Constraint::Constraint() : Value(0.0), Type(None), AlignmentType(Undef), Name(""), First(GeoUndef), FirstPos(none), Second(GeoUndef), SecondPos(none), Third(GeoUndef), ThirdPos(none), LabelDistance(10.f), LabelPosition(0.f), isDriving(true), InternalAlignmentIndex(-1), isInVirtualSpace(false) { // Initialize a random number generator, to avoid Valgrind false positives. static boost::mt19937 ran; static bool seeded = false; if (!seeded) { ran.seed(QDateTime::currentMSecsSinceEpoch() & 0xffffffff); seeded = true; } static boost::uuids::basic_random_generator<boost::mt19937> gen(&ran); tag = gen(); }
void readSeed(boost::program_options::variables_map& variableMap, boost::mt19937& randomSource) { if(variableMap.count("seed") > 0) { randomSource.seed(variableMap["seed"].as<int>()); } }
std::vector<T1> generateRandomSet(const unsigned int size_, const T1 min_, const T1 max_, const bool allowRepetition_) { generator.seed(std::rand()); #if BOOST_MINOR_VERSION <= 46 NumberType range(min_, max_); boost::variate_generator<Generator&, NumberType> dist(generator, range); #else Generator dist(min_, max_); #endif std::vector<T1> numbers; numbers.reserve(size_); std::map<T1, bool> used; while (numbers.size() < size_) { #if BOOST_MINOR_VERSION <= 46 T1 number = dist(); #else T1 number = dist(generator); #endif if (allowRepetition_ || used.find(number) == used.end()) { used[number] = true; numbers.push_back(number); } } return numbers; }
void UPGMpp::getRandomAssignation(CGraph &graph, map<size_t,size_t> &assignation, TInferenceOptions &options ) { static boost::mt19937 rng1; static bool firstExecution = true; if ( firstExecution ) { rng1.seed(std::time(0)); firstExecution = false; } vector<CNodePtr> &nodes = graph.getNodes(); for ( size_t node = 0; node < nodes.size(); node++ ) { // TODO: Check if a node has a fixed value and consider it size_t N_classes = nodes[node]->getType()->getNumberOfClasses(); boost::uniform_int<> generator(0,N_classes-1); int state = generator(rng1); assignation[nodes[node]->getID()] = state; } /*map<size_t,size_t>::iterator it; for ( it = assignation.begin(); it != assignation.end(); it++ ) cout << "[" << it->first << "] " << it->second << endl;*/ }
void setUp() { randomGen.seed(time(NULL)); eventLoop = new DummyEventLoop(); timerFactory = new DummyTimerFactory(); connection = boost::make_shared<MockeryConnection>(failingPorts, true, eventLoop); //connection->onDataSent.connect(boost::bind(&SOCKS5BytestreamServerSessionTest::handleDataWritten, this, _1)); //stream1 = boost::make_shared<ByteArrayReadBytestream>(createByteArray("abcdefg"))); // connection->onDataRead.connect(boost::bind(&SOCKS5BytestreamClientSessionTest::handleDataRead, this, _1)); }
void setUp() { crypto = boost::shared_ptr<CryptoProvider>(PlatformCryptoProvider::create()); destination = "092a44d859d19c9eed676b551ee80025903351c2"; randomGen.seed(static_cast<unsigned int>(time(NULL))); eventLoop = new DummyEventLoop(); timerFactory = new DummyTimerFactory(); connection = boost::make_shared<MockeryConnection>(failingPorts, true, eventLoop); //connection->onDataSent.connect(boost::bind(&SOCKS5BytestreamServerSessionTest::handleDataWritten, this, _1)); //stream1 = boost::make_shared<ByteArrayReadBytestream>(createByteArray("abcdefg"))); // connection->onDataRead.connect(boost::bind(&SOCKS5BytestreamClientSessionTest::handleDataRead, this, _1)); }
void init () { std::chrono::high_resolution_clock::time_point now = std::chrono::high_resolution_clock::now(); std::chrono::nanoseconds time = std::chrono::duration_cast<std::chrono::nanoseconds> (now.time_since_epoch () ); ran.seed (time.count() ); pid = getpid(); }
int Utils::getRandomNumber(const int min_, const int max_) { generator.seed(std::time(0)); #if BOOST_MINOR_VERSION <= 46 boost::uniform_int<> range(min_, max_); boost::variate_generator<boost::mt19937&, boost::uniform_int<> > dist(generator, range); return dist(); #else boost::random::uniform_int_distribution<> dist(min_, max_); return dist(generator); #endif }
void parse_args(int argc, char* argv[]) { uint32_t seed = 0; bool has_seed = false; struct option long_opts[] = { { "help", false, nullptr, 'h' }, { "seed", true, nullptr, 's' }, { nullptr, 0, nullptr, 0 } }; while (true) { optopt = 1; int optchar = getopt_long(argc, argv, "hs:", long_opts, nullptr); if (optchar == -1) { break; } switch (optchar) { case 's': { char *endptr; seed = strtol(optarg, &endptr, 0); if (endptr == optarg || *endptr != '\0') { fprintf(stderr, "invalid seed value \"%s\": must be a positive " "integer\n", optarg); exit(1); } has_seed = true; break; } case 'h': print_usage(stdout, argv[0]); exit(0); case '?': exit(1); default: // Only happens if someone adds another option to the optarg string, // but doesn't update the switch statement to handle it. fprintf(stderr, "unknown option \"-%c\"\n", optchar); exit(1); } } if (!has_seed) { seed = time(nullptr); } printf("seed: %" PRIu32 "\n", seed); rng.seed(seed); }
boost::unit_test::test_suite* init_unit_test_suite(int argc, char* argv[]) { THRIFT_UNUSED_VARIABLE(argc); THRIFT_UNUSED_VARIABLE(argv); uint32_t seed = static_cast<uint32_t>(time(NULL)); printf("seed: %" PRIu32 "\n", seed); rng.seed(seed); boost::unit_test::test_suite* suite = &boost::unit_test::framework::master_test_suite(); suite->p_name.value = "ZlibTest"; uint32_t buf_len = 1024 * 32; add_tests(suite, gen_uniform_buffer(buf_len, 'a'), buf_len, "uniform"); add_tests(suite, gen_compressible_buffer(buf_len), buf_len, "compressible"); add_tests(suite, gen_random_buffer(buf_len), buf_len, "random"); suite->add(BOOST_TEST_CASE(test_no_write)); return NULL; }
bool init_unit_test_suite() { uint32_t seed = static_cast<uint32_t>(time(NULL)); #ifdef HAVE_INTTYPES_H printf("seed: %" PRIu32 "\n", seed); #endif rng.seed(seed); boost::unit_test::test_suite* suite = &boost::unit_test::framework::master_test_suite(); suite->p_name.value = "ZlibTest"; uint32_t buf_len = 1024 * 32; add_tests(suite, gen_uniform_buffer(buf_len, 'a'), buf_len, "uniform"); add_tests(suite, gen_compressible_buffer(buf_len), buf_len, "compressible"); add_tests(suite, gen_random_buffer(buf_len), buf_len, "random"); suite->add(BOOST_TEST_CASE(test_no_write)); return true; }
float normalvariate(float mean, float sigma) { static bool seeded = false; if (!seeded) { // seed generator with #seconds since 1970 rng.seed(static_cast<unsigned> (std::time(0))); seeded = true; } // select desired probability distribution boost::normal_distribution<float> norm_dist(mean, sigma); // bind random number generator to distribution, forming a function boost::variate_generator<boost::mt19937&, boost::normal_distribution<float> > normal_sampler(rng, norm_dist); // sample from the distribution return normal_sampler(); }
