void virtual_push(asmjit::X86Assembler& a, MemoryMapper& m, T value) { a.mov(REG_TMP, 0x0100); // @CLEANUP TMP is rax, but we can't or with a larger register a.add(asmjit::x86::al, REG_SP); m.emitDynamicStore(a, REG_TMP, value); a.dec(REG_SP); }
void virtual_pop(asmjit::X86Assembler& a, MemoryMapper& m, T dst) { a.inc(REG_SP); a.mov(REG_TMP, 0x0100); // @CLEANUP TMP is rax, but we can't or with a larger register a.add(asmjit::x86::al, REG_SP); m.emitDynamicLoad(a, REG_TMP, dst); }
bool LDXImmInstr::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.mov(REG_X, this->m_value); // Immediate mode knows the value at compile time, so just emit the right // thing if(this->m_value == 0) a.bts(REG_S, S_ZERO); else a.btr(REG_S, S_ZERO); return true; }
bool RTS::exp(asmjit::X86Assembler& a, MemoryMapper& m) { // Use rbx because that's safe during a call virtual_pop(a, m, asmjit::x86::bl); a.shl(asmjit::x86::bx, 8); virtual_pop(a, m, asmjit::x86::dl); a.or_(asmjit::x86::bx, asmjit::x86::dx); a.mov(asmjit::x86::rdi, asmjit::x86::rbx); a.jmp((uint64_t)&jit_and_jump); return false; }
bool JSRAbsInstr::exp(asmjit::X86Assembler& a, MemoryMapper& m) { // Push the virtual PC to the stack // @COMPLETENESS: This order is likely wrong! virtual_push(a, m, static_cast<uint8_t>(next & 0xFF)); virtual_push(a, m, static_cast<uint8_t>(next >> 8)); a.mov(asmjit::x86::di, this->target); a.jmp((uint64_t)&jit_and_jump); return false; }
static void emitDump(asmjit::X86Assembler& a) { a.push(asmjit::x86::r10); a.push(asmjit::x86::r11); a.mov(asmjit::x86::dil, REG_A); a.mov(asmjit::x86::sil, REG_X); a.mov(asmjit::x86::dl, REG_Y); a.mov(asmjit::x86::cl, REG_S); a.call((uint64_t)&dump); a.pop(asmjit::x86::r11); a.pop(asmjit::x86::r10); }
bool BEQRelInstr::exp(asmjit::X86Assembler& a, MemoryMapper& m) { auto NotSet = a.newLabel(); a.bt(REG_S, S_ZERO); a.jnc(NotSet); a.mov(asmjit::x86::di, this->next + this->target); a.jmp((uint64_t)&jit_and_jump); a.bind(NotSet); a.mov(asmjit::x86::di, this->next); a.jmp((uint64_t)&jit_and_jump); return false; }
bool BPLRelInstr::exp(asmjit::X86Assembler& a, MemoryMapper& m) { auto Set = a.newLabel(); a.bt(REG_S, S_NEGATIVE); a.jc(Set); a.mov(asmjit::x86::di, this->next + this->target); a.jmp((uint64_t)&jit_and_jump); a.bind(Set); a.mov(asmjit::x86::di, this->next); a.jmp((uint64_t)&jit_and_jump); return false; }
bool CLC::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.btr(REG_S, S_CARRY); return true; }
bool NOP::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.nop(); return true; }
void RamMemoryBank::emitLoad(asmjit::X86Assembler& a, uint16_t addr, asmjit::X86Gp dest) { auto temp = asmjit::x86::rax; a.mov(temp, (uint64_t)this->memory.get() + addr); a.mov(dest, asmjit::x86::byte_ptr(temp)); }
bool ANDImm::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.and_(REG_A, this->operand); return true; }
bool CLD::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.btr(REG_S, S_DECIMAL); return true; }
bool SEI::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.bts(REG_S, S_INTER_DISABLE); return true; }
bool CMPImm::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.cmp(REG_A, this->operand); { a.pushfd(); a.btr(REG_S, S_CARRY); a.popfd(); auto End = a.newLabel(); a.jnc(End); a.pushfd(); a.bts(REG_S, S_CARRY); a.popfd(); a.bind(End); } { a.pushfd(); a.btr(REG_S, S_ZERO); a.popfd(); auto End = a.newLabel(); a.jne(End); a.pushfd(); a.bts(REG_S, S_ZERO); a.popfd(); a.bind(End); } { a.pushfd(); a.btr(REG_S, S_NEGATIVE); a.popfd(); auto End = a.newLabel(); a.jns(End); a.pushfd(); a.bts(REG_S, S_NEGATIVE); a.popfd(); a.bind(End); } return true; }
bool BITZeroP::exp(asmjit::X86Assembler& a, MemoryMapper& m) { m.emitLoad(a, operand, asmjit::x86::al); // @COMPLETENESS: We should check and set the S_ flags here before the and a.push(asmjit::x86::rax); a.and_(asmjit::x86::al, REG_A); auto Zero = a.newLabel(); auto Exit = a.newLabel(); a.jz(Zero); //Not zero a.btr(REG_S, S_ZERO); a.jmp(Exit); a.bind(Zero); a.bts(REG_S, S_ZERO); a.bind(Exit); a.pop(asmjit::x86::rax); { a.btr(REG_S, S_OVERFLOW); a.bt(asmjit::x86::al, 6); auto End = a.newLabel(); a.jnc(End); a.bts(REG_S, S_OVERFLOW); a.bind(End); } { a.btr(REG_S, S_NEGATIVE); a.bt(asmjit::x86::al, 7); auto End = a.newLabel(); a.jnc(End); a.bts(REG_S, S_NEGATIVE); a.bind(End); } return true; }
bool LDAAbsXInstr::exp(asmjit::X86Assembler& a, MemoryMapper& m) { auto temp = asmjit::x86::rax; a.mov(temp, this->base); a.add(temp, REG_X); auto tmpPtr = asmjit::x86::byte_ptr(temp); { auto NotZero = a.newLabel(); auto Exit = a.newLabel(); a.cmp(tmpPtr, 0); a.jne(NotZero); // Value was 0 a.bts(REG_S, S_ZERO); a.jmp(Exit); // Value was not 0 a.bind(NotZero); a.btr(REG_S, S_ZERO); //No jmp required, just fall though a.bind(Exit); } a.mov(REG_A, tmpPtr); return true; }
void RamMemoryBank::emitStore(asmjit::X86Assembler& a, uint16_t addr, asmjit::X86Gp src) { auto temp = asmjit::x86::rax; a.mov(temp, (uint64_t)this->memory.get() + addr); a.mov(asmjit::x86::byte_ptr(temp), src); }
bool JMPAbsInstr::exp(asmjit::X86Assembler& a, MemoryMapper& m) { a.mov(asmjit::x86::di, this->m_target); a.jmp((uint64_t)&jit_and_jump); return false; }