened_mates.begin(); it != flattened_mates.end();) { if(distance((*it)->final_state().col, (*it)->final_state().row, a->final_state().col, a->final_state().row) > (*it)->chromosomes()[0]) { it = flattened_mates.erase(it); continue; } ++it; } if(flattened_mates.empty()) { ait = mut_gen.erase(ait); continue; } matches[a] = flattened_mates; ++ait; } const population::size_type new_size = generation.size(); random_shuffle(mut_gen.begin(), mut_gen.end()); while(ret.size() < new_size) { for(const auto &mother : mut_gen) { if(ret.size() >= new_size) break; const vector<const agent *> &fathers = matches[mother]; if(fathers.empty()) continue; const agent &father = *fathers[rand() % fathers.size()]; agent mutant = random_builder.grow(program_types_set, growth_tree_min, growth_tree_max); mutant.set_chromosomes(vector<double> { rand_normal() * max_dist }); vector<agent> children = repr.reproduce(vector<agent> { *mother, father }); if(children.empty()) continue; agent &child = children[0]; child.set_chromosomes(vector<double> { (mother->chromosomes()[0] + father.chromosomes()[0]) / 2.0 }); agent res = mrepr.reproduce(vector<agent> { child, mutant })[0]; res.set_chromosomes(vector<double> { (child.chromosomes()[0] + mutant.chromosomes()[0]) / 2.0 }); ret.push_back(res); } } return ret; }
/** * Updates the penalty coefficients with the given population. * @param[in] population pop. */ void cstrs_self_adaptive::update_penalty_coeff(const population &pop) { if(*m_original_problem != pop.problem()) { pagmo_throw(value_error,"The problem linked to the population is not the same as the problem given in argument."); } // Let's store some useful variables. const population::size_type pop_size = pop.size(); // Get out if there is nothing to do. if (pop_size == 0) { return; } m_map_fitness.clear(); m_map_constraint.clear(); // store f and c in maps depending on the the x hash for(population::size_type i=0; i<pop_size; i++) { const population::individual_type ¤t_individual = pop.get_individual(i); // m_map_fitness.insert(std::pair<std::size_t, fitness_vector>(m_decision_vector_hash(current_individual.cur_x),current_individual.cur_f)); m_map_fitness[m_decision_vector_hash(current_individual.cur_x)]=current_individual.cur_f; m_map_constraint[m_decision_vector_hash(current_individual.cur_x)]=current_individual.cur_c; } std::vector<population::size_type> feasible_idx(0); std::vector<population::size_type> infeasible_idx(0); // store indexes of feasible and non feasible individuals for(population::size_type i=0; i<pop_size; i++) { const population::individual_type ¤t_individual = pop.get_individual(i); if(m_original_problem->feasibility_c(current_individual.cur_c)) { feasible_idx.push_back(i); } else { infeasible_idx.push_back(i); } } // if the population is only feasible, then nothing is done if(infeasible_idx.size() == 0) { update_c_scaling(pop); m_apply_penalty_1 = false; m_scaling_factor = 0.; return; } m_apply_penalty_1 = false; m_scaling_factor = 0.; // updates the c_scaling, needed for solution infeasibility computation update_c_scaling(pop); // evaluate solutions infeasibility //compute_pop_solution_infeasibility(solution_infeasibility, pop); std::vector<double> solution_infeasibility(pop_size); std::fill(solution_infeasibility.begin(),solution_infeasibility.end(),0.); // evaluate solutions infeasibility solution_infeasibility.resize(pop_size); std::fill(solution_infeasibility.begin(),solution_infeasibility.end(),0.); for(population::size_type i=0; i<pop_size; i++) { const population::individual_type ¤t_individual = pop.get_individual(i); // compute the infeasibility of the constraint solution_infeasibility[i] = compute_solution_infeasibility(current_individual.cur_c); } // search position of x_hat_down, x_hat_up and x_hat_round population::size_type hat_down_idx = -1; population::size_type hat_up_idx = -1; population::size_type hat_round_idx = -1; // first case, the population contains at least one feasible solution if(feasible_idx.size() > 0) { // initialize hat_down_idx hat_down_idx = feasible_idx.at(0); // x_hat_down = feasible individual with lowest objective value in p for(population::size_type i=0; i<feasible_idx.size(); i++) { const population::size_type current_idx = feasible_idx.at(i); const population::individual_type ¤t_individual = pop.get_individual(current_idx); if(m_original_problem->compare_fitness(current_individual.cur_f, pop.get_individual(hat_down_idx).cur_f)) { hat_down_idx = current_idx; } } // hat down is now available fitness_vector f_hat_down = pop.get_individual(hat_down_idx).cur_f; // x_hat_up value depends if the population contains infeasible individual with objective // function better than f_hat_down bool pop_contains_infeasible_f_better_x_hat_down = false; for(population::size_type i=0; i<infeasible_idx.size(); i++) { const population::size_type current_idx = infeasible_idx.at(i); const population::individual_type ¤t_individual = pop.get_individual(current_idx); if(m_original_problem->compare_fitness(current_individual.cur_f, f_hat_down)) { pop_contains_infeasible_f_better_x_hat_down = true; // initialize hat_up_idx hat_up_idx = current_idx; break; } } if(pop_contains_infeasible_f_better_x_hat_down) { // hat_up_idx is already initizalized // gets the individual with maximum infeasibility and objfun lower than f_hat_down for(population::size_type i=0; i<infeasible_idx.size(); i++) { const population::size_type current_idx = infeasible_idx.at(i); const population::individual_type ¤t_individual = pop.get_individual(current_idx); if(m_original_problem->compare_fitness(current_individual.cur_f, f_hat_down) && (solution_infeasibility.at(current_idx) >= solution_infeasibility.at(hat_up_idx)) ) { if(solution_infeasibility.at(current_idx) == solution_infeasibility.at(hat_up_idx)) { if(m_original_problem->compare_fitness(current_individual.cur_f, pop.get_individual(hat_up_idx).cur_f)) { hat_up_idx = current_idx; } } else { hat_up_idx = current_idx; } } } // apply penalty 1 m_apply_penalty_1 = true; } else { // all the infeasible soutions have an objective function value greater than f_hat_down // the worst is the one that has the maximum infeasibility // initialize hat_up_idx hat_up_idx = infeasible_idx.at(0); for(population::size_type i=0; i<infeasible_idx.size(); i++) { const population::size_type current_idx = infeasible_idx.at(i); const population::individual_type ¤t_individual = pop.get_individual(current_idx); if(solution_infeasibility.at(current_idx) >= solution_infeasibility.at(hat_up_idx)) { if(solution_infeasibility.at(current_idx) == solution_infeasibility.at(hat_up_idx)) { if(m_original_problem->compare_fitness(pop.get_individual(hat_up_idx).cur_f, current_individual.cur_f)) { hat_up_idx = current_idx; } } else { hat_up_idx = current_idx; } } } // do not apply penalty 1 m_apply_penalty_1 = false; } } else { // case where there is no feasible solution in the population // best is the individual with the lowest infeasibility hat_down_idx = 0; hat_up_idx = 0; for(population::size_type i=0; i<pop_size; i++) { const population::individual_type ¤t_individual = pop.get_individual(i); if(solution_infeasibility.at(i) <= solution_infeasibility.at(hat_down_idx)) { if(solution_infeasibility.at(i) == solution_infeasibility.at(hat_down_idx)) { if(m_original_problem->compare_fitness(current_individual.cur_f, pop.get_individual(hat_down_idx).cur_f)) { hat_down_idx = i; } } else { hat_down_idx = i; } } } // worst individual for(population::size_type i=0; i<pop_size; i++) { const population::individual_type ¤t_individual = pop.get_individual(i); if(solution_infeasibility.at(i) >= solution_infeasibility.at(hat_up_idx)) { if(solution_infeasibility.at(i) == solution_infeasibility.at(hat_up_idx)) { if(m_original_problem->compare_fitness(pop.get_individual(hat_up_idx).cur_f, current_individual.cur_f)) { hat_up_idx = i; } } else { hat_up_idx = i; } } } // apply penalty 1 to the population m_apply_penalty_1 = true; } // stores the hat round idx, i.e. the solution with highest objective // function value in the population hat_round_idx = 0; for(population::size_type i=0; i<pop_size; i++) { const population::individual_type ¤t_individual = pop.get_individual(i); if(m_original_problem->compare_fitness(pop.get_individual(hat_round_idx).cur_f, current_individual.cur_f)) { hat_round_idx = i; } } // get the objective function values of the three individuals m_f_hat_round = pop.get_individual(hat_round_idx).cur_f; m_f_hat_down = pop.get_individual(hat_down_idx).cur_f; m_f_hat_up = pop.get_individual(hat_up_idx).cur_f; // get the solution infeasibility values of the three individuals m_i_hat_round = solution_infeasibility.at(hat_round_idx); m_i_hat_down = solution_infeasibility.at(hat_down_idx); m_i_hat_up = solution_infeasibility.at(hat_up_idx); // computes the scaling factor m_scaling_factor = 0.; // evaluates scaling factor if(m_original_problem->compare_fitness(m_f_hat_down, m_f_hat_up)) { m_scaling_factor = (m_f_hat_round[0] - m_f_hat_up[0]) / m_f_hat_up[0]; } else { m_scaling_factor = (m_f_hat_round[0] - m_f_hat_down[0]) / m_f_hat_down[0]; } if(m_f_hat_up[0] == m_f_hat_round[0]) { m_scaling_factor = 0.; } }
/** * The best member of the population will be used as starting point for the minimisation process. The algorithm will stop * if the gradient falls below the grad_tol parameter, if the maximum number of iterations max_iter is exceeded or if * the inner GSL routine call reports an error (which will be logged on std::cout). After the end of the minimisation process, * the minimised decision vector will replace the best individual in the population, after being modified to fall within * the problem bounds if necessary. * * @param[in,out] pop population to evolve. */ void gsl_gradient::evolve(population &pop) const { // Do nothing if the population is empty. if (!pop.size()) { return; } // Useful variables. const problem::base &problem = pop.problem(); if (problem.get_f_dimension() != 1) { pagmo_throw(value_error,"this algorithm does not support multi-objective optimisation"); } if (problem.get_c_dimension()) { pagmo_throw(value_error,"this algorithm does not support constrained optimisation"); } const problem::base::size_type cont_size = problem.get_dimension() - problem.get_i_dimension(); if (!cont_size) { pagmo_throw(value_error,"the