wxImage tintImage( wxImage to_colorize, wxColour col) { wxImage highlightIcon(to_colorize.GetWidth(),to_colorize.GetHeight()); bool do_alpha = false; if(to_colorize.HasAlpha()) { highlightIcon.InitAlpha(); do_alpha = true; } else if(to_colorize.HasMask()) { highlightIcon.SetMaskFromImage(to_colorize,to_colorize.GetMaskRed(),to_colorize.GetMaskGreen(),to_colorize.GetMaskBlue()); } for(int x = 0; x < highlightIcon.GetWidth(); x++) { for(int y = 0; y < highlightIcon.GetHeight(); y++) { to_colorize.GetData(); unsigned char srcR = to_colorize.GetRed(x,y); unsigned char srcG = to_colorize.GetGreen(x,y); unsigned char srcB = to_colorize.GetBlue(x,y); highlightIcon.SetRGB(x,y,(srcR + col.Red())/2,(srcG + col.Green())/2, (srcB + col.Blue())/2); if(do_alpha) highlightIcon.SetAlpha(x,y,to_colorize.GetAlpha(x,y)); } } return highlightIcon; }
/** * Predicate to check an image pixel matches color and alpha * * @param aImage the image to check * @param aX pixel x-coordinate * @param aY pixel y-coordinate * @param aColor expected color (alpha is 1.0 if image doesn't support alpha) * @return true if colour match */ bool IsImagePixelOfColor( const wxImage& aImage, int aX, int aY, const KIGFX::COLOR4D& aColor ) { const wxSize imageSize = aImage.GetSize(); if( imageSize.x < aX || imageSize.y < aY ) { BOOST_TEST_INFO( "Pixel (" << aX << ", " << aY << "is not in image of size (" << imageSize.x << ", " << imageSize.y << ")" ); return false; } const int r = aImage.GetRed( aX, aY ); const int g = aImage.GetGreen( aX, aY ); const int b = aImage.GetBlue( aX, aY ); const int a = aImage.HasAlpha() ? aImage.GetAlpha( aX, aY ) : 255; if( !KI_TEST::IsColorNearHex( aColor, r, g, b, a ) ) { BOOST_TEST_INFO( "Colour doesn't match: got rgba(" << r << ", " << g << ", " << b << ", " << a << "), expected " << aColor ); return false; } return true; }
// Suggestion by Carlos Moreno wxImage wxAntiAlias2(const wxImage& image) { wxImage anti(image.GetWidth(), image.GetHeight()); /* This is quite slow, but safe. Use wxImage::GetData() for speed instead. */ for (int y = 1; y < image.GetHeight() - 1; y++) for (int x = 1; x < image.GetWidth() - 1; x++) { long red = ((int) image.GetRed( x-1, y-1 )) * 1 + ((int) image.GetRed( x, y-1 )) * 4 + ((int) image.GetRed( x+1, y-1 )) * 1 + ((int) image.GetRed( x+1, y )) * 4 + ((int) image.GetRed( x+1, y+1 )) * 1 + ((int) image.GetRed( x, y+1 )) * 4 + ((int) image.GetRed( x-1, y+1 )) * 1 + ((int) image.GetRed( x-1, y )) * 4 + ((int) image.GetRed( x, y )) * 20 ; red = red/40; long green = ((int) image.GetGreen( x-1, y-1 )) * 1 + ((int) image.GetGreen( x, y-1 )) * 4 + ((int) image.GetGreen( x+1, y-1 )) * 1 + ((int) image.GetGreen( x+1, y )) * 4 + ((int) image.GetGreen( x+1, y+1 )) * 1 + ((int) image.GetGreen( x, y+1 )) * 4 + ((int) image.GetGreen( x-1, y+1 )) * 1 + ((int) image.GetGreen( x-1, y )) * 4 + ((int) image.GetGreen( x, y )) * 20 ; green = green/40; long blue = ((int) image.GetBlue( x-1, y-1 )) * 1 + ((int) image.GetBlue( x, y-1 )) * 4 + ((int) image.GetBlue( x+1, y-1 )) * 1 + ((int) image.GetBlue( x+1, y )) * 4 + ((int) image.GetBlue( x+1, y+1 )) * 1 + ((int) image.GetBlue( x, y+1 )) * 4 + ((int) image.GetBlue( x-1, y+1 )) * 1 + ((int) image.GetBlue( x-1, y )) * 4 + ((int) image.GetBlue( x, y )) * 20 ; blue = blue/40; anti.SetRGB( x, y, (wxChar) red, (wxChar) green, (wxChar) blue ); } return anti; }