int main (int argc, char const *argv[]) { // The default maze size is 20x10. A different size may be specified on // the command line. std::size_t x = 20; std::size_t y = 10; if (argc == 3) { x = boost::lexical_cast<std::size_t>(argv[1]); y = boost::lexical_cast<std::size_t>(argv[2]); } random_generator.seed(std::time(0)); maze m(x, y); random_maze(m); if (m.solve()) std::cout << "Solved the maze." << std::endl; else std::cout << "The maze is not solvable." << std::endl; std::cout << m << std::endl; return 0; }
int main() { rnd.seed(42); vertex_iterator vi,vi_end; Graph m_graph; auto start = chrono::high_resolution_clock::now(); generate_random_graph(m_graph, 1000/*00*/, 500/*00*/, rnd); // reduced load for Coliru std::cout << "Generated " << num_vertices(m_graph) << " vertices and " << num_edges(m_graph) << " edges in " << chrono::duration_cast<chrono::milliseconds>(chrono::high_resolution_clock::now() - start).count() << "ms\n" << "The graph has a cycle? " << std::boolalpha << has_cycle(m_graph) << "\n" << "starting selective removal...\n"; start = chrono::high_resolution_clock::now(); size_t count = 0; for (boost::tie(vi, vi_end) = boost::vertices(m_graph); vi!=vi_end;) { if (m_graph[*vi].guid.part1 == 0) { count++; clear_vertex(*vi, m_graph); //std::cout << "." << std::flush; #if defined(STABLE_IT) auto toremove = vi++; boost::remove_vertex(*toremove,m_graph); #else boost::remove_vertex(*vi,m_graph); boost::tie(vi, vi_end) = boost::vertices(m_graph); #endif } else ++vi; } std::cout << "Done in " << chrono::duration_cast<chrono::milliseconds>( chrono::high_resolution_clock::now() - start).count() << "ms\n"; std::cout << "After: " << num_vertices(m_graph) << " vertices and " << num_edges(m_graph) << " edges\n"; }
int main(int argc, char ** argv) { using namespace std; using namespace boost; if(argc <= 3) { cout << "usage: " << argv[0] << " <grid size> <time> <runs>" << endl; return -1; } int system_random = open("/dev/random", O_RDONLY); uint32_t seed; read(system_random, &seed, 4); close(system_random); rng.seed(seed); for(int count = 0; count < atoi(argv[3]);) { grid_lattice grid(atoi(argv[1])); while(true) { double dt = grid.next_event(); grid.time += dt; if(grid.time > atof(argv[2])) break; grid.flip(); if(grid.empty()) grid.restart(); } if(!grid.empty()) { cout << grid.size() << endl; // cout << grid << endl; count++; } } return 0; }
void RandBipartiteGraph::GenerateGraph() { // make n left-vertices for(unsigned int i = 0; i < n; i++){ AddVariable(i); } vector<Vertex*> availableVertexList; availableVertexList.reserve(n); gen.seed(time(NULL)); if (c%d != 0){ // make c/d n right-vertices for(unsigned int i = 0; i < GetRightVerticesNumber(); i++){ availableVertexList.push_back(static_cast<Vertex*>(AddConstraint(i))); } } for (unsigned int i = 0; i < n; i++){ for(unsigned int j = 0; j < c; j++){ AddEdge(static_cast<Vertex*>(variables[i]), GetRandRightVertex(availableVertexList)); } } }
void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) { //int main(int ac, char* av[]){ // global objects for the program: /*Cogaps_options_class Cogaps_options(ac, av); try { // Cogaps_options_class Cogaps_options(ac, av); // WS -- change from Sasha's if (Cogaps_options.to_help){ Cogaps_options.help(cout); return 0; } //cout << Cogaps_options; } catch( const exception & e) { cerr <<e.what()<<endl; return 1; } */ // =========================================================================== // Initialization of the random number generator. // Different seeding methods: // --- fixed seed //std::vector<unsigned long> ve(2); //ve[0]=198782;ve[1]=89082; //boost::random::seed_seq seq(ve); //rng.seed(seq); // --- seeded with time rng.seed(static_cast<boost::uint32_t>(std::time(0))); //--------------------- // =========================================================================== // Part 1) Initialization: // In this section, we read in the system parameters from the paremter file // parameter.txt, and matrices D and S from datafile.txt. // Then we initialize A and P in both their atomic domains and // matrix forms. // =========================================================================== //Matlab pointers for inputs mxArray* DArrayElems; mxArray* SArrayElems; mxArray* InputColsPtr; mxArray* InputRowsPtr; //Matlab pointers for config mxArray* nFactorPtr; mxArray* simulationIDPtr; mxArray* nEquilPtr; mxArray* nSamplePtr; mxArray* QAtomicPtr; mxArray* alphaAPtr; mxArray* nIterAPtr; mxArray* nMaxAPtr; mxArray* maxGibbsAPtr; mxArray* lambdaAScalePtr; mxArray* alphaPPtr; mxArray* nIterPPtr; mxArray* nMaxPPtr; mxArray* maxGibbsPPtr; mxArray* lambdaPScalePtr; //Transferring inputs from mex gateway to pointers DArrayElems = mxGetCell(prhs[0], 0); SArrayElems = mxGetCell(prhs[0], 1); InputColsPtr = mxGetCell(prhs[0], 2); InputRowsPtr = mxGetCell(prhs[0], 3); nFactorPtr = mxGetCell(prhs[0], 4); simulationIDPtr = mxGetCell(prhs[0], 5); nEquilPtr = mxGetCell(prhs[0], 6); nSamplePtr = mxGetCell(prhs[0], 7); QAtomicPtr = mxGetCell(prhs[0], 8); alphaAPtr = mxGetCell(prhs[0], 9); nIterAPtr = mxGetCell(prhs[0], 10); nMaxAPtr = mxGetCell(prhs[0], 11); maxGibbsAPtr = mxGetCell(prhs[0], 12); lambdaAScalePtr = mxGetCell(prhs[0], 13); alphaPPtr = mxGetCell(prhs[0], 14); nIterPPtr = mxGetCell(prhs[0], 15); nMaxPPtr = mxGetCell(prhs[0], 16); maxGibbsPPtr = mxGetCell(prhs[0], 17); lambdaPScalePtr = mxGetCell(prhs[0], 18); //creating native C style data types double* DArray; double* SArray; double* numInputRows; double* numInputCols; //Establish the C types for the Config Information double* nFactorC = mxGetPr(nFactorPtr); int ptrLength; char* simulationIDC; ptrLength = mxGetNumberOfElements(simulationIDPtr) + 1; simulationIDC = (char *)(mxCalloc(ptrLength, sizeof(char))); mxGetString(simulationIDPtr, simulationIDC, ptrLength); double* nEquilC = mxGetPr(nEquilPtr); double* nSampleC = mxGetPr(nSamplePtr); double* QAtomicC = mxGetPr(QAtomicPtr); double* alphaAC = mxGetPr(alphaAPtr); double* nIterAC = mxGetPr(nIterAPtr); double* nMaxAC = mxGetPr(nMaxAPtr); double* maxGibbsAC = mxGetPr(maxGibbsAPtr); double* lambdaAScaleC = mxGetPr(lambdaAScalePtr); double* alphaPC = mxGetPr(alphaPPtr); double* nIterPC = mxGetPr(nIterPPtr); double* nMaxPC = mxGetPr(nMaxPPtr); double* maxGibbsPC = mxGetPr(maxGibbsPPtr); double* lambdaPScaleC = mxGetPr(lambdaPScalePtr); int nIRows; int nICols; //converting from pointer to matlab type then to C array DArray = mxGetPr(DArrayElems); SArray = mxGetPr(SArrayElems); numInputCols = mxGetPr(InputRowsPtr); numInputRows = mxGetPr(InputColsPtr); //removing need for arrays for dimensions nIRows = numInputRows[0]; nICols = numInputCols[0]; //Putting C style arrays into C++ vectors to pass to the Gibbs Sampler vector< vector<double> > DVector(nIRows, vector<double>(nICols)); vector< vector<double> > SVector(nIRows, vector<double>(nICols)); for(int i = 0; i < nIRows; i++) { for(int j = 0; j < nICols; j++) { DVector[i][j] = DArray[i + (j*nIRows)]; } } for(int i = 0; i < nIRows; i++) { for(int j = 0; j < nICols; j++) { SVector[i][j] = SArray[i + (j*nIRows)]; } } /*Testing output of matrices cout << endl; for(int i = 0; i < nIRows; i++) { for(int j = 0; j < nICols; j++) { cout << DVector[i][j] << " "; } cout << endl; } cout << endl; for(int i = 0; i < nIRows; i++) { for(int j = 0; j < nICols; j++) { cout << SVector[i][j] << " "; } cout << endl; } */ // Parameters or data to be read in: unsigned long nEquil = nEquilC[0]; //Cogaps_options.nEquil; // # outer loop iterations // for equilibration unsigned long nSample = nSampleC[0];//Cogaps_options.nSample; // # outer loop iterations // for sampling unsigned int nFactor = nFactorC[0]; //Cogaps_options.nFactor; // # patterns double alphaA = alphaAC[0]; //Cogaps_options.alphaA; double alphaP = alphaPC[0]; //Cogaps_options.alphaP; double nMaxA = nMaxAC[0];//Cogaps_options.nMaxA; // max. number of atoms in A double nMaxP = nMaxPC[0];//Cogaps_options.nMaxP; // number of atomic bins for P //string datafile = "Data2.txt";//Cogaps_options.datafile; // File for D //string variancefile = "Noise2.txt";//Cogaps_options.variancefile; // File for S string simulation_id = simulationIDC;//Cogaps_options.simulation_id; // simulation id unsigned long nIterA = nIterAC[0];//Cogaps_options.nIterA; // initial # of inner-loop iterations for A unsigned long nIterP = nIterPC[0];//Cogaps_options.nIterP; // initial # of inner-loop iterations for P double max_gibbsmass_paraA = maxGibbsAC[0];//Cogaps_options.max_gibbsmass_paraA; // maximum gibbs mass parameter for A double max_gibbsmass_paraP = maxGibbsPC[0];//Cogaps_options.max_gibbsmass_paraP; // maximum gibbs mass parameter for P double lambdaA_scale_factor = lambdaAScaleC[0];//Cogaps_options.lambdaA_scale_factor; // scale factor for lambdaA double lambdaP_scale_factor = lambdaPScaleC[0];//Cogaps_options.lambdaP_scale_factor; // scale factor for lambdaP bool Q_output_atomic = QAtomicC[0];//Cogaps_options.Q_output_atomic; // whether to output the atomic space info // Parameters or structures to be calculated or constructed: unsigned int nRow; // number of items in observation (= # of genes) unsigned int nCol; // number of observation (= # of arrays) unsigned int nBinsA; // number of atomic bins for A unsigned int nBinsP; // number of atomic bins for P double lambdaA; double lambdaP; //unsigned long nIterA; // number of inner loop iterations for A //unsigned long nIterP; // number of inner loop iterations for P //atomic At, Pt; // atomic space for A and P respectively unsigned long atomicSize; // number of atomic points char label_A = 'A'; // label for matrix A char label_P = 'P'; // label for matrix P char label_D = 'D'; // label for matrix D char label_S = 'S';// label for matrix S // Output parameters and computing info to files: /* Commented out for Matlab and R Versions char outputFilename[80]; strcpy(outputFilename,simulation_id.c_str()); strcat(outputFilename,"_computing_info.txt"); ofstream outputFile; outputFile.open(outputFilename,ios::out); // start by deleting previous content and // rewriting the file outputFile << "Common parameters and info:" << endl; outputFile << "input data file: " << datafile << endl; outputFile << "input variance file: " << variancefile << endl; outputFile << "simulation id: " << simulation_id << endl; outputFile << "nFactor = " << nFactor << endl; outputFile << "nEquil = " << nEquil << endl; outputFile << "nSample = " << nSample << endl; outputFile << "Q_output_atomic (bool) = " << Q_output_atomic << endl << endl; outputFile << "Parameters for A:" << endl; outputFile << "alphaA = " << alphaA << endl; outputFile << "nMaxA = " << nMaxA << endl; outputFile << "nIterA = " << nIterA << endl; outputFile << "max_gibbsmass_paraA = " << max_gibbsmass_paraA << endl; outputFile << "lambdaA_scale_factor = " << lambdaA_scale_factor << endl << endl; outputFile << "Parameters for P:" << endl; outputFile << "alphaP = " << alphaP << endl; outputFile << "nMaxP = " << nMaxP << endl; outputFile << "nIterP = " << nIterP << endl; outputFile << "max_gibbsmass_paraP = " << max_gibbsmass_paraP << endl; outputFile << "lambdaP_scale_factor = " << lambdaP_scale_factor << endl << endl; outputFile.close(); */ // --------------------------------------------------------------------------- // Initialize the GibbsSampler. /*Regular Version GibbsSampler GibbsSamp(nEquil,nSample,nFactor, // construct GibbsSampler and alphaA,alphaP,nMaxA,nMaxP,// Read in D and S matrices nIterA,nIterP, max_gibbsmass_paraA, max_gibbsmass_paraP, lambdaA_scale_factor, lambdaP_scale_factor, atomicSize, label_A,label_P,label_D,label_S, datafile,variancefile,simulation_id); */ //R and Matlab Version GibbsSampler GibbsSamp(nEquil,nSample,nFactor, // construct GibbsSampler and alphaA,alphaP,nMaxA,nMaxP,// Read in D and S matrices nIterA,nIterP, max_gibbsmass_paraA, max_gibbsmass_paraP, lambdaA_scale_factor, lambdaP_scale_factor, atomicSize, label_A,label_P,label_D,label_S, DVector,SVector,simulation_id); // --------------------------------------------------------------------------- // Based on the information of D, construct and initialize for A and P both // the matrices and atomic spaces. GibbsSamp.init_AMatrix_and_PMatrix(); // initialize A and P matrices GibbsSamp.init_AAtomicdomain_and_PAtomicdomain(); // intialize atomic spaces // A and P GibbsSamp.init_sysChi2(); // initialize the system chi2 value // =========================================================================== // Part 2) Equilibration: // In this section, we let the system eqilibrate with nEquil outer loop // iterations. Within each outer loop iteration, A is iterated nIterA times // and P is iterated nIterP times. After equilibration, we update nIterA and // nIterP according to the expected number of atoms in the atomic spaces // of