problem has no continuous part"); } // Extract the best individual. const population::size_type best_ind_idx = pop.get_best_idx(); const population::individual_type &best_ind = pop.get_individual(best_ind_idx); // GSL wrapper parameters structure. objfun_wrapper_params params; params.p = &problem; // Integer part of the temporay decision vector must be filled with the integer part of the best individual, // which will not be optimised. params.x.resize(problem.get_dimension()); std::copy(best_ind.cur_x.begin() + cont_size, best_ind.cur_x.end(), params.x.begin() + cont_size); params.f.resize(1); params.step_size = m_numdiff_step_size; // GSL function structure. gsl_multimin_function_fdf gsl_func; gsl_func.n = boost::numeric_cast<std::size_t>(cont_size); gsl_func.f = &objfun_wrapper; gsl_func.df = &d_objfun_wrapper; gsl_func.fdf = &fd_objfun_wrapper; gsl_func.params = (void *)¶ms; // Minimiser. gsl_multimin_fdfminimizer *s = 0; // This will be the starting point. gsl_vector *x = 0; // Here we start the allocations. // Recast as size_t here, in order to avoid potential overflows later. const std::size_t s_cont_size = boost::numeric_cast<std::size_t>(cont_size); // Allocate and check the allocation results. x = gsl_vector_alloc(s_cont_size); const gsl_multimin_fdfminimizer_type *minimiser = get_gsl_minimiser_ptr(); pagmo_assert(minimiser); s = gsl_multimin_fdfminimizer_alloc(minimiser,s_cont_size); // Check the allocations. check_allocs(x,s); // Fill in the starting point (from the best individual). for (std::size_t i = 0; i < s_cont_size; ++i) { gsl_vector_set(x,i,best_ind.cur_x[i]); } // Init the solver. gsl_multimin_fdfminimizer_set(s,&gsl_func,x,m_step_size,m_tol); // Iterate. std::size_t iter = 0; int status; try { do { ++iter; status = gsl_multimin_fdfminimizer_iterate(s); if (status) { break; } status = gsl_multimin_test_gradient(s->gradient,m_grad_tol); } while (status == GSL_CONTINUE && iter < m_max_iter); } catch (const std::exception &e) { // Cleanup and re-throw. cleanup(x,s); throw e; } catch (...) { // Cleanup and throw. cleanup(x,s); pagmo_throw(std::runtime_error,"unknown exception caught in gsl_gradient::evolve"); } // Free up resources. cleanup(x,s); // Check the generated individual and change it to respect the bounds as necessary. for (problem::base::size_type i = 0; i < cont_size; ++i) { if (params.x[i] < problem.get_lb()[i]) { params.x[i] = problem.get_lb()[i]; } if (params.x[i] > problem.get_ub()[i]) { params.x[i] = problem.get_ub()[i]; } } // Replace the best individual. pop.set_x(best_ind_idx,params.x); }
void sa_corana::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_c_dimension = prob.get_c_dimension(), prob_f_dimension = prob.get_f_dimension(); const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub(); const population::size_type NP = pop.size(); const problem::base::size_type Dc = D - prob_i_dimension; //We perform some checks to determine wether the problem/population are suitable for sa_corana if ( Dc == 0 ) { pagmo_throw(value_error,"There is no continuous part in the problem decision vector for sa_corana to optimise"); } if ( prob_c_dimension != 0 ) { pagmo_throw(value_error,"The problem is not box constrained and sa_corana is not suitable to solve it"); } if ( prob_f_dimension != 1 ) { pagmo_throw(value_error,"The problem is not single objective and sa_corana is not suitable to solve it"); } //Determines the number of temperature adjustment for the annealing procedure const size_t n_T = m_niter / (m_step_adj * m_bin_size * Dc); // Get out if there is nothing to do. if (NP == 0 || m_niter == 0) { return; } if (n_T == 0) { pagmo_throw(value_error,"n_T is zero, increase niter"); } //Starting point is the best individual const int bestidx = pop.get_best_idx(); const decision_vector &x0 = pop.get_individual(bestidx).cur_x; const fitness_vector &fit0 = pop.get_individual(bestidx).cur_f; //Determines the coefficient to dcrease the temperature const double Tcoeff = std::pow(m_Tf/m_Ts,1.0/(double)(n_T)); //Stores the current and new points decision_vector xNEW = x0, xOLD = xNEW; fitness_vector fNEW = fit0, fOLD = fNEW; //Stores the adaptive steps of each component (integer part included but not used) decision_vector step(D,m_range); //Stores the number of accepted points per component (integer part included but not used) std::vector<int> acp(D,0) ; double ratio = 0, currentT = m_Ts, probab = 0; //Main SA loops for (size_t jter = 0; jter < n_T; ++jter) { for (int mter = 0; mter < m_step_adj; ++mter) { for (int kter = 0; kter < m_bin_size; ++kter) { size_t nter = boost::uniform_int<int>(0,Dc-1)(m_urng); for (size_t numb = 0; numb < Dc ; ++numb) { nter = (nter + 1) % Dc; //We modify the current point actsol by mutating its nter component within //a step that we will later adapt xNEW[nter] = xOLD[nter] + boost::uniform_real<double>(-1,1)(m_drng) * step[nter] * (ub[nter]-lb[nter]); // If new solution produced is infeasible ignore it if ((xNEW[nter] > ub[nter]) || (xNEW[nter] < lb[nter])) { xNEW[nter]=xOLD[nter]; continue; } //And we valuate the objective function for the new point prob.objfun(fNEW,xNEW); // We