예제 #1
0
  inline static void Initialize(const MatType& V,
                                const size_t r,
                                arma::mat& W,
                                arma::mat& H)
  {
    const size_t n = V.n_rows;
    const size_t m = V.n_cols;

    double avgV = 0;
    size_t count = 0;
    double min = DBL_MAX;

    // Iterate over all elements in the matrix (for sparse matrices, this only
    // iterates over nonzeros).
    for (typename MatType::const_row_col_iterator it = V.begin();
        it != V.end(); ++it)
    {
      ++count;
      avgV += *it;
      // Track the minimum value.
      if (*it < min)
        min = *it;
    }

    avgV = sqrt(((avgV / (n * m)) - min) / r);

    // Initialize to random values.
    W.randu(n, r);
    H.randu(r, m);

    W = W + avgV;
    H = H + avgV;
  }
예제 #2
0
  inline static void Initialize(const MatType& V,
                                const size_t r,
                                arma::mat& W,
                                arma::mat& H)
  {
    size_t n = V.n_rows;
    size_t m = V.n_cols;
  
    double V_avg = 0;
    size_t count = 0;
    double min = DBL_MAX;
    for(typename MatType::const_row_col_iterator it = V.begin();it != V.end();it++)
    {
      if(*it != 0)
      {
        count++;
        V_avg += *it;
        if(*it < min) min = *it;
      }
    }
    V_avg = sqrt(((V_avg / (n * m)) - min) / r);

    // Intialize to random values.
    W.randu(n, r);
    H.randu(r, m);
    
    W = W + V_avg;
    H = H + V_avg;
  }
예제 #3
0
  inline static void Initialize(const MatType& V,
                                const size_t r,
                                arma::mat& W,
                                arma::mat& H)
  {
    // Simple implementation (left in the header file due to its simplicity).
    const size_t n = V.n_rows;
    const size_t m = V.n_cols;

    // Initialize to random values.
    W.randu(n, r);
    H.randu(r, m);
  }
예제 #4
0
  inline static void Initialize(const MatType& V,
                                const size_t r,
                                arma::mat& W,
                                arma::mat& H)
  {
    const size_t n = V.n_rows;
    const size_t m = V.n_cols;

    if (columnsToAverage > m)
    {
      Log::Warn << "Number of random columns (columnsToAverage) is more than "
          << "the number of columns available in the V matrix; weird results "
          << "may ensue!" << std::endl;
    }

    W.zeros(n, r);

    // Initialize W matrix with random columns.
    for (size_t col = 0; col < r; col++)
    {
      for (size_t randCol = 0; randCol < columnsToAverage; randCol++)
      {
        // .col() does not work in this case, as of Armadillo 3.920.
        W.unsafe_col(col) += V.col(math::RandInt(0, m));
      }
    }

    // Now divide by p.
    W /= columnsToAverage;

    // Initialize H to random values.
    H.randu(r, m);
  }
예제 #5
0
 inline static void Initialize(arma::mat& weights,
                               arma::vec& biases,
                               const size_t numFeatures,
                               const size_t numClasses)
 {
   weights.randu(numFeatures, numClasses);
   biases.randu(numClasses);
 }
예제 #6
0
파일: mvu.cpp 프로젝트: 0x0all/mlpack
void MVU::Unfold(const size_t newDim,
                 const size_t numNeighbors,
                 arma::mat& outputData)
{
  // First we have to choose the output point.  We'll take a linear projection
  // of the data for now (this is probably not a good final solution).
//  outputData = trans(data.rows(0, newDim - 1));
  // Following Nick's idea.
  outputData.randu(data.n_cols, newDim);

  // The number of constraints is the number of nearest neighbors plus one.
  LRSDP<arma::sp_mat> mvuSolver(numNeighbors * data.n_cols + 1, outputData);

  // Set up the objective.  Because we are maximizing the trace of (R R^T),
  // we'll instead state it as min(-I_n * (R R^T)), meaning C() is -I_n.
  mvuSolver.C().eye(data.n_cols, data.n_cols);
  mvuSolver.C() *= -1;

  // Now set up each of the constraints.
  // The first constraint is trace(ones * R * R^T) = 0.
  mvuSolver.B()[0] = 0;
  mvuSolver.A()[0].ones(data.n_cols, data.n_cols);

  // All of our other constraints will be sparse except the first.  So set that
  // vector of modes accordingly.
  mvuSolver.AModes().ones();
  mvuSolver.AModes()[0] = 0;

  // Now all of the other constraints.  We first have to run AllkNN to get the
  // list of nearest neighbors.
  arma::Mat<size_t> neighbors;
  arma::mat distances;

  AllkNN allknn(data);
  allknn.Search(numNeighbors, neighbors, distances);

  // Add each of the other constraints.  They are sparse constraints:
  //   Tr(A_ij K) = d_ij;
  //   A_ij = zeros except for 1 at (i, i), (j, j); -1 at (i, j), (j, i).
  for (size_t i = 0; i < neighbors.n_cols; ++i)
  {
    for (size_t j = 0; j < numNeighbors; ++j)
    {
      // This is the index of the constraint.
      const size_t index = (i * numNeighbors) + j + 1;

      arma::mat& aRef = mvuSolver.A()[index];

      aRef.set_size(3, 4);

      // A_ij(i, i) = 1.
      aRef(0, 0) = i;
      aRef(1, 0) = i;
      aRef(2, 0) = 1;

      // A_ij(i, j) = -1.
      aRef(0, 1) = i;
      aRef(1, 1) = neighbors(j, i);
      aRef(2, 1) = -1;

      // A_ij(j, i) = -1.
      aRef(0, 2) = neighbors(j, i);
      aRef(1, 2) = i;
      aRef(2, 2) = -1;

      // A_ij(j, j) = 1.
      aRef(0, 3) = neighbors(j, i);
      aRef(1, 3) = neighbors(j, i);
      aRef(2, 3) = 1;

      // The constraint b_ij is the distance between these two points.
      mvuSolver.B()[index] = distances(j, i);
    }
  }

  // Now on with the solving.
  double objective = mvuSolver.Optimize(outputData);

  Log::Info << "Final objective is " << objective << "." << std::endl;

  // Revert to original data format.
  outputData = trans(outputData);
}