bool invert(const boost::numeric::ublas::matrix<T>& input, boost::numeric::ublas::matrix<T>& inverse) { // create a working copy of the input boost::numeric::ublas::matrix<T> A(input); // create a permutation matrix for the LU-factorization boost::numeric::ublas::permutation_matrix<std::size_t> pm(A.size1()); // perform LU-factorization typename boost::numeric::ublas::matrix<T>::size_type res = boost::numeric::ublas::lu_factorize(A, pm); if( res != 0 ){ LOG_FREE(Info, "boost.ublas", "boost::numeric::ublas::lu_factorize returned res = " << res << ", A = " << A << ", pm = " << pm << " for input = " << input); return false; } // create identity matrix of "inverse" inverse.assign(boost::numeric::ublas::identity_matrix<T>(A.size1())); // backsubstitute to get the inverse try { boost::numeric::ublas::lu_substitute(A, pm, inverse); }catch (std::exception& e){ LOG_FREE(Info, "boost.ublas", "boost::numeric::ublas::lu_substitute threw exception '" << e.what() << "' for A = " << A << ", pm = " << pm); return false; } return true; }
bool matrix_inverse (const ublas::matrix<T>& input, ublas::matrix<T>& inverse) { using namespace boost::numeric::ublas; typedef permutation_matrix<std::size_t> pmatrix; // create a working copy of the input matrix<T> A(input); // create a permutation matrix for the LU-factorization pmatrix pm(A.size1()); // perform LU-factorization int res = lu_factorize(A,pm); if( res != 0 ) return false; // create identity matrix of "inverse" inverse.assign(ublas::identity_matrix<T>(A.size1())); // backsubstitute to get the inverse lu_substitute(A, pm, inverse); return true; }
bool EstimatorMaximumLikelihood::getInverse(boost::numeric::ublas::matrix<float> iMatrix, boost::numeric::ublas::matrix<float>& iInverse) { // Taken from https://gist.github.com/2464434 using namespace boost::numeric::ublas; typedef permutation_matrix<std::size_t> pmatrix; // create a working copy of the input matrix<float> A(iMatrix); // create a permutation matrix for the LU-factorization pmatrix pm(A.size1()); // perform LU-factorization int res = lu_factorize(A,pm); if( res != 0 ) return false; // create identity matrix of "inverse" iInverse.assign(identity_matrix<float>(A.size1())); // backsubstitute to get the inverse lu_substitute(A, pm, iInverse); return true; }