decide wether to accept or discard the point if (prob.compare_fitness(fNEW,fOLD) ) { //accept xOLD[nter] = xNEW[nter]; fOLD = fNEW; acp[nter]++; //Increase the number of accepted values } else { //test it with Boltzmann to decide the acceptance probab = exp ( - fabs(fOLD[0] - fNEW[0] ) / currentT ); // we compare prob with a random probability. if (probab > m_drng()) { xOLD[nter] = xNEW[nter]; fOLD = fNEW; acp[nter]++; //Increase the number of accepted values } else { xNEW[nter] = xOLD[nter]; } } // end if } // end for(nter = 0; ... } // end for(kter = 0; ... // adjust the step (adaptively) for (size_t iter = 0; iter < Dc; ++iter) { ratio = (double)acp[iter]/(double)m_bin_size; acp[iter] = 0; //reset the counter if (ratio > .6) { //too many acceptances, increase the step by a factor 3 maximum step[iter] = step [iter] * (1 + 2 *(ratio - .6)/.4); } else { if (ratio < .4) { //too few acceptance, decrease the step by a factor 3 maximum step [iter]= step [iter] / (1 + 2 * ((.4 - ratio)/.4)); }; }; //And if it becomes too large, reset it to its initial value if ( step[iter] > m_range ) { step [iter] = m_range; }; } } // Cooling schedule currentT *= Tcoeff; } if ( prob.compare_fitness(fOLD,fit0) ){ pop.set_x(bestidx,xOLD); //new evaluation is possible here...... std::transform(xOLD.begin(), xOLD.end(), pop.get_individual(bestidx).cur_x.begin(), xOLD.begin(),std::minus<double>()); pop.set_v(bestidx,xOLD); } }
void ihs::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const problem::base::size_type prob_dimension = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(); const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub(); const population::size_type pop_size = pop.size(); // Get out if there is nothing to do. if (pop_size == 0 || m_gen == 0) { return; } decision_vector lu_diff(prob_dimension); for (problem::base::size_type i = 0; i < prob_dimension; ++i) { lu_diff[i] = ub[i] - lb[i]; } // Int distribution to be used when picking random individuals. boost::uniform_int<population::size_type> uni_int(0,pop_size - 1); const double c = std::log(m_bw_min/m_bw_max) / m_gen; // Temporary individual used during evolution. population::individual_type tmp; tmp.cur_x.resize(prob_dimension); tmp.cur_f.resize(prob.get_f_dimension()); tmp.cur_c.resize(prob.get_c_dimension()); for (std::size_t g = 0; g < m_gen; ++g) { const double ppar_cur = m_ppar_min + ((m_ppar_max - m_ppar_min) * g) / m_gen, bw_cur = m_bw_max * std::exp(c * g); // Continuous part. for (problem::base::size_type i = 0; i < prob_dimension - prob_i_dimension; ++i) { if (m_drng() < m_phmcr) { // tmp's i-th chromosome element is the one from a randomly chosen individual. tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i]; // Do pitch adjustment with ppar_cur probability. if (m_drng() < ppar_cur) { // Randomly, add or subtract pitch from the current chromosome element. if (m_drng() > .5) { tmp.cur_x[i] += m_drng() * bw_cur * lu_diff[i]; } else { tmp.cur_x[i] -= m_drng() * bw_cur * lu_diff[i]; } // Handle the case in which we added or subtracted too much and ended up out // of boundaries. if (tmp.cur_x[i] > ub[i]) { tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng); } else if (tmp.cur_x[i] < lb[i]) { tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng); } } } else { // Pick randomly within the bounds. tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng); } } //Integer Part for (problem::base::size_type i = prob_dimension - prob_i_dimension; i < prob_dimension; ++i) { if (m_drng() < m_phmcr) { tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i]; if (m_drng() < ppar_cur) { if (m_drng() > .5) { tmp.cur_x[i] += double_to_int::convert(m_drng() * bw_cur * lu_diff[i]); } else { tmp.cur_x[i] -= double_to_int::convert(m_drng() * bw_cur * lu_diff[i]); } // Wrap over in case we went past the bounds. if (tmp.cur_x[i] > ub[i]) { tmp.cur_x[i] = lb[i] + double_to_int::convert(tmp.cur_x[i] - ub[i]) % static_cast<int>(lu_diff[i]); } else if (tmp.cur_x[i] < lb[i]) { tmp.cur_x[i] = ub[i] - double_to_int::convert(lb[i] - tmp.cur_x[i]) % static_cast<int>(lu_diff[i]); } } } else { // Pick randomly within the bounds. tmp.cur_x[i] = boost::uniform_int<int>(lb[i],ub[i])(m_urng); } } // And we push him back pop.push_back(tmp.cur_x); // We locate the worst individual. const population::size_type worst_idx = pop.get_worst_idx(); // And we get rid of him :) pop.erase(worst_idx); } }