A and P respectively. // =========================================================================== // --------- temp for initializing output to chi2.txt /* char outputchi2_Filename[80]; strcpy(outputchi2_Filename,simulation_id.c_str()); strcat(outputchi2_Filename,"_chi2.txt"); ofstream outputchi2_File; outputchi2_File.open(outputchi2_Filename,ios::out); outputchi2_File << "chi2" << endl; outputchi2_File.close(); */ // -------------- double chi2; //Matlab control variables double tempChiSq; double tempAtomA; double tempAtomP; int outCount = 0; int numOutputs = 100; int totalChiSize = nSample + nEquil; //Establishing Matlab containers for atoms and chisquare double* nAEquil; mxArray* nAEMx; nAEMx = mxCreateDoubleMatrix(1, nEquil, mxREAL); nAEquil = mxGetPr(nAEMx); double* nASamp; mxArray* nASMx; nASMx = mxCreateDoubleMatrix(1, nSample, mxREAL); nASamp = mxGetPr(nASMx); double* nPEquil; mxArray* nPEMx; nPEMx = mxCreateDoubleMatrix(1, nEquil, mxREAL); nPEquil = mxGetPr(nPEMx); double* nPSamp; mxArray* nPSMx; nPSMx = mxCreateDoubleMatrix(1, nSample, mxREAL); nPSamp = mxGetPr(nPSMx); double* chiVect; mxArray* chiMx; chiMx = mxCreateDoubleMatrix(1, totalChiSize, mxREAL); chiVect = mxGetPr(chiMx); for (unsigned long ext_iter=1; ext_iter <= nEquil; ++ext_iter){ GibbsSamp.set_iter(ext_iter); GibbsSamp.set_AnnealingTemperature(); for (unsigned long iterA=1; iterA <= nIterA; ++iterA){ GibbsSamp.update('A'); GibbsSamp.check_atomic_matrix_consistency('A'); //GibbsSamp.check_atomic_matrix_consistency('A'); //GibbsSamp.detail_check(outputchi2_Filename); } for (unsigned long iterP=1; iterP <= nIterP; ++iterP){ GibbsSamp.update('P'); GibbsSamp.check_atomic_matrix_consistency('P'); //GibbsSamp.check_atomic_matrix_consistency('P'); //GibbsSamp.detail_check(outputchi2_Filename); } tempChiSq = GibbsSamp.get_sysChi2(); chiVect[(ext_iter)-1] = tempChiSq; tempAtomA = GibbsSamp.getTotNumAtoms('A'); tempAtomP = GibbsSamp.getTotNumAtoms('P'); nAEquil[outCount] = tempAtomA; nPEquil[outCount] = tempAtomP; outCount++; // ----------- output computing info --------- if ( ext_iter % numOutputs == 0){ //chi2 = 2.*GibbsSamp.cal_logLikelihood(); cout << "Equil: " << ext_iter << " of " << nEquil << " ,nA: " << tempAtomA << " ,nP: " << tempAtomP << // " ,chi2 = " << chi2 << " ,System Chi2 = " << tempChiSq << endl; } // ------------------------------------------- // re-calculate nIterA and nIterP to the expected number of atoms nIterA = (unsigned long) randgen('P',max((double) GibbsSamp.getTotNumAtoms('A'),10.)); nIterP = (unsigned long) randgen('P',max((double) GibbsSamp.getTotNumAtoms('P'),10.)); //nIterA = (unsigned long) randgen('P',(double) GibbsSamp.getTotNumAtoms('A')+10.); //nIterP = (unsigned long) randgen('P',(double) GibbsSamp.getTotNumAtoms('P')+10.); // -------------------------------------------- } // end of for-block for equilibration // =========================================================================== // Part 3) Sampling: // After the system equilibriates in Part 2, we sample the systems with an // outer loop of nSample iterations. Within each outer loop iteration, A is // iterated nIterA times and P is iterated nIterP times. After sampling, // we update nIterA and nIterP according to the expected number of atoms in // the atomic spaces of A and P respectively. // =========================================================================== unsigned int statindx = 0; outCount = 0; for (unsigned long ext_iter=1; ext_iter <= nSample; ++ext_iter){ for (unsigned long iterA=1; iterA <= nIterA; ++iterA){ GibbsSamp.update('A'); //GibbsSamp.check_atomic_matrix_consistency('A'); //GibbsSamp.detail_check(outputchi2_Filename); } GibbsSamp.check_atomic_matrix_consistency('A'); for (unsigned long iterP=1; iterP <= nIterP; ++iterP){ GibbsSamp.update('P'); //GibbsSamp.check_atomic_matrix_consistency('P'); //GibbsSamp.detail_check(outputchi2_Filename); } GibbsSamp.check_atomic_matrix_consistency('P'); if (Q_output_atomic == true){ GibbsSamp.output_atomicdomain('A',ext_iter); GibbsSamp.output_atomicdomain('P',ext_iter); } statindx += 1; GibbsSamp.compute_statistics_prepare_matrices(statindx); tempChiSq = GibbsSamp.get_sysChi2(); chiVect[(nEquil + ext_iter)-1] = tempChiSq; tempAtomA = GibbsSamp.getTotNumAtoms('A'); tempAtomP = GibbsSamp.getTotNumAtoms('P'); nASamp[outCount] = tempAtomA; nPSamp[outCount] = tempAtomP; outCount++; // ----------- output computing info --------- if ( ext_iter % numOutputs == 0){ // chi2 = 2.*GibbsSamp.cal_logLikelihood(); //GibbsSamp.output_atomicdomain('A',(unsigned long) statindx); //GibbsSamp.output_atomicdomain('P',(unsigned long) statindx); cout << "Samp: " << ext_iter << " of " << nSample << " ,nA: " << tempAtomA << " ,nP: " << tempAtomP << // " ,chi2 = " << chi2 << " , System Chi2 = " << tempChiSq << endl; if (ext_iter == nSample){ chi2 = 2.*GibbsSamp.cal_logLikelihood(); cout << " *** Check value of final chi2: " << chi2 << " **** " << endl; } } // ------------------------------------------- // re-calculate nIterA and nIterP to the expected number of atoms nIterA = (unsigned long) randgen('P',max((double) GibbsSamp.getTotNumAtoms('A'),10.)); nIterP = (unsigned long) randgen('P',max((double) GibbsSamp.getTotNumAtoms('P'),10.)); //nIterA = (unsigned long) randgen('P',(double) GibbsSamp.getTotNumAtoms('A')+10.); //nIterP = (unsigned long) randgen('P',(double) GibbsSamp.getTotNumAtoms('P')+10.); // -------------------------------------------- } // end of for-block for Sampling // =========================================================================== // Part 4) Calculate statistics: // In this final section, we calculate all statistics pertaining to the final // sample and check the results. // =========================================================================== char outputAmean_Filename[80]; strcpy(outputAmean_Filename,simulation_id.c_str()); strcat(outputAmean_Filename,"_Amean.txt"); char outputAsd_Filename[80]; strcpy(outputAsd_Filename,simulation_id.c_str()); strcat(outputAsd_Filename,"_Asd.txt"); char outputPmean_Filename[80]; strcpy(outputPmean_Filename,simulation_id.c_str()); strcat(outputPmean_Filename,"_Pmean.txt"); char outputPsd_Filename[80]; strcpy(outputPsd_Filename,simulation_id.c_str()); strcat(outputPsd_Filename,"_Psd.txt"); char outputAPmean_Filename[80]; strcpy(outputAPmean_Filename,simulation_id.c_str()); strcat(outputAPmean_Filename,"_APmean.txt"); /* GibbsSamp.compute_statistics(outputFilename, outputAmean_Filename,outputAsd_Filename, outputPmean_Filename,outputPsd_Filename, outputAPmean_Filename, statindx); // compute