wxImage wxAntiAlias(const wxImage& image) { wxImage anti(image.GetWidth(), image.GetHeight()); /* This is quite slow, but safe. Use wxImage::GetData() for speed instead. */ for (int y = 0; y < image.GetHeight(); y++) { for (int x = 0; x < image.GetWidth(); x++) { if (y == 0 || x == 0 || x == (image.GetWidth() - 1) || y == (image.GetHeight() - 1)) { anti.SetRGB(x, y, image.GetRed(x, y), image.GetGreen(x, y), image.GetBlue(x, y)); } else { int red = (int) image.GetRed( x, y ) + (int) image.GetRed( x-1, y ) + (int) image.GetRed( x, y+1 ) + (int) image.GetRed( x+1, y+1 ); red = red/4; int green = (int) image.GetGreen( x, y ) + (int) image.GetGreen( x-1, y ) + (int) image.GetGreen( x, y+1 ) + (int) image.GetGreen( x+1, y+1 ); green = green/4; int blue = (int) image.GetBlue( x, y ) + (int) image.GetBlue( x-1, y ) + (int) image.GetBlue( x, y+1 ) + (int) image.GetBlue( x+1, y+1 ); blue = blue/4; anti.SetRGB( x, y, red, green, blue ); } } } return anti; }
static bool DoRegionUnion(wxRegion& region, const wxImage& image, unsigned char loR, unsigned char loG, unsigned char loB, int tolerance) { unsigned char hiR, hiG, hiB; hiR = (unsigned char)wxMin(0xFF, loR + tolerance); hiG = (unsigned char)wxMin(0xFF, loG + tolerance); hiB = (unsigned char)wxMin(0xFF, loB + tolerance); // Loop through the image row by row, pixel by pixel, building up // rectangles to add to the region. int width = image.GetWidth(); int height = image.GetHeight(); for (int y=0; y < height; y++) { wxRect rect; rect.y = y; rect.height = 1; for (int x=0; x < width; x++) { // search for a continuous range of non-transparent pixels int x0 = x; while ( x < width) { unsigned char R = image.GetRed(x,y); unsigned char G = image.GetGreen(x,y); unsigned char B = image.GetBlue(x,y); if (( R >= loR && R <= hiR) && ( G >= loG && G <= hiG) && ( B >= loB && B <= hiB)) // It's transparent break; x++; } // Add the run of non-transparent pixels (if any) to the region if (x > x0) { rect.x = x0; rect.width = x - x0; region.Union(rect); } } } return true; }
//find first color in sprite: static xlColor find_color(wxImage& Shapes, std::hash_map</*xlColor*/ wxUint32, xlColor>& ColorMap, wxPoint xy, wxSize wh, const char* which) { xlColor color; for (int y = xy.y; y < xy.y + wh.y; ++y) //bottom->top for (int x = xy.x; x < xy.x + wh.x; ++x) //left->right { if (Shapes.IsTransparent(x, y)) continue; color.Set(Shapes.GetRed(x, y), Shapes.GetGreen(x, y), Shapes.GetBlue(x, y)); if (ColorMap.find(color.GetRGB()) != ColorMap.end()) color = ColorMap[color.GetRGB()]; debug_more(10, ", %s 0x%x", which, color.GetRGB()); return color; } //if (!strcasecmp("on", which)) color.Set(255, 255, 255); //else color.Set(64, 64, 64); //dim, not still visible debug_more(10, ", %s (0x%x)", which, color.GetRGB()); return color; }
//all shapes are loaded from same image file to reduce file I/O and caching //thiss also allows animated images to be self-contained void PianoRenderCache::Piano_load_shapes(RenderBuffer &buffer, const wxString& filename) { debug_function(10); //Debug debug("load_shapes('%s')", (const char*)filename.c_str()); debug(1, "load shapes file '%s'", (const char*)filename.c_str()); //reload shapes even if file name hasn't changed; color map might be different now // if (!CachedShapeFilename.CmpNoCase(filename)) { debug_more(2, ", no change"); return; } //no change if (!wxFileExists(filename)) return; Piano_flush_shapes(); //invalidate cached data if (!Shapes.LoadFile(filename, wxBITMAP_TYPE_ANY, 0) || !Shapes.IsOk()) { //wxMessageBox("Error loading image file: "+NewPictureName); Shapes.Clear(); return; } if (buffer.GetColorCount() < 2) return; //use colors from shapes file if no user-selected colors // int imgwidth=image.GetWidth(); // int imght =image.GetHeight(); // std::hash_map<WXCOLORREF, int> palcounts; //TODO: use wxImage.GetData for better performance? //TODO: use multiple images within same file? for (int y = Shapes.GetHeight() - 1; y >= 