void ipopt::evolve(population &pop) const { // Let's store some useful variables. const problem::base &prob = pop.problem(); const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_f_dimension = prob.get_f_dimension(); const population::size_type NP = pop.size(); const problem::base::size_type Dc = D - prob_i_dimension; const std::string name = prob.get_name(); //We perform some checks to determine wether the problem/population are suitable for IPOPT if ( prob_i_dimension != 0 ) { pagmo_throw(value_error,"No integer part allowed yet...."); } if ( Dc == 0 ) { pagmo_throw(value_error,"No continuous part...."); } if ( prob_f_dimension != 1 ) { pagmo_throw(value_error,"The problem is not single objective and IPOPT is not suitable to solve it"); } // Get out if there is nothing to do. if (NP == 0 || m_max_iter == 0) { return; } //create an instance of the ipopt_problem ::Ipopt::SmartPtr< ::Ipopt::TNLP> pagmo_nlp = new ipopt_problem(&pop); //create an instance of the IpoptApplication ::Ipopt::SmartPtr< ::Ipopt::IpoptApplication> m_app = new ::Ipopt::IpoptApplication(m_screen_output,false); if (!m_nlp_scaling_method) { m_app->Options()->SetStringValue("nlp_scaling_method", "none"); } m_app->Options()->SetStringValue("hessian_approximation", "limited-memory"); m_app->Options()->SetIntegerValue("print_level", 5); // Termination Criteria 1: iterations m_app->Options()->SetIntegerValue("max_iter", m_max_iter); // Termination Criteria 2: tolerance m_app->Options()->SetNumericValue("tol", 1.); m_app->Options()->SetNumericValue("dual_inf_tol", m_dual_inf_tol); m_app->Options()->SetNumericValue("constr_viol_tol", m_constr_viol_tol); m_app->Options()->SetNumericValue("compl_inf_tol", m_compl_inf_tol); m_app->Options()->SetNumericValue("obj_scaling_factor", m_obj_scaling_factor); m_app->Options()->SetNumericValue("mu_init", m_mu_init); // Intialize the IpoptApplication and process the options Ipopt::ApplicationReturnStatus status; status = m_app->Initialize(); if (status != Ipopt::Solve_Succeeded) { pagmo_throw(value_error, "Error during IPOPT initialization!"); } // Ask Ipopt to solve the problem status = m_app->OptimizeTNLP(pagmo_nlp); }
/** * Runs the Inverover algorithm for the number of generations specified in the constructor. * * @param[in,out] pop input/output pagmo::population to be evolved. */ void inverover::evolve(population &pop) const { const problem::base_tsp* prob; //check if problem is of type pagmo::problem::base_tsp try { const problem::base_tsp& tsp_prob = dynamic_cast<const problem::base_tsp &>(pop.problem()); prob = &tsp_prob; } catch (const std::bad_cast& e) { pagmo_throw(value_error,"Problem not of type pagmo::problem::base_tsp"); } // Let's store some useful variables. const population::size_type NP = pop.size(); const problem::base::size_type Nv = prob->get_n_cities(); // Initializing the random number generators boost::uniform_real<double> uniform(0.0, 1.0); boost::variate_generator<boost::lagged_fibonacci607 &, boost::uniform_real<double> > unif_01(m_drng, uniform); boost::uniform_int<int> NPless1(0, NP - 2); boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_NPless1(m_urng, NPless1); boost::uniform_int<int> Nv_(0, Nv - 1); boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_Nv(m_urng, Nv_); boost::uniform_int<int> Nvless1(0, Nv - 2); boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_Nvless1(m_urng, Nvless1); //create own local population std::vector<decision_vector> my_pop(NP, decision_vector(Nv)); //check if some individuals in the population that is passed as a function input are feasible. bool feasible; std::vector<int> not_feasible; for (size_t i = 0; i < NP; i++) { feasible = prob->feasibility_x(pop.get_individual(i).cur_x); if(feasible) { //if feasible store it in my_pop switch(prob->get_encoding()) { case problem::base_tsp::FULL: my_pop[i] = prob->full2cities(pop.get_individual(i).cur_x); break; case problem::base_tsp::RANDOMKEYS: my_pop[i] = prob->randomkeys2cities(pop.get_individual(i).cur_x); break; case problem::base_tsp::CITIES: my_pop[i] = pop.get_individual(i).cur_x; break; } } else { not_feasible.push_back(i); } } //replace the not feasible individuals by feasible ones int i; switch (m_ini_type) { case 0: { //random initialization (produces feasible individuals) for (size_t ii = 0; ii < not_feasible.size(); ii++) { i = not_feasible[ii]; for (size_t j = 0; j < Nv; j++) { my_pop[i][j] = j; } } int tmp; size_t rnd_idx; for (size_t j = 1; j < Nv-1; j++) { boost::uniform_int<int> dist_(j, Nv - 1); boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > dist(m_urng,dist_); for (size_t ii = 0; ii < not_feasible.size(); ii++) { i = not_feasible[ii]; rnd_idx = dist(); tmp = my_pop[i][j]; my_pop[i][j] = my_pop[i][rnd_idx]; my_pop[i][rnd_idx] = tmp; } } break; } case 1: { //initialize with nearest neighbor algorithm std::vector<int> starting_notes(std::max(Nv,not_feasible.size())); for (size_t j = 0; j < starting_notes.size(); j++) { starting_notes[j] = j; } //std::shuffle(starting_notes.begin(), starting_notes.end(), m_urng); for (size_t ii = 0; ii < not_feasible.size(); ii++) { i = not_feasible[ii]; pagmo::population one_ind_pop(pop.problem(), 1); std::cout << starting_notes[i] << ' '; pagmo::algorithm::nn_tsp algo(starting_notes[i] % Nv); algo.evolve(one_ind_pop); switch( prob->get_encoding() ) { case problem::base_tsp::FULL: my_pop[i] = prob->full2cities(one_ind_pop.get_individual(0).cur_x); break; case problem::base_tsp::RANDOMKEYS: my_pop[i] = prob->randomkeys2cities(one_ind_pop.get_individual(0).cur_x); break; case problem::base_tsp::CITIES: my_pop[i] = one_ind_pop.get_individual(0).cur_x; break; } std::cout << i << ' ' << one_ind_pop.get_individual(0).cur_f << std::endl; } break; } default: pagmo_throw(value_error,"Invalid initialization type"); } std::vector<fitness_vector> fitness(NP, fitness_vector(1)); for(size_t i=0; i < NP; i++){ switch( prob->get_encoding() ) { case problem::base_tsp::FULL: fitness[i] = prob->objfun(prob->full2cities(my_pop[i])); break; case problem::base_tsp::RANDOMKEYS: fitness[i] = prob->objfun(prob->cities2randomkeys(my_pop[i], pop.get_individual(i).cur_x)); break; case problem::base_tsp::CITIES: fitness[i] = prob->objfun(my_pop[i]); break; } } decision_vector tmp_tour(Nv); bool stop, changed; size_t rnd_num, i2, pos1_c1, pos1_c2, pos2_c1, pos2_c2; //pos2_c1 denotes the position of city1 in parent2 fitness_vector fitness_tmp; //InverOver main loop for(int iter = 0; iter < m_gen; iter++) { for(size_t i1 = 0; i1 < NP; i1++) { tmp_tour = my_pop[i1]; pos1_c1 = unif_Nv(); stop = false; changed = false; while(!stop){ if(unif_01() < m_ri) { rnd_num = unif_Nvless1(); pos1_c2 = (rnd_num == pos1_c1? Nv-1:rnd_num); } else { i2 = unif_NPless1(); i2 = (i2 == i1? NP-1:i2); pos2_c1 = std::find(my_pop[i2].begin(),my_pop[i2].end(),tmp_tour[pos1_c1])-my_pop[i2].begin(); pos2_c2 = (pos2_c1 == Nv-1? 0:pos2_c1+1); pos1_c2 = std::find(tmp_tour.begin(),tmp_tour.end(),my_pop[i2][pos2_c2])-tmp_tour.begin(); } stop = (abs(pos1_c1-pos1_c2)==1 || static_cast<problem::base::size_type>(abs(pos1_c1-pos1_c2))==Nv-1); if(!stop) { changed = true; if(pos1_c1<pos1_c2) { for(size_t l=0; l < (double (pos1_c2-pos1_c1-1)/2); l++) { std::swap(tmp_tour[pos1_c1+1+l],tmp_tour[pos1_c2-l]); } pos1_c1 = pos1_c2; } else { //inverts the section from c1 to c2 (see documentation Note3) for(size_t l=0; l < (double (pos1_c1-pos1_c2-1)/2); l++) { std::swap(tmp_tour[pos1_c2+l],tmp_tour[pos1_c1-l-1]); } pos1_c1 = (pos1_c2 == 0? Nv-1:pos1_c2-1); } } } //end of while loop (looping over a single indvidual) if(changed) { switch(prob->get_encoding()) { case problem::base_tsp::FULL: fitness_tmp = prob->objfun(prob->full2cities(tmp_tour)); break; case problem::base_tsp::RANDOMKEYS: //using "randomly" index 0 as a temporary template fitness_tmp = prob->objfun(prob->cities2randomkeys(tmp_tour, pop.get_individual(0).cur_x)); break; case problem::base_tsp::CITIES: fitness_tmp = prob->objfun(tmp_tour); break; } if(prob->compare_fitness(fitness_tmp,fitness[i1])) { //replace individual? my_pop[i1] = tmp_tour; fitness[i1][0] = fitness_tmp[0]; } } } // end of loop over population } // end of loop over generations //change representation of tour for (size_t ii = 0; ii < NP; ii++) { switch(prob->get_encoding()) { case problem::base_tsp::FULL: pop.set_x(ii,prob->cities2full(my_pop[ii])); break; case problem::base_tsp::RANDOMKEYS: pop.set_x(ii,prob->cities2randomkeys(my_pop[ii],pop.get_individual(ii).cur_x)); break; case problem::base_tsp::CITIES: pop.set_x(ii,my_pop[ii]); break; } } } // end of evolve
// Selection implementation. std::vector<std::pair<population::size_type,std::vector<population::individual_type>::size_type> > worst_r_policy::select(const std::vector<population::individual_type> &immigrants, const population &dest) const { const population::size_type rate_limit = std::min<population::size_type>(get_n_individuals(dest),boost::numeric_cast<population::size_type>(immigrants.size())); // Temporary vectors to store sorted indices of the populations. std::vector<population::size_type> immigrants_idx(boost::numeric_cast<std::vector<population::size_type>::size_type>(immigrants.size())); std::vector<population::size_type> dest_idx(boost::numeric_cast<std::vector<population::size_type>::size_type>(dest.size())); // Fill in the arrays of indices. iota(immigrants_idx.begin(),immigrants_idx.end(),population::size_type(0)); iota(dest_idx.begin(),dest_idx.end(),population::size_type(0)); // Sort the arrays of indices. // From best to worst. std::sort(immigrants_idx.begin(),immigrants_idx.end(),indirect_individual_sorter<std::vector<population::individual_type> >(immigrants,dest)); // From worst to best. std::sort(dest_idx.begin(),dest_idx.end(),indirect_individual_sorter<population>(dest,dest)); std::reverse(dest_idx.begin(),dest_idx.end()); // Create the result. std::vector<std::pair<population::size_type,std::vector<population::individual_type>::size_type> > result; for (population::size_type i = 0; i < rate_limit; ++i) { // Similar to fair policy, but replace unconditionally, without checking if the incoming individuals are better. result.push_back(std::make_pair(dest_idx[i],immigrants_idx[i])); } return result; }
void evaluate_population(population& p) { for(unsigned int i=0; i<p.size(); i++) p[i].eval = evaluation(p[i].perm); }