statistics like mean and s.d.n */ vector<vector <double> > AMeanVector; vector<vector <double> > AStdVector; vector<vector <double> > PMeanVector; vector<vector <double> > PStdVector; GibbsSamp.compute_statistics(statindx, AMeanVector, AStdVector, PMeanVector, PStdVector); /* cout << endl; for(int i = 0; i < AMeanVector.size(); i++) { for(int j = 0; j < AMeanVector[0].size(); j++) { cout << AMeanVector[i][j] << " "; } cout << endl; } */ /*double *x,*y; size_t mrows,ncols; mrows = mxGetM(prhs[0]); ncols = mxGetN(prhs[0]); plhs[0] = mxCreateDoubleMatrix((mwSize)mrows, (mwSize)ncols, mxREAL); x = mxGetPr(prhs[0]); y = mxGetPr(plhs[0]);*/ //Get Dims of Matrices for matlab int nrowA, ncolA; int nrowP, ncolP; ncolA = AMeanVector.size(); nrowA = AMeanVector[0].size(); ncolP = PMeanVector.size(); nrowP = PMeanVector[0].size(); //Declare Matrices for matlab double* AMeanMatArray; double* AStdMatArray; double* PMeanMatArray; double* PStdMatArray; //Convertible Matlab datatypes mxArray* AMeanMx; mxArray* AStdMx; mxArray* PMeanMx; mxArray* PStdMx; //Allocate memory for the Matlab Matrices and establish their data types AMeanMx = mxCreateDoubleMatrix(ncolA, nrowA, mxREAL); AStdMx = mxCreateDoubleMatrix(ncolA, nrowA, mxREAL); PMeanMx = mxCreateDoubleMatrix(ncolP, nrowP, mxREAL); PStdMx = mxCreateDoubleMatrix(ncolP, nrowP, mxREAL); //Steps to Create the Cell Array to pass back the data matrices mxArray* TempArry; const int* dims; TempArry = mxCreateDoubleMatrix(9, 9, mxREAL); //TODO, currently creating the dimensions of a cell Matrix by creating a temp matrix due to lack of understanding of mex datatypes, fix! dims = mxGetDimensions(TempArry); plhs[0] = mxCreateCellArray(1, dims); //Fill the matrices individually AMeanMatArray = mxGetPr(AMeanMx); double tempVectValue; for(int i = 0; i < ncolA; i++) { for(int j = 0; j < nrowA; j++) { tempVectValue = AMeanVector[i][j]; AMeanMatArray[i + (j*ncolA)] = tempVectValue; } } AStdMatArray = mxGetPr(AStdMx); for(int i = 0; i < ncolA; i++) { for(int j = 0; j < nrowA; j++) { tempVectValue = AStdVector[i][j]; AStdMatArray[i + (j*ncolA)] = tempVectValue; } } PMeanMatArray = mxGetPr(PMeanMx); for(int i = 0; i < ncolP; i++) { for(int j = 0; j < nrowP; j++) { tempVectValue = PMeanVector[i][j]; PMeanMatArray[i + (j*ncolP)] = tempVectValue; } } PStdMatArray = mxGetPr(PStdMx); for(int i = 0; i < ncolP; i++) { for(int j = 0; j < nrowP; j++) { tempVectValue = PStdVector[i][j]; PStdMatArray[i + (j*ncolP)] = tempVectValue; } } mxSetCell(plhs[0], 0, AMeanMx); mxSetCell(plhs[0], 1, AStdMx); mxSetCell(plhs[0], 2, PMeanMx); mxSetCell(plhs[0], 3, PStdMx); mxSetCell(plhs[0], 4, nAEMx); mxSetCell(plhs[0], 5, nASMx); mxSetCell(plhs[0], 6, nPEMx); mxSetCell(plhs[0], 7, nPSMx); mxSetCell(plhs[0], 8, chiMx); }
int main(int argc, char *argv[]) { // Parse and read the command line arguments. if (argc != 5) { cerr << "Usage: " << PNAME << " <min-weight> <max-weight> <#vertices> <#tests>\n"; exit(1); } long int min_weight = strtol(argv[1], 0, 0); long int max_weight = strtol(argv[2], 0, 0); long int n_vertices = strtol(argv[3], 0, 0); long int n_tests = strtol(argv[4], 0, 0); if (errno) { cerr << "Bad arguments\n"; exit(1); } // Check consistency of command line arguments. if (n_tests < 0) { cerr << "the number of tests must be a positive integer\n"; exit(1); } if (n_vertices > numeric_limits<unsigned>::digits) { cerr << "Too many vertices\n" << "Maximum n.o. vertices is " << numeric_limits<unsigned>::digits << "\n"; exit(1); } if (n_vertices < 2) { cerr << "Too few vertices\n" << "must be at least two\n"; exit(1); } if (min_weight > max_weight) { cerr << "min weight must be greater than max weight\n"; exit(1); } if (abs(max_weight) >= numeric_limits<int>::max() / n_vertices || abs(min_weight) >= numeric_limits<int>::max() / n_vertices) { cerr << "weights too large\n"; exit(1); } // Initialize the random number generator. timeval tv; gettimeofday(&tv, 0); g_generator.seed(tv.tv_sec * 1000000 + tv.tv_usec); boost::uniform_int<int> uniform_int_dist(min_weight, max_weight); boost::variate_generator<mt19937, uniform_int<int> > rng_i(g_generator, uniform_int_dist); // Perform the tests. enum {MAX_SPAN_0, MAX_SPAN_1, MAX_SPAN_2, MAX_NOSPAN_0, MAX_NOSPAN_1, MAX_NOSPAN_2, MIN_SPAN_0, MIN_SPAN_1, MIN_SPAN_2, MIN_NOSPAN_0, MIN_NOSPAN_1, MIN_NOSPAN_2, N_CASES}; string case_names[] = { "MAX_SPAN_0", "MAX_SPAN_1", "MAX_SPAN_2", "MAX_NOSPAN_0", "MAX_NOSPAN_1", "MAX_NOSPAN_2", "MIN_SPAN_0", "MIN_SPAN_1", "MIN_SPAN_2", "MIN_NOSPAN_0", "MIN_NOSPAN_1", "MIN_NOSPAN_2" }; complete_graph g(n_vertices); multi_array<int, 2> weights(extents[n_vertices][n_vertices]); vector<Vertex> parent(n_vertices); Vertex roots[] = {0, 1}; vector<Edge> branching; vector< vector< Edge > > all_branchings(N_CASES); vector<int> ans(N_CASES); while (n_tests--) { // Clear all the branchings from previous iteration. BOOST_FOREACH (vector<Edge> &vec, all_branchings) { vec.clear(); } // create new weights int *end = weights.origin() + n_vertices * n_vertices; for (int *ip = weights.origin(); ip != end; ++ip) { *ip = rng_i(); } // run edmonds algorithm for a few cases. The cases will be // the cross product of the following properties: // optimum-is-maximum x attempt-to-span x num-specified-roots // where num-specified roots is either 0, 1, or 2. Also the // specified roots are either none, the vertex 0, or the // vertices 0 and 1. edmonds_optimum_branching<true, true, true> (g, identity_property_map(), weights.origin(), roots, roots + 0, back_inserter(all_branchings[MAX_SPAN_0])); edmonds_optimum_branching<true, true, true> (g, identity_property_map(), weights.origin(), roots, roots + 1, back_inserter(all_branchings[MAX_SPAN_1])); edmonds_optimum_branching<true, true, true> (g, identity_property_map(), weights.origin(), roots, roots + 2, back_inserter(all_branchings[MAX_SPAN_2])); edmonds_optimum_branching<true, false, true> (g, identity_property_map(), weights.origin(), roots, roots + 0, back_inserter(all_branchings[MAX_NOSPAN_0])); edmonds_optimum_branching<true, false, true> (g, identity_property_map(), weights.origin(), roots, roots + 1, back_inserter(all_branchings[MAX_NOSPAN_1])); edmonds_optimum_branching<true, false, true> (g, identity_property_map(), weights.origin(), roots, roots + 2, back_inserter(all_branchings[MAX_NOSPAN_2])); edmonds_optimum_branching<false, true, true> (g, identity_property_map(), weights.origin(), roots, roots + 