0; --y) //bottom->top for (int x = 0; x < Shapes.GetWidth(); ++x) //left->right if (!Shapes.IsTransparent(x, y)) { xlColor color, mapped; color.Set(Shapes.GetRed(x, y), Shapes.GetGreen(x, y), Shapes.GetBlue(x, y)); if (ColorMap.find(color.GetRGB()) != ColorMap.end()) continue; //already saw this color buffer.palette.GetColor(ColorMap.size() % buffer.GetColorCount(), mapped); //assign user-selected colors to shape palette sequentially, loop if run out of colors debug(10, "shape color[%d] 0x%x => user-selected color [%d] 0x%x", ColorMap.size(), color.GetRGB(), ColorMap.size() % GetColorCount(), mapped.GetRGB()); ColorMap[color.GetRGB()] = mapped; //.GetRGB(); // ShapePalette.push_back(c.GetRGB()); //keep a list of unique colors in order of occurrence from origin L-R, B-T } debug(2, "w %d, h %d, #colors %d", Shapes.GetWidth(), Shapes.GetHeight(), ColorMap.size()); CachedShapeFilename = filename; //don't load same file again }
bool PianoRenderCache::Piano_RenderKey(RenderBuffer &buffer, Sprite* sprite, std::hash_map<wxPoint_, int>& drawn, int style, wxSize& canvas, wxSize& keywh, const wxString &placement, bool clip) //bool RgbEffects::Sprite::render(wxSize& keywh, wxSize& BufferWH_int, int yscroll, bool Clipping) { debug_function(9); //hash_map<pair<wxPoint, wxSize>, int>& drawn) //PIANO_STYLE_KEYS sprites have 2 states: on (down) and off (up); draw all sprites; top view or edge view int drawstate = sprite->ani_state++; //bump to next active (animation) state if (!drawstate) sprite->ani_state = 0; //stay in inactive state else // if ((xy.size() == 1) && (drawstate == -1)) return false; //inactive on/off sprite; don't need tp draw anything if (drawstate >= sprite->xy.size()) //end of animation // if (it->repeat > 0) drawstate = 0; //loop immediately // else if (it->repeat < 0) drawstate = -rnd(); //loop with delay /*else*/ drawstate = sprite->xy.size() - 1; //stay at last state; don't loop // wxPoint realxy = sprite->destxy; // realxy.y += yscroll; //scrolling debug_more(30, ", dest (%d => %d, %d), #drawn %d", sprite->destxy.x, (clip? sprite->destxy.x: sprite->destxy.x % canvas.x), sprite->destxy.y, drawn.size()); if (clip) if ((sprite->destxy.x >= buffer.BufferWi) || (sprite->destxy.y >= buffer.BufferHt) || (sprite->destxy.x + keywh.x < 0) || (sprite->destxy.y + keywh.y < 0)) return false; //outside of visible rect // debug_more(30, ", here1"); wxPoint_ where = sprite->destxy.y * 65536 + (clip? sprite->destxy.x: sprite->destxy.x % canvas.x); //wrap on even key boundary // debug_more(30, ", here2"); if ((style != PIANO_STYLE_ANIMAGE) && (drawn.find(where) != drawn.end()) && (drawstate <= drawn[where])) { debug_more(30, ", already drawn[0x%x]=%d vs %d", where, drawn[where], drawstate); return false; } //do not redraw older states in same location drawn[where] = drawstate; //remember highest state drawn in this location //don't draw overlapping regions more than once // SetPixel(x-xoffset,(state % ((imght+BufferHt)*speedfactor)) / speedfactor-y,c); //moving up // SetPixel(x-xoffset,BufferHt+imght-y-(state % ((imght+BufferHt)*speedfactor)) / speedfactor,c); //moving down //copy sprite image to pixel buffer, scale up/down: //iterate thru target pixels and pull from sprite in case sizes don't match (need to set all target pixels, but okay to skip some source pixels) float xscale = (float)sprite->wh.x / keywh.x, yscale = (float)sprite->wh.y / keywh.y; //src -> dest scale factor // debug_more(30, ", here3"); //TODO: use wxImage.GetData for better performance? int xofs = !clip? (buffer.BufferWi % (7 * keywh.x)) / 2: 0; //center keys if not clipped if (WantHistory(style)) debug(20, "draw sprite '%s': set x/y %d/%d + %d/%d to 0x%x", (const char*)sprite->name.ToStdString().c_str(), sprite->destxy.x, sprite->destxy.y, keywh.x, keywh.y, drawstate? sprite->on.GetRGB(): sprite->off.GetRGB()); //.Flush(true); else debug(20, "draw sprite '%s': copy from x/y[%d/%d] %d/%d + %d/%d => x/y %d/%d + %d/%d, x/y scale = %f/%f", (const char*)sprite->name.ToStdString().c_str(), drawstate, sprite->xy.size(), sprite->xy[drawstate].x, sprite->xy[drawstate].y, sprite->wh.x, sprite->wh.y, sprite->destxy.x, sprite->destxy.y, keywh.x, keywh.y, 1.0 / xscale, 1.0 / yscale); //.Flush(true); for (int x = 0; x < keywh.x; ++x) //copying to it->w columns in dest for (int y = 0; y < keywh.y; ++y) //copying to it->h rows in dest; vert scaling is more likely, so make Y the inner loop for better pixel caching { // static xlColor cached_rgb; //cached mapped pixel color // static wxPoint cached_xy(-1, -1); wxPoint src_xy(sprite->xy[drawstate].x + x * xscale, sprite->xy[drawstate].y + y * yscale); //TODO: scale doesn't make sense for all cases src_xy.y = Shapes.GetHeight() - src_xy.y - 1; //whoops, origin is top left but wanted bottom left bool transparent = 0; if (WantHistory(style)) cached_rgb = drawstate? sprite->on: sprite->off; //kludge: fill rect with same color to avoid losing pixels due to scaling else if ((src_xy.x != cached_xy.x) || (src_xy.y != cached_xy.y)) //update cached pixel info { cached_xy = src_xy; //prev_xy.x = src_xy.x; prev_y = srcy; //not sure how expensive wx pixel functions are, so cache current pixel info just in case; aliasing/averaging and color mapping also makes thiss more expensive if (Shapes.IsTransparent(src_xy.x, src_xy.y)) transparent = 1; //-1; //-1 matches white, so use + instead else { // xlColor c; //TODO: tile, center, anti-aliasing cached_rgb.Set(Shapes.GetRed(src_xy.x, src_xy.y), Shapes.GetGreen(src_xy.x, src_xy.y), Shapes.GetBlue(src_xy.x, src_xy.y)); //NOTE: need to do pixel merging if scale is not 1:1 if (!ColorMap.empty()) cached_rgb = ColorMap[cached_rgb.GetRGB()]; //map to user-selected colors } debug_more(20, ", LK(%d,%d)", cached_xy.x, cached_xy.y); } if (transparent == 1 /*-1*/) continue; //don't need to draw pixel int wrapx = sprite->destxy.x + x, scrolly = sprite->destxy.y; // if (style == PIANO_STYLE_ANIMAGE) { wrapx *= xscale; scrolly *= yscale; } if (!clip) wrapx %= canvas.x; //wrap on even key boundary // if ((style == PIANO_STYLE_ICICLES) || (style == PIANO_STYLE_EQBARS)) scrolly += canvas.y - keywh.y; //draw at top instead of bottom if (style == PIANO_STYLE_ICICLES) scrolly += canvas.y - keywh.y; //draw at top instead of bottom // debug_more(20, ", %d+%d vs. %d-%d? %d", xofs, wrapx, BufferWi, xofs, xofs + wrapx < BufferWi - xofs); // if (!clip) wrapx = (wrapx + 2 * xofs) % BufferWi - 2 * xofs; //wrap within reduced area, not expanded area debug_more(20, ", (%d,%d)<-0x%x", wrapx, sprite->destxy.y + y, cached_rgb.GetRGB()); if (xofs + wrapx < buffer.BufferWi - xofs) buffer.SetPixel(xofs + wrapx, sprite->destxy.y + y, cached_rgb); //no vertical wrap, only horizontal wrap } // debug.Flush(true); return true; }
/** * PDF images are handles as inline, not XObject streams... */ void PDF_PLOTTER::PlotImage( const wxImage & aImage, const wxPoint& aPos, double aScaleFactor ) { wxASSERT( workFile ); wxSize pix_size( aImage.GetWidth(), aImage.GetHeight() ); // Requested size (in IUs) DPOINT drawsize( aScaleFactor * pix_size.x, aScaleFactor * pix_size.y ); // calculate the bitmap start position wxPoint start( aPos.x - drawsize.x / 2, aPos.y + drawsize.y / 2); DPOINT dev_start = userToDeviceCoordinates( start ); /* PDF has an uhm... simplified coordinate system handling. There