decltype(auto) matrix_transpose( InputRange const& input, OutputRange& output, int row_size, int col_size, boost::compute::command_queue& queue) { NEU_ASSERT(row_size*col_size == range::distance(input)); static auto transpose_kernel = neu::make_kernel(neu::layer::impl::matrix_transpose_kernel_source, "matrix_transpose", queue.get_context()); transpose_kernel.set_args( range::get_buffer(input), static_cast<cl_int>(range::get_begin_index(input)), range::get_buffer(output), static_cast<cl_int>(range::get_begin_index(output)), static_cast<cl_int>(row_size), static_cast<cl_int>(col_size)); std::size_t global[2] = { static_cast<std::size_t>(((col_size-1)/32+1)*32), static_cast<std::size_t>(((row_size-1)/32+1)*32) }; std::size_t local[2] = { static_cast<std::size_t>(32), static_cast<std::size_t>(32) }; queue.enqueue_nd_range_kernel(transpose_kernel, 2, nullptr, global, local); }
static decltype(auto) call( std::vector<neu::layer::any_layer>& layers, int batch_size, InputRange const& initial_input, OutputRange& result_output, boost::compute::command_queue& queue) { gpu_vector input(initial_input.begin(), initial_input.end(), queue); gpu_vector output(queue.get_context()); int i = 0; for(auto& l : layers) { output.resize(::neu::layer::output_dim(l)*batch_size, queue); /* std::cout << "whole" << ::neu::layer::whole_output_size(l) << std::endl; std::cout << "i" << i << std::endl; std::cout << "aa" << output.size() << std::endl; */ auto output_range = range::to_range(output); #ifdef NEU_BENCHMARK_ENABLE boost::timer t; #endif //NEU_BENCHMARK_ENABLE l.test_forward(batch_size, range::to_range(input), output_range, queue); #ifdef NEU_BENCHMARK_ENABLE queue.finish(); std::cout << "layer" << i << "\ttest_forward\t" << t.elapsed() << " secs" << std::endl; #endif //NEU_BENCHMARK_ENABLE input.swap(output); ++i; } range::copy(input, result_output, queue); }
inline void test_fill(T v1, T v2, T v3, bc::command_queue queue) { if(boost::is_same<typename bc::scalar_type<T>::type, bc::double_>::value && !queue.get_device().supports_extension("cl_khr_fp64")) { std::cerr << "Skipping test_fill<" << bc::type_name<T>() << ">() " "on device which doesn't support cl_khr_fp64" << std::endl; return; } bc::vector<T> vector(4, queue.get_context()); bc::fill(vector.begin(), vector.end(), v1, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v1, v1, v1, v1)); vector.resize(1000, queue); bc::fill(vector.begin(), vector.end(), v2, queue); queue.finish(); BOOST_CHECK_EQUAL(vector.front(), v2); BOOST_CHECK_EQUAL(vector.back(), v2); bc::fill(vector.begin() + 500, vector.end(), v3, queue); queue.finish(); BOOST_CHECK_EQUAL(vector.front(), v2); BOOST_CHECK_EQUAL(vector[499], v2); BOOST_CHECK_EQUAL(vector[500], v3); BOOST_CHECK_EQUAL(vector.back(), v3); }
inline void test_fill_n(T v1, T v2, T v3, bc::command_queue queue) { bc::vector<T> vector(4, queue.get_context()); bc::fill_n(vector.begin(), 4, v1, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v1, v1, v1, v1)); bc::fill_n(vector.begin(), 3, v2, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v2, v2, v1)); bc::fill_n(vector.begin() + 1, 2, v3, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v3, v3, v1)); bc::fill_n(vector.begin(), 4, v2, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v2, v2, v2)); // fill last element bc::fill_n(vector.end() - 1, 1, v3, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v2, v2, v3)); // fill first element bc::fill_n(vector.begin(), 1, v1, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v1, v2, v2, v3)); }
inline void test_fill_n(T v1, T v2, T v3, bc::command_queue queue) { if(boost::is_same<typename bc::scalar_type<T>::type, bc::double_>::value && !queue.get_device().supports_extension("cl_khr_fp64")) { std::cerr << "Skipping test_fill_n<" << bc::type_name<T>() << ">() " "on device which doesn't support cl_khr_fp64" << std::endl; return; } bc::vector<T> vector(4, queue.get_context()); bc::fill_n(vector.begin(), 4, v1, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v1, v1, v1, v1)); bc::fill_n(vector.begin(), 3, v2, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v2, v2, v1)); bc::fill_n(vector.begin() + 1, 2, v3, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v3, v3, v1)); bc::fill_n(vector.begin(), 4, v2, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v2, v2, v2)); // fill last element bc::fill_n(vector.end() - 1, 1, v3, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v2, v2, v2, v3)); // fill first element bc::fill_n(vector.begin(), 1, v1, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v1, v2, v2, v3)); }