0, back_inserter(all_branchings[MIN_SPAN_0])); edmonds_optimum_branching<false, true, true> (g, identity_property_map(), weights.origin(), roots, roots + 1, back_inserter(all_branchings[MIN_SPAN_1])); edmonds_optimum_branching<false, true, true> (g, identity_property_map(), weights.origin(), roots, roots + 2, back_inserter(all_branchings[MIN_SPAN_2])); edmonds_optimum_branching<false, false, true> (g, identity_property_map(), weights.origin(), roots, roots + 0, back_inserter(all_branchings[MIN_NOSPAN_0])); edmonds_optimum_branching<false, false, true> (g, identity_property_map(), weights.origin(), roots, roots + 1, back_inserter(all_branchings[MIN_NOSPAN_1])); edmonds_optimum_branching<false, false, true> (g, identity_property_map(), weights.origin(), roots, roots + 2, back_inserter(all_branchings[MIN_NOSPAN_2])); for (int i = 0; i < N_CASES; ++i) { ans[i] = 0; BOOST_FOREACH (Edge e, all_branchings[i]) { ans[i] += weights[source(e, g)][target(e, g)]; } } // Exhaustively test all branchings and check if the answers // from edmonds's algorithm is optimal. int bad_case = -1; fill(parent.begin(), parent.end(), 0); do { if (is_cyclic(parent)) continue; int weight = 0; for (int i = 0; i < n_vertices; ++i) { if (parent[i] == i) continue; weight += weights[parent[i]][i]; } int num_roots = 0; for (int i = 0; i < n_vertices; ++i) { num_roots += parent[i] == i ? 1 : 0; } bad_case = MAX_NOSPAN_0; if (weight > ans[bad_case]) break; bad_case = MIN_NOSPAN_0; if (weight < ans[bad_case]) break; bad_case = MAX_NOSPAN_1; if (parent[0] == 0 && weight > ans[bad_case]) break; bad_case = MIN_NOSPAN_1; if (parent[0] == 0 && weight < ans[bad_case]) break; bad_case = MAX_NOSPAN_2; if (parent[0] == 0 && parent[1] == 1 && weight > ans[bad_case]) break; bad_case = MIN_NOSPAN_2; if (parent[0] == 0 && parent[1] == 1 && weight < ans[bad_case]) break; bad_case = MAX_SPAN_0; if (num_roots == 1 && weight > ans[bad_case]) break; bad_case = MIN_SPAN_0; if (num_roots == 1 && weight < ans[bad_case]) break; bad_case = MAX_SPAN_1; if (num_roots == 1 && parent[0] == 0 && weight > ans[bad_case]) break; bad_case = MIN_SPAN_1; if (num_roots == 1 && parent[0] == 0 && weight < ans[bad_case]) break; bad_case = MAX_SPAN_2; if (num_roots == 1 && parent[0] == 0 && parent[1] == 1 && weight > ans[bad_case]) break; bad_case = MIN_SPAN_2; if (num_roots == 1 && parent[0] == 0 && parent[1] == 1 && weight < ans[bad_case]) break; bad_case = -1; } while (next_parent(parent)); // If we broke out of the loop prematurely, then something was // wrong. if (bad_case > 0) { cout << "\ntest failed.\n"; cout << "weights:\n"; for (int i = 0; i < n_vertices; ++i) { for (int j = 0; j < n_vertices; ++j) { cout << weights[i][j] << " "; } cout << "\n"; } cout << "\n"; int weight = 0; for (int i = 0; i < n_vertices; ++i) { if (parent[i] == i) continue; weight += weights[parent[i]][i]; } cout << "counter example (weight = " << weight << "):\n"; for (int i = 0; i < n_vertices; ++i) { if (parent[i] == i) continue; cout << "(" << parent[i] << ", " << i << ")\t"; } cout << "\n"; weight = 0; cout << "case: " << case_names[bad_case] << ":\n"; BOOST_FOREACH (Edge e, all_branchings[bad_case]) { cout << "(" << source(e, g) << ", " << target(e, g) << ")\t"; weight += weights[source(e, g)][target(e, g)]; } cout << "\n"; cout << "weight:\t" << weight << "\n"; exit(1); }
servers_chooser() { boost::random_device dev; rng_.seed(dev()); }
void initrand(unsigned int seed) { rng.seed(seed); }
int main (int argc, char* argv[]) { cout << endl; cout << " MAP AND MARGINAL INFERENCE EXAMPLE"; cout << endl << endl; /*------------------------------------------------------------------------------ * * PREPARE TRAINING DATA * *----------------------------------------------------------------------------*/ // // Generate the types of nodes and edges // size_t N_classes_type_1 = 11; size_t N_nf = 5; size_t N_ef = 4; // OBJECTS CNodeTypePtr simpleNodeType1Ptr( new CNodeType(N_classes_type_1, N_nf, string("Objects") ) ); CEdgeTypePtr simpleEdgeType1Ptr ( new CEdgeType(N_ef, simpleNodeType1Ptr, simpleNodeType1Ptr, string("Edges between two objects")) ); trainingDataset.addNodeType( simpleNodeType1Ptr ); trainingDataset.addEdgeType( simpleEdgeType1Ptr ); // // Create a set of training graphs // vector<CGraph> graphs; vector<std::map<size_t,size_t> > groundTruths; /*--------------------------------- Graph 1 ----------------------------------*/ cout << "Graph 1" << endl; CGraph graph1; std::map<size_t,size_t> groundTruth1; Eigen::MatrixXd g1_nf(11,5); g1_nf << 1, 0.725256, 0.347833, 2.32114, 1, 0, 0, 1.46145, 2.86637, 1, 1, 0.513579, 0.398025, 1.85308, 1, 0, 0.896507, 0.969337, 1.7035, 1, 0, 0.748331, 0.585186, 1.47532, 1, 1, 0.963636, 0.125714, 1, 1, 1, 0.93444, 0.212592, 1.52702, 1, 1, 1.05757, 0.236803, 3.22358, 1, 0, 0.398408, 0.131399, 1, 1, 0, 0.0300602, 0.129521, 2.03183, 1, 1, 0.469344, 0.505431, 1.45506, 1; Eigen::MatrixXi g1_adj(11,11); g1_adj << 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0; Eigen::MatrixXi isOn_relation(11,11); isOn_relation.setZero(); isOn_relation(3,5) = 1; isOn_relation(4,5) = 1; Eigen::MatrixXi coplanar_relation(11,11); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g1_relations; g1_relations.push_back( isOn_relation ); g1_relations.push_back( coplanar_relation ); Eigen::VectorXi g1_groundTruth(11); g1_groundTruth << 4, 0, 1, 2, 2, 6, 1, 1, 5, 0, 3; fillGraph( graph1, g1_nf, simpleNodeType1Ptr, g1_adj, simpleEdgeType1Ptr, g1_relations, g1_groundTruth, groundTruth1 ); graphs.push_back( graph1 ); groundTruths.push_back( groundTruth1 ); cout << graph1 << endl; /*--------------------------------- Graph 2 ----------------------------------*/ cout << "Graph 2" << endl; CGraph graph2; std::map<size_t,size_t> groundTruth2; Eigen::MatrixXd g2_nf(5,5); g2_nf << 0, 0.745944, 1.20098, 1.68726, 1, 1, 0.523566, 0.255477, 1.72744, 1, 0, 0, 1.49268, 2.54707, 1, 1, 0.359525, 0.268375, 2.8157, 1, 0, 0.446692, 0.129895, 1, 1; Eigen::MatrixXi g2_adj(5,5); g2_adj << 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0; isOn_relation.resize(5,5); isOn_relation.setZero(); coplanar_relation.resize(5,5); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g2_relations; g2_relations.push_back( isOn_relation ); g2_relations.push_back( coplanar_relation ); Eigen::VectorXi g2_groundTruth(5); g2_groundTruth << 2, 3, 0, 3, 5; fillGraph( graph2, g2_nf, simpleNodeType1Ptr, g2_adj, simpleEdgeType1Ptr, g2_relations, g2_groundTruth, groundTruth2 ); graphs.push_back( graph2 ); groundTruths.push_back( groundTruth2 ); ///*--------------------------------- Graph 3 ----------------------------------*/ cout << "Graph 3" << endl; CGraph graph3; std::map<size_t,size_t> groundTruth3; Eigen::MatrixXd g3_nf(10,5); g3_nf << 1, 1.56711, 3.42284, 2.00889, 1, 1, 1.02852, 0.339804, 1.54119, 1, 1, 1.02507, 0.317727, 1.77383, 1, 0, 0.880216, 1.45163, 2.04593, 1, 1, 1.04219, 0.229974, 1.77708, 1, 1, 1.66558, 0.171681, 2.3654, 1, 0, 0.488131, 0.233171, 1.51503, 1, 1, 0.699061, 0.120062, 1.55154, 1, 0, 0, 2.84036, 1.99605, 1, 1, 0.167627, 0.352816, 3.80501, 1; Eigen::MatrixXi g3_adj(10,10); g3_adj << 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0; isOn_relation.resize(10,10); isOn_relation.setZero(); isOn_relation(1,3) = 1; isOn_relation(2,3) = 1; isOn_relation(3,4) = 1; coplanar_relation.resize(10,10); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g3_relations; g3_relations.push_back( isOn_relation ); g3_relations.push_back( coplanar_relation ); Eigen::VectorXi g3_groundTruth(10); g3_groundTruth << 1, 6, 6, 2, 9, 10, 5, 4, 0, 1; fillGraph( graph3, g3_nf, simpleNodeType1Ptr, g3_adj, simpleEdgeType1Ptr, g3_relations, g3_groundTruth, groundTruth3 ); graphs.push_back( graph3 ); groundTruths.push_back( groundTruth3 ); ///*--------------------------------- Graph 4 ----------------------------------*/ cout << "Graph 4" << endl; CGraph graph4; std::map<size_t,size_t> groundTruth4; Eigen::MatrixXd g4_nf(7,5); g4_nf << 1, 1.58673, 2.5301, 1.79962, 1, 1, 1.01892, 0.198802, 1.46393, 1, 1, 1.00455, 0.230172, 1.67413, 1, 0, 0.744138, 0.89911, 1.57856, 1, 0, 0.477457, 0.187906, 1.87622, 1, 1, 0.7026, 0.113952, 1.44738, 1, 0, 0, 2.75497, 1.87592, 1; Eigen::MatrixXi g4_adj(7,7); g4_adj << 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0; isOn_relation.resize(7,7); isOn_relation.setZero(); isOn_relation(1,3) = 1; isOn_relation(2,3) = 1; coplanar_relation.resize(7,7); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g4_relations; g4_relations.push_back( isOn_relation ); g4_relations.push_back( coplanar_relation ); Eigen::VectorXi g4_groundTruth(7); g4_groundTruth << 1, 6, 9, 2, 5, 4, 0; fillGraph( graph4, g4_nf, simpleNodeType1Ptr, g4_adj, simpleEdgeType1Ptr, g4_relations, g4_groundTruth, groundTruth4 ); graphs.push_back( graph4 ); groundTruths.push_back( groundTruth4 ); ///*--------------------------------- Graph 5 ----------------------------------*/ cout << "Graph 5" << endl; // Desktop 6 CGraph graph5; std::map<size_t,size_t> groundTruth5; Eigen::MatrixXd g5_nf(8,5); g5_nf << 1, 1.10316, 0.363647, 1.61694, 1, 1, 1.00384, 0.23474, 2.7587, 1, 1, 0.988903, 0.118134, 1, 1, 0, 0.789307, 1.62451, 2.07762, 1, 1, 0.672498, 1.8316, 1.78692, 1, 1, 0.976089, 0.244898, 1, 1, 0, 0.502879, 0.186037, 2.29688, 1, 0, 0, 2.50486, 1.43262, 1; Eigen::MatrixXi g5_adj(8,8); g5_adj << 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; isOn_relation.resize(8,8); isOn_relation.setZero(); isOn_relation(0,3) = 1; isOn_relation(2,3) = 1; coplanar_relation.resize(8,8); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g5_relations; g5_relations.push_back( isOn_relation ); g5_relations.push_back( coplanar_relation ); Eigen::VectorXi g5_groundTruth(8); g5_groundTruth << 6, 1, 8, 2, 1, 1, 5, 0; fillGraph( graph5, g5_nf, simpleNodeType1Ptr, g5_adj, simpleEdgeType1Ptr, g5_relations, g5_groundTruth, groundTruth5 ); graphs.push_back( graph5 ); groundTruths.push_back( groundTruth5 ); ///*--------------------------------- Graph 6 ----------------------------------*/ cout << "Graph 6" << endl; // Desktop 7 CGraph graph6; std::map<size_t,size_t> groundTruth6; Eigen::MatrixXd g6_nf(7,5); g6_nf << 1, 0.975437, 1.21382, 2.28555, 1, 1, 0.951433, 0.270196, 2.29035, 1, 0, 0.766445, 1.00624, 1.6777, 1, 0, 0, 1.13219, 1.64994, 1, 1, 0.985712, 0.208164, 1.67471, 1, 0, 0.499913, 0.208579, 1.95149, 1, 1, 0.970966, 0.16066, 1, 1; Eigen::MatrixXi g6_adj(7,7); g6_adj << 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0; isOn_relation.resize(7,7); isOn_relation.setZero(); isOn_relation(2,6) = 1; coplanar_relation.resize(7,7); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g6_relations; g6_relations.push_back( isOn_relation ); g6_relations.push_back( coplanar_relation ); Eigen::VectorXi g6_groundTruth(7); g6_groundTruth << 1, 1, 2, 0, 4, 5, 6; fillGraph( graph6, g6_nf, simpleNodeType1Ptr, g6_adj, simpleEdgeType1Ptr, g6_relations, g6_groundTruth, groundTruth6 ); graphs.push_back( graph6 ); groundTruths.push_back( groundTruth6 ); ///*--------------------------------- Graph 7 ----------------------------------*/ cout << "Graph 7" << endl; // Desktop 8 CGraph graph7; std::map<size_t,size_t> groundTruth7; Eigen::MatrixXd g7_nf(7,5); g7_nf << 1, 1.08949, 0.44, 1.51331, 1, 1, 1.07257, 0.144868, 1, 1, 0, 0.802159, 1.19101, 1.78961, 1, 1, 0.728912, 0.128203, 2.15983, 1, 0, 0, 3.7626, 2.86856, 1, 0, 0.0142013, 0.175163, 2.24823, 1, 0, 0.540925, 0.205526, 1, 1; Eigen::MatrixXi g7_adj(7,7); g7_adj << 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0; isOn_relation.resize(7,7); isOn_relation.setZero(); isOn_relation(0,2) = 1; isOn_relation(1,2) = 1; coplanar_relation.resize(7,7); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g7_relations; g7_relations.push_back( isOn_relation ); g7_relations.push_back( coplanar_relation ); Eigen::VectorXi g7_groundTruth(7); g7_groundTruth << 6, 6, 2, 4, 0, 0, 5; fillGraph( graph7, g7_nf, simpleNodeType1Ptr, g7_adj, simpleEdgeType1Ptr, g7_relations, g7_groundTruth, groundTruth7 ); graphs.push_back( graph7 ); groundTruths.push_back( groundTruth7 ); ///*--------------------------------- Graph 8 ----------------------------------*/ cout << "Graph 8" << endl; // Desktop 9 CGraph graph8; std::map<size_t,size_t> groundTruth8; Eigen::MatrixXd g8_nf(5,5); g8_nf << 1, 1.0398, 1.45393, 1.85835, 1, 0, 0.687862, 1.05335, 1.44245, 1, 0, 0.476001, 0.17945, 1, 1, 1, 0.150004, 0.163443, 1.72806, 1, 0, 0, 2.11644, 3.64183, 1; Eigen::MatrixXi g8_adj(5,5); g8_adj << 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0; isOn_relation.resize(5,5); isOn_relation.setZero(); coplanar_relation.resize(5,5); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g8_relations; g8_relations.push_back( isOn_relation ); g8_relations.push_back( coplanar_relation ); Eigen::VectorXi g8_groundTruth(5); g8_groundTruth << 1, 2, 5, 1, 0; fillGraph( graph8, g8_nf, simpleNodeType1Ptr, g8_adj, simpleEdgeType1Ptr, g8_relations, g8_groundTruth, groundTruth8 ); graphs.push_back( graph8 ); groundTruths.push_back( groundTruth8 ); ///*--------------------------------- Graph 