// Selection implementation. std::vector<std::pair<population::size_type,std::vector<population::individual_type>::size_type> > hv_fair_r_policy::select(const std::vector<population::individual_type> &immigrants, const population &dest) const { // Fall back to fair_r_policy when facing a single-objective problem. if (dest.problem().get_f_dimension() == 1) { return fair_r_policy(m_rate, m_type).select(immigrants, dest); } std::vector<population::individual_type> filtered_immigrants; filtered_immigrants.reserve(immigrants.size()); // Keeps information on the original indexing of immigrants after we filter out the duplicates std::vector<unsigned int> original_immigrant_indices; original_immigrant_indices.reserve(immigrants.size()); // Remove the duplicates from the set of immigrants std::vector<population::individual_type>::iterator im_it = (const_cast<std::vector<population::individual_type> &>(immigrants)).begin(); unsigned int im_idx = 0; for( ; im_it != immigrants.end() ; ++im_it) { decision_vector im_x((*im_it).cur_x); bool equal = true; for ( unsigned int idx = 0 ; idx < dest.size() ; ++idx ) { decision_vector isl_x(dest.get_individual(idx).cur_x); equal = true; for (unsigned int d_idx = 0 ; d_idx < im_x.size() ; ++d_idx) { if (im_x[d_idx] != isl_x[d_idx]) { equal = false; break; } } if (equal) { break; } } if (!equal) { filtered_immigrants.push_back(*im_it); original_immigrant_indices.push_back(im_idx); } ++im_idx; } // Computes the number of immigrants to be selected (accounting for the destination pop size) const population::size_type rate_limit = std::min<population::size_type>(get_n_individuals(dest), boost::numeric_cast<population::size_type>(filtered_immigrants.size())); // Defines the retvalue std::vector<std::pair<population::size_type, std::vector<population::individual_type>::size_type> > result; // Skip the remaining computation if there's nothing to do if (rate_limit == 0) { return result; } // Makes a copy of the destination population population pop_copy(dest); // Merge the immigrants to the copy of the destination population for (population::size_type i = 0; i < rate_limit; ++i) { pop_copy.push_back(filtered_immigrants[i].cur_x); } // Population fronts stored as indices of individuals. std::vector< std::vector<population::size_type> > fronts_i = pop_copy.compute_pareto_fronts(); // Population fronts stored as fitness vectors of individuals. std::vector< std::vector<fitness_vector> > fronts_f (fronts_i.size()); // Nadir point is established manually later, first point is a first "safe" candidate. fitness_vector refpoint(pop_copy.get_individual(0).cur_f); // Fill fronts_f with fitness vectors and establish the nadir point for (unsigned int f_idx = 0 ; f_idx < fronts_i.size() ; ++f_idx) { fronts_f[f_idx].resize(fronts_i[f_idx].size()); for (unsigned int p_idx = 0 ; p_idx < fronts_i[f_idx].size() ; ++p_idx) { fronts_f[f_idx][p_idx] = fitness_vector(pop_copy.get_individual(fronts_i[f_idx][p_idx]).cur_f); // Update the nadir point manually for efficiency. for (unsigned int d_idx = 0 ; d_idx < fronts_f[f_idx][p_idx].size() ; ++d_idx) { refpoint[d_idx] = std::max(refpoint[d_idx], fronts_f[f_idx][p_idx][d_idx]); } } } // Epsilon is added to nadir point for (unsigned int d_idx = 0 ; d_idx < refpoint.size() ; ++d_idx) { refpoint[d_idx] += m_nadir_eps; } // Vector for maintaining the original indices of points for augmented population as 0 and 1 std::vector<unsigned int> g_orig_indices(pop_copy.size(), 1); unsigned int no_discarded_immigrants = 0; // Store which front we process (start with the last front) and the number of processed individuals. unsigned int front_idx = fronts_i.size(); // front_idx is equal to the size, since it's decremented right in the main loop unsigned int processed_individuals = 0; // Pairs of (islander index, islander exclusive hypervolume) // Second item is updated later std::vector<std::pair<unsigned int, double> > discarded_islanders; std::vector<std::pair<unsigned int, double> > point_pairs; // index of currently processed point in the point_pair vector. // Initiated to its size (=0) in order to enforce the initial computation on penultimate front. unsigned int current_point = point_pairs.size(); // Stops when we reduce the augmented population to the size of the original population or when the number of discarded islanders reaches the limit while (processed_individuals < filtered_immigrants.size() && discarded_islanders.size() < rate_limit) { // if current front was exhausted, load next one if (current_point == point_pairs.size()) { --front_idx; // Compute contributions std::vector<double> c; // If there exist a dominated front for front at index front_idx if (front_idx + 1 < fronts_f.size()) { std::vector<fitness_vector> merged_front; // Reserve the memory and copy the fronts merged_front.reserve(fronts_f[front_idx].size() + fronts_f[front_idx + 1].size()); copy(fronts_f[front_idx].begin(), fronts_f[front_idx].end(), back_inserter(merged_front)); copy(fronts_f[front_idx + 1].begin(), fronts_f[front_idx +1].end(), back_inserter(merged_front)); hypervolume hv(merged_front, false); c = hv.contributions(refpoint); } else { hypervolume hv(fronts_f[front_idx], false); c = hv.contributions(refpoint); } // Initiate the pairs and sort by second item (exclusive volume) point_pairs.resize(fronts_f[front_idx].size()); for(unsigned int i = 0 ; i < fronts_f[front_idx].size() ; ++i) { point_pairs[i] = std::make_pair(i, c[i]); } current_point = 0; std::sort(point_pairs.begin(), point_pairs.end(), sort_point_pairs_asc); } unsigned int orig_lc_idx = fronts_i[front_idx][point_pairs[current_point].first]; if (orig_lc_idx < dest.size()) { discarded_islanders.push_back(std::make_pair(orig_lc_idx, 0.0)); } else { ++no_discarded_immigrants; } // Flag given individual as discarded g_orig_indices[orig_lc_idx] = 