static decltype(auto) call(std::vector<neu::layer::any_layer>& layers, InputRange const& initial_delta, OutputRange& result_prev_delta, boost::compute::command_queue& queue) { gpu_vector delta(initial_delta.begin(), initial_delta.end(), queue); gpu_vector prev_delta(queue.get_context()); for(int i = layers.size()-1; i >= 0; --i) { auto& l = layers.at(i); prev_delta.resize(::neu::layer::whole_input_size(l), queue); auto prev_delta_range = range::to_range(prev_delta); #ifdef NEU_BENCHMARK_ENABLE boost::timer t; #endif //NEU_BENCHMARK_ENABLE l.backward( range::to_range(delta), prev_delta_range, queue); #ifdef NEU_BENCHMARK_ENABLE queue.finish(); std::cout << "layer" << i << "\tbackward\t" << t.elapsed() << " secs" << std::endl; #endif //NEU_BENCHMARK_ENABLE delta.swap(prev_delta); } range::copy(delta, result_prev_delta, queue); }
void perf_random_number_engine(const size_t size, const size_t trials, compute::command_queue& queue) { typedef typename Engine::result_type T; // create random number engine Engine engine(queue); // create vector on the device std::cout << "size = " << size << std::endl; compute::vector<T> vector(size, queue.get_context()); // generate random numbers perf_timer t; for(size_t i = 0; i < trials; i++){ t.start(); engine.generate(vector.begin(), vector.end(), queue); queue.finish(); t.stop(); } // print result std::cout << "time: " << t.min_time() / 1e6 << " ms" << std::endl; std::cout << "rate: " << perf_rate<T>(size, t.min_time()) << " MB/s" << std::endl; }
device_vector(const boost::compute::command_queue &q, size_t n, const T *host = 0, mem_flags flags = MEM_READ_WRITE) { if (host && !(flags & CL_MEM_USE_HOST_PTR)) flags |= CL_MEM_COPY_HOST_PTR; if (n) buffer = boost::compute::buffer(q.get_context(), n * sizeof(T), flags, static_cast<void*>(const_cast<T*>(host))); }
void generate(OutputIterator first, OutputIterator last, Function op, boost::compute::command_queue &queue) { boost::compute::vector<T> tmp(std::distance(first, last), queue.get_context()); BOOST_COMPUTE_FUNCTION(T, max_random, (const T x), { if(get_global_id(0) < 1) return (ValueType) MAX_RANDOM; else return (ValueType) 0; });
void test_copy_if_odd(compute::command_queue &queue) { // create input and output vectors on the device const compute::context &context = queue.get_context(); compute::vector<int> input(PERF_N, context); compute::vector<int> output(PERF_N, context); // generate random numbers between 1 and 10 compute::default_random_engine rng(queue); compute::uniform_int_distribution<int> d(1, 10); d.generate(input.begin(), input.end(), rng, queue); BOOST_COMPUTE_FUNCTION(bool, is_odd, (int x), { return x & 1; });
// tesselates a sphere with radius, phi_slices, and theta_slices. returns // a shared opencl/opengl buffer containing the vertex data. compute::opengl_buffer tesselate_sphere(float radius, size_t phi_slices, size_t theta_slices, compute::command_queue &queue) { using compute::dim; const compute::context &context = queue.get_context(); const size_t vertex_count = phi_slices * theta_slices; // create opengl buffer GLuint vbo; vtkgl::GenBuffersARB(1, &vbo); vtkgl::BindBufferARB(vtkgl::ARRAY_BUFFER, vbo); vtkgl::BufferDataARB(vtkgl::ARRAY_BUFFER, sizeof(float) * 4 * vertex_count, NULL, vtkgl::STREAM_DRAW); vtkgl::BindBufferARB(vtkgl::ARRAY_BUFFER, 0); // create shared opengl/opencl buffer compute::opengl_buffer vertex_buffer(context, vbo); // tesselate_sphere kernel source const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE( __kernel void tesselate_sphere(float radius, uint phi_slices, uint theta_slices, __global float4 *vertex_buffer) { const uint phi_i = get_global_id(0); const uint theta_i = get_global_id(1); const float phi = phi_i * 2.f * M_PI_F / phi_slices; const float theta = theta_i * 2.f * M_PI_F / theta_slices; float4 v; v.x = radius * cos(theta) * cos(phi); v.y = radius * cos(theta) * sin(phi); v.z = radius * sin(theta); v.w = 1.f; vertex_buffer[phi_i*phi_slices+theta_i] = v; } );
