bob::ip::gabor::JetStatistics::JetStatistics(bob::io::base::HDF5File& hdf5){ m_meanAbs.reference(hdf5.readArray<double,1>("MeanAbs")); m_varAbs.reference(hdf5.readArray<double,1>("VarAbs")); m_meanPhase.reference(hdf5.readArray<double,1>("MeanPhase")); m_varPhase.reference(hdf5.readArray<double,1>("VarPhase")); if (hdf5.hasGroup("Transform")){ hdf5.cd("Transform"); m_gwt.reset(new bob::ip::gabor::Transform(hdf5)); hdf5.cd(".."); } }
void Machine::load (bob::io::base::HDF5File& config) { //reads all data directly into the member variables m_input_sub.reference(config.readArray<double,1>("input_sub")); m_input_div.reference(config.readArray<double,1>("input_div")); m_weight.reference(config.readArray<double,2>("weights")); m_bias.reference(config.readArray<double,1>("biases")); m_buffer.resize(m_input_sub.extent(0)); //switch between different versions - support for version 1 if (config.hasAttribute(".", "version")) { //new version config.cd("activation"); m_activation = bob::learn::activation::load_activation(config); config.cd(".."); } else { //old version uint32_t act = config.read<uint32_t>("activation"); m_activation = bob::learn::activation::make_deprecated_activation(act); } }
void bob::ip::gabor::JetStatistics::save(bob::io::base::HDF5File& hdf5, bool saveTransform) const{ hdf5.setArray("MeanAbs", m_meanAbs); hdf5.setArray("VarAbs", m_varAbs); hdf5.setArray("MeanPhase", m_meanPhase); hdf5.setArray("VarPhase", m_varPhase); if (saveTransform && m_gwt){ hdf5.createGroup("Transform"); hdf5.cd("Transform"); m_gwt->save(hdf5); hdf5.cd(".."); } }
void bob::learn::em::GMMMachine::load(bob::io::base::HDF5File& config) { int64_t v; v = config.read<int64_t>("m_n_gaussians"); m_n_gaussians = static_cast<size_t>(v); v = config.read<int64_t>("m_n_inputs"); m_n_inputs = static_cast<size_t>(v); m_gaussians.clear(); for(size_t i=0; i<m_n_gaussians; ++i) { m_gaussians.push_back(boost::shared_ptr<bob::learn::em::Gaussian>(new bob::learn::em::Gaussian(m_n_inputs))); std::ostringstream oss; oss << "m_gaussians" << i; config.cd(oss.str()); m_gaussians[i]->load(config); config.cd(".."); } m_weights.resize(m_n_gaussians); config.readArray("m_weights", m_weights); // Initialise cache initCache(); }
void Machine::save (bob::io::base::HDF5File& config) const { config.setAttribute(".", "version", 1); config.setArray("input_sub", m_input_sub); config.setArray("input_div", m_input_div); config.setArray("weights", m_weight); config.setArray("biases", m_bias); config.createGroup("activation"); config.cd("activation"); m_activation->save(config); config.cd(".."); }
void bob::learn::em::GMMMachine::save(bob::io::base::HDF5File& config) const { int64_t v = static_cast<int64_t>(m_n_gaussians); config.set("m_n_gaussians", v); v = static_cast<int64_t>(m_n_inputs); config.set("m_n_inputs", v); for(size_t i=0; i<m_n_gaussians; ++i) { std::ostringstream oss; oss << "m_gaussians" << i; if (!config.hasGroup(oss.str())) config.createGroup(oss.str()); config.cd(oss.str()); m_gaussians[i]->save(config); config.cd(".."); } config.setArray("m_weights", m_weights); }
void bob::learn::boosting::StumpMachine::save(bob::io::base::HDF5File& file) const{ file.set("Threshold", m_threshold); file.set("Polarity", m_polarity); file.set("Index", m_index); file.setAttribute(".", "MachineType", std::string("StumpMachine")); }