0; ++processed_individuals; ++current_point; } // Number of non-discarded immigrants unsigned int no_available_immigrants = boost::numeric_cast<unsigned int>(filtered_immigrants.size() - no_discarded_immigrants); // Pairs of (immigrant index, immigrant exclusive hypervolume) // Second item is updated later std::vector<std::pair<unsigned int, double> > available_immigrants; available_immigrants.reserve(no_available_immigrants); for(unsigned int idx = dest.size() ; idx < pop_copy.size() ; ++idx) { // If the immigrant was not discarded add it to the available set if ( g_orig_indices[idx] == 1 ) { available_immigrants.push_back(std::make_pair(idx, 0.0)); } } // Aggregate all points to establish the hypervolume contribution of available immigrants and discarded islanders std::vector<fitness_vector> merged_fronts; merged_fronts.reserve(pop_copy.size()); for(unsigned int idx = 0 ; idx < pop_copy.size() ; ++idx) { merged_fronts.push_back(pop_copy.get_individual(idx).cur_f); } hypervolume hv(merged_fronts, false); std::vector<std::pair<unsigned int, double> >::iterator it; for(it = available_immigrants.begin() ; it != available_immigrants.end() ; ++it) { (*it).second = hv.exclusive((*it).first, refpoint); } for(it = discarded_islanders.begin() ; it != discarded_islanders.end() ; ++it) { (*it).second = hv.exclusive((*it).first, refpoint); } // Sort islanders and immigrants according to exclusive hypervolume sort(available_immigrants.begin(), available_immigrants.end(), hv_fair_r_policy::ind_cmp); sort(discarded_islanders.begin(), discarded_islanders.end(), hv_fair_r_policy::ind_cmp); // Number of exchanges is the minimum of the number of non discarded immigrants and the number of discarded islanders unsigned int no_exchanges = std::min(boost::numeric_cast<unsigned int>(available_immigrants.size()), boost::numeric_cast<unsigned int>(discarded_islanders.size())); it = available_immigrants.begin(); std::vector<std::pair<unsigned int, double> >::reverse_iterator r_it = discarded_islanders.rbegin(); // Match the best immigrant (forward iterator) with the worst islander (reverse iterator) no_exchanges times. for(unsigned int i = 0 ; i < no_exchanges ; ++i) { // Break if any islander is better than an immigrant if ((*r_it).second > (*it).second) { break; } // Push the pair (islander_idx, fixed_immigrant_idx) to the results result.push_back(std::make_pair((*r_it).first, original_immigrant_indices[(*it).first - dest.size()])); ++r_it; ++it; } return result; }
// Evolve method. void base_nlopt::evolve(population &pop) const { // Useful variables. const problem::base &problem = pop.problem(); if (problem.get_f_dimension() != 1) { pagmo_throw(value_error,"this algorithm does not support multi-objective optimisation"); } const problem::base::c_size_type c_size = problem.get_c_dimension(); const problem::base::c_size_type ec_size = problem.get_c_dimension() - problem.get_ic_dimension(); if (c_size && !m_constrained) { pagmo_throw(value_error,"this algorithm does not support constraints"); } if (ec_size && m_only_ineq) { pagmo_throw(value_error,"this algorithm does not support equality constraints"); } const problem::base::size_type cont_size = problem.get_dimension() - problem.get_i_dimension(); if (!cont_size) { pagmo_throw(value_error,"the problem has no continuous part"); } // Do nothing if the population is empty. if (!pop.size()) { return; } // Extract the best individual and set the inital point const population::size_type best_ind_idx = pop.get_best_idx(); const population::individual_type &best_ind = pop.get_individual(best_ind_idx); // Structure to pass data to the objective function wrapper. nlopt_wrapper_data data_objfun; data_objfun.prob = &problem; data_objfun.x.resize(problem.get_dimension()); data_objfun.dx.resize(problem.get_dimension()); data_objfun.f.resize(1); // Structure to pass data to the constraint function wrapper. std::vector<nlopt_wrapper_data> data_constrfun(boost::numeric_cast<std::vector<nlopt_wrapper_data>::size_type>(c_size)); for (problem::base::c_size_type i = 0; i < c_size; ++i) { data_constrfun[i].prob = &problem; data_constrfun[i].x.resize(problem.get_dimension()); data_constrfun[i].dx.resize(problem.get_dimension()); data_constrfun[i].c.resize(problem.get_c_dimension()); data_constrfun[i].c_comp = i; } // Main NLopt call. nlopt::opt opt(m_algo, problem.get_dimension()); m_opt = opt; // Sets local optimizer for aug_lag methods, do nothing otherwise set_local(problem.get_dimension()); m_opt.set_lower_bounds(problem.get_lb()); m_opt.set_upper_bounds(problem.get_ub()); m_opt.set_min_objective(objfun_wrapper, &data_objfun); for (problem::base::c_size_type i =0; i<ec_size; ++i) { m_opt.add_equality_constraint(constraints_wrapper, &data_constrfun[i], problem.get_c_tol().at(i)); } for (problem::base::c_size_type i =ec_size; i<c_size; ++i) { m_opt.add_inequality_constraint(constraints_wrapper, &data_constrfun[i], problem.get_c_tol().at(i)); } m_opt.set_ftol_abs(m_ftol); m_opt.set_xtol_abs(m_xtol); m_opt.set_maxeval(m_max_iter); //nlopt::result result; double dummy; decision_vector x0(best_ind.cur_x); m_opt.optimize(x0, dummy); pop.set_x(best_ind_idx,x0); }