/** * If VEXCL_CACHE_KERNELS macro is defined, then program binaries are cached * in filesystem and reused in the following runs. */ inline boost::compute::program build_sources( const boost::compute::command_queue &queue, const std::string &source, const std::string &options = "" ) { #ifdef VEXCL_SHOW_KERNELS std::cout << source << std::endl; #else if (getenv("VEXCL_SHOW_KERNELS")) std::cout << source << std::endl; #endif return boost::compute::program::build_with_source( source, queue.get_context(), options + " " + get_compile_options(queue) ); }
inline void test_fill(T v1, T v2, T v3, bc::command_queue queue) { bc::vector<T> vector(4, queue.get_context()); bc::fill(vector.begin(), vector.end(), v1, queue); queue.finish(); CHECK_RANGE_EQUAL(T, 4, vector, (v1, v1, v1, v1)); vector.resize(1000, queue); bc::fill(vector.begin(), vector.end(), v2, queue); queue.finish(); BOOST_CHECK_EQUAL(vector.front(), v2); BOOST_CHECK_EQUAL(vector.back(), v2); bc::fill(vector.begin() + 500, vector.end(), v3, queue); queue.finish(); BOOST_CHECK_EQUAL(vector.front(), v2); BOOST_CHECK_EQUAL(vector[499], v2); BOOST_CHECK_EQUAL(vector[500], v3); BOOST_CHECK_EQUAL(vector.back(), v3); }
inline void box_filter_image(const compute::image2d &input, compute::image2d &output, compute::uint_ box_height, compute::uint_ box_width, compute::command_queue &queue) { using compute::dim; const compute::context &context = queue.get_context(); // simple box filter kernel source const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE( __kernel void box_filter(__read_only image2d_t input, __write_only image2d_t output, uint box_height, uint box_width) { int x = get_global_id(0); int y = get_global_id(1); int h = get_image_height(input); int w = get_image_width(input); int k = box_width; int l = box_height; if(x < k/2 || y < l/2 || x >= w-(k/2) || y >= h-(l/2)){ write_imagef(output, (int2)(x, y), (float4)(0, 0, 0, 1)); } else { const sampler_t sampler = CLK_ADDRESS_NONE | CLK_FILTER_NEAREST; float4 sum = { 0, 0, 0, 0 }; for(int i = 0; i < k; i++){ for(int j = 0; j < l; j++){ sum += read_imagef(input, sampler, (int2)(x+i-k, y+j-l)); } } sum /= (float) k * l; float4 value = (float4)( sum.x, sum.y, sum.z, 1.f ); write_imagef(output, (int2)(x, y), value); } }
vector(vector_expression<E, gpu_tag> const& e, boost::compute::command_queue& queue) : m_storage(e().size(), queue.get_context()) , m_queue(&queue){ assign(*this, e); }
/// \brief Constructor of a vector with a predefined size /// By default, its elements are uninitialized. /// \param size initial size of the vector /// \param queue the opencl queue to use by this vector explicit vector(size_type size, boost::compute::command_queue& queue = boost::compute::system::default_queue()) : m_storage(size,queue.get_context()), m_queue(&queue){}
/// \brief Constructor of a matrix with a predefined size /// By default, its elements are uninitialized /// \param size1 number of rows /// \param size2 number of columns /// \param queue the opencl queue to use by this matrix explicit matrix(size_type size1, size_type size2, boost::compute::command_queue& queue = boost::compute::system::default_queue()) : m_storage(size1 * size2, queue.get_context()) , m_queue(&queue) , m_size1(size1) , m_size2(size2){}
/// \brief Constructor of a vector with a default queue /// ///note that for all operations for which vector is on the left hand side, ///the kernels are enqueued on the supplied queue in case of a multi-queue setup. vector(boost::compute::command_queue& queue = boost::compute::system::default_queue()) :m_storage(queue.get_context()), m_queue(&queue){}
/// \brief Constructor of a matrix with a default queue /// ///note that for all operations for which matrix is on the left hand side, ///the kernels are enqueued on the supplied queue in case of a multi-queue setup. matrix(boost::compute::command_queue& queue = boost::compute::system::default_queue()) : m_storage(queue.get_context()) , m_queue(&queue),m_size1(0), m_size2(0){}