is *one* operator to do everything (the PS concat equivalent). At least they kept the matrix stack to save restore environments. Also images are always emitted at the origin with a size of 1x1 user units. What we need to do is: 1) save the CTM end estabilish the new one 2) plot the image 3) restore the CTM 4) profit */ fprintf( workFile, "q %g 0 0 %g %g %g cm\n", // Step 1 userToDeviceSize( drawsize.x ), userToDeviceSize( drawsize.y ), dev_start.x, dev_start.y ); /* An inline image is a cross between a dictionary and a stream. A real ugly construct (compared with the elegance of the PDF format). Also it accepts some 'abbreviations', which is stupid since the content stream is usually compressed anyway... */ fprintf( workFile, "BI\n" " /BPC 8\n" " /CS %s\n" " /W %d\n" " /H %d\n" "ID\n", colorMode ? "/RGB" : "/G", pix_size.x, pix_size.y ); /* Here comes the stream (in binary!). I *could* have hex or ascii84 encoded it, but who cares? I'll go through zlib anyway */ for( int y = 0; y < pix_size.y; y++ ) { for( int x = 0; x < pix_size.x; x++ ) { unsigned char r = aImage.GetRed( x, y ) & 0xFF; unsigned char g = aImage.GetGreen( x, y ) & 0xFF; unsigned char b = aImage.GetBlue( x, y ) & 0xFF; // As usual these days, stdio buffering has to suffeeeeerrrr if( colorMode ) { putc( r, workFile ); putc( g, workFile ); putc( b, workFile ); } else { // Grayscale conversion putc( (r + g + b) / 3, workFile ); } } } fputs( "EI Q\n", workFile ); // Finish step 2 and do step 3 }
/** * Postscript-likes at the moment are the only plot engines supporting bitmaps... */ void PS_PLOTTER::PlotImage( const wxImage & aImage, const wxPoint& aPos, double aScaleFactor ) { wxSize pix_size; // size of the bitmap in pixels pix_size.x = aImage.GetWidth(); pix_size.y = aImage.GetHeight(); DPOINT drawsize( aScaleFactor * pix_size.x, aScaleFactor * pix_size.y ); // requested size of image // calculate the bottom left corner position of bitmap wxPoint start = aPos; start.x -= drawsize.x / 2; // left start.y += drawsize.y / 2; // bottom (Y axis reversed) // calculate the top right corner position of bitmap wxPoint end; end.x = start.x + drawsize.x; end.y = start.y - drawsize.y; fprintf( outputFile, "/origstate save def\n" ); fprintf( outputFile, "/pix %d string def\n", pix_size.x ); // Locate lower-left corner of image DPOINT start_dev = userToDeviceCoordinates( start ); fprintf( outputFile, "%g %g translate\n", start_dev.x, start_dev.y ); // Map image size to device DPOINT end_dev = userToDeviceCoordinates( end ); fprintf( outputFile, "%g %g scale\n", std::abs(end_dev.x - start_dev.x), std::abs(end_dev.y - start_dev.y)); // Dimensions of source image (in pixels fprintf( outputFile, "%d %d 8", pix_size.x, pix_size.y ); // Map unit square to source fprintf( outputFile, " [%d 0 0 %d 0 %d]\n", pix_size.x, -pix_size.y , pix_size.y); // include image data in ps file fprintf( outputFile, "{currentfile pix readhexstring pop}\n" ); if( colorMode ) fputs( "false 3 colorimage\n", outputFile ); else fputs( "image\n", outputFile ); // Single data source, 3 colors, Output RGB data (hexadecimal) // (or the same downscaled to gray) int jj = 0; for( int yy = 0; yy < pix_size.y; yy ++ ) { for( int xx = 0; xx < pix_size.x; xx++, jj++ ) { if( jj >= 16 ) { jj = 0; fprintf( outputFile, "\n"); } int red, green, blue; red = aImage.GetRed( xx, yy) & 0xFF; green = aImage.GetGreen( xx, yy) & 0xFF; blue = aImage.GetBlue( xx, yy) & 0xFF; if( colorMode ) fprintf( outputFile, "%2.2X%2.2X%2.2X", red, green, blue ); else fprintf( outputFile, "%2.2X", (red + green + blue) / 3 ); } } fprintf( outputFile, "\n"); fprintf( outputFile, "origstate restore\n" ); }