9 ----------------------------------*/ cout << "Graph 9" << endl; // Desktop 11 CGraph graph9; std::map<size_t,size_t> groundTruth9; Eigen::MatrixXd g9_nf(6,5); g9_nf << 1, 1.08032, 0.175311, 1.59692, 1, 1, 1.04474, 0.153065, 1.75199, 1, 0, 0.802788, 1.36259, 2.70243, 1, 1, 0.727563, 0.115821, 1.56757, 1, 0, 0, 2.24629, 1.73137, 1, 0, 0.516504, 0.165597, 1, 1; Eigen::MatrixXi g9_adj(6,6); g9_adj << 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0; isOn_relation.resize(6,6); isOn_relation.setZero(); isOn_relation(0,2) = 1; coplanar_relation.resize(6,6); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g9_relations; g9_relations.push_back( isOn_relation ); g9_relations.push_back( coplanar_relation ); Eigen::VectorXi g9_groundTruth(6); g9_groundTruth << 6, 1, 2, 4, 0, 5; fillGraph( graph9, g9_nf, simpleNodeType1Ptr, g9_adj, simpleEdgeType1Ptr, g9_relations, g9_groundTruth, groundTruth9 ); graphs.push_back( graph9 ); groundTruths.push_back( groundTruth9 ); ///*--------------------------------- Graph 10 ----------------------------------*/ cout << "Graph 10" << endl; // Desktop 13 CGraph graph10; std::map<size_t,size_t> groundTruth10; Eigen::MatrixXd g10_nf(7,5); g10_nf << 1, 1.13981, 0.613381, 1.46317, 1, 1, 1.01258, 0.167784, 1.47751, 1, 0, 0.772106, 1.55737, 3.7527, 1, 1, 1.11485, 0.201305, 2.29086, 1, 0, 0.487854, 0.161754, 1.53537, 1, 0, 0, 0.70792, 2.77777, 1, 0, 0.0221937, 0.310503, 1.72698, 1; Eigen::MatrixXi g10_adj(7,7); g10_adj << 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0; isOn_relation.resize(7,7); isOn_relation.setZero(); isOn_relation(1,2) = 1; isOn_relation(2,3) = 1; coplanar_relation.resize(7,7); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g10_relations; g10_relations.push_back( isOn_relation ); g10_relations.push_back( coplanar_relation ); Eigen::VectorXi g10_groundTruth(7); g10_groundTruth << 1, 6, 2, 8, 5, 0, 0; fillGraph( graph10, g10_nf, simpleNodeType1Ptr, g10_adj, simpleEdgeType1Ptr, g10_relations, g10_groundTruth, groundTruth10 ); graphs.push_back( graph10 ); groundTruths.push_back( groundTruth10 ); ///*--------------------------------- Graph 11 ----------------------------------*/ cout << "Graph 11" << endl; // Desktop 14 CGraph graph11; std::map<size_t,size_t> groundTruth11; Eigen::MatrixXd g11_nf(3,5); g11_nf << 1, 1.39389, 1.07869, 3.04842, 1, 0, 0.724976, 0.627546, 3.18692, 1, 1, 1.02144, 0.168219, 1.53329, 1; Eigen::MatrixXi g11_adj(3,3); g11_adj << 0, 1, 1, 1, 0, 1, 1, 1, 0; isOn_relation.resize(3,3); isOn_relation.setZero(); isOn_relation(1,2) = 1; coplanar_relation.resize(3,3); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g11_relations; g11_relations.push_back( isOn_relation ); g11_relations.push_back( coplanar_relation ); Eigen::VectorXi g11_groundTruth(3); g11_groundTruth << 1, 2, 6; fillGraph( graph11, g11_nf, simpleNodeType1Ptr, g11_adj, simpleEdgeType1Ptr, g11_relations, g11_groundTruth, groundTruth11 ); graphs.push_back( graph11 ); groundTruths.push_back( groundTruth11 ); ///*--------------------------------- Graph 12 ----------------------------------*/ cout << "Graph 12" << endl; // Desktop 15 CGraph graph12; std::map<size_t,size_t> groundTruth12; Eigen::MatrixXd g12_nf(9,5); g12_nf << 1, 0.890949, 3.09357, 2.35317, 1, 0, 0.337975, 0.284948, 1.73898, 1, 1, 0.722686, 0.397614, 1.45951, 1, 0, 0.619682, 1.56466, 2.28344, 1, 1, 0.404655, 0.167949, 1, 1, 1, 0.726681, 0.198501, 1.52176, 1, 1, 0.876247, 0.182265, 1.92814, 1, 1, 0.639947, 0.133658, 2.02595, 1, 0, 0, 0.36366, 1, 1; Eigen::MatrixXi g12_adj(9,9); g12_adj << 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0; isOn_relation.resize(9,9); isOn_relation.setZero(); isOn_relation(3,6) = 1; coplanar_relation.resize(9,9); coplanar_relation.setZero(); vector<Eigen::MatrixXi> g12_relations; g12_relations.push_back( isOn_relation ); g12_relations.push_back( coplanar_relation ); Eigen::VectorXi g12_groundTruth(9); g12_groundTruth << 1, 5, 4, 2, 3, 1, 6, 4, 0; fillGraph( graph12, g12_nf, simpleNodeType1Ptr, g12_adj, simpleEdgeType1Ptr, g12_relations, g12_groundTruth, groundTruth12 ); graphs.push_back( graph12 ); groundTruths.push_back( groundTruth12 ); ///*--------------------------------- Graph 13 ----------------------------------*/ // Eigen::MatrixXi g13_adj(11,11); //, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0 //, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0 //, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 //, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1 //, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1 //, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0 //, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1 //, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0 //, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0 //, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0 ///*--------------------------------- Graph 14 ----------------------------------*/ // Eigen::MatrixXi g14_adj(11,11); //, 0, 1, 0, 1, 1, 1 //, 1, 0, 1, 1, 0, 0 //, 0, 1, 0, 1, 1, 0 //, 1, 1, 1, 0, 1, 0 //, 1, 0, 1, 1, 0, 0 //, 1, 0, 0, 0, 0, 0 ///*--------------------------------- Graph 15 ----------------------------------*/ // Eigen::MatrixXi g15_adj(11,11); //, 0, 1, 1, 1, 0, 0, 0, 1 //, 1, 0, 1, 1, 0, 0, 0, 0 //, 1, 1, 0, 1, 1, 1, 0, 1 //, 1, 1, 1, 0, 1, 1, 0, 1 //, 0, 0, 1, 1, 0, 1, 1, 0 //, 0, 0, 1, 1, 1, 0, 1, 0 //, 0, 0, 0, 0, 1, 1, 0, 1 //, 1, 0, 1, 1, 0, 0, 1, 0 ///*--------------------------------- Graph 16 ----------------------------------*/ // Eigen::MatrixXi g16_adj(11,11); //, 0, 1, 1, 0, 0, 0 //, 1, 0, 1, 1, 1, 0 //, 1, 1, 0, 1, 1, 0 //, 0, 1, 1, 0, 1, 1 //, 0, 1, 1, 1, 0, 1 //, 0, 0, 0, 1, 1, 0 ///*--------------------------------- Graph 17 ----------------------------------*/ // Eigen::MatrixXi g17_adj(11,11); //, 0, 1, 1, 1, 1, 0, 0 //, 1, 0, 1, 1, 0, 0, 0 //, 1, 1, 0, 1, 1, 1, 0 //, 1, 1, 1, 0, 1, 1, 1 //, 1, 0, 1, 1, 0, 1, 0 //, 0, 0, 1, 1, 1, 0, 0 //, 0, 0, 0, 1, 0, 0, 0 ///*--------------------------------- Graph 18 ----------------------------------*/ // Eigen::MatrixXi g18_adj(11,11); //, 0, 1, 1, 1, 0, 0, 1, 1 //, 1, 0, 1, 0, 1, 1, 1, 0 //, 1, 1, 0, 0, 1, 1, 1, 1 //, 1, 0, 0, 0, 0, 1, 0, 0 //, 0, 1, 1, 0, 0, 1, 0, 0 //, 0, 1, 1, 1, 1, 0, 0, 0 //, 1, 1, 1, 0, 0, 0, 0, 0 //, 1, 0, 1, 0, 0, 0, 0, 0 ///*--------------------------------- Graph 19 ----------------------------------*/ // Eigen::MatrixXi g19_adj(11,11); //, 0, 1, 0, 0, 0, 0 //, 1, 0, 1, 0, 0, 1 //, 0, 1, 0, 0, 0, 1 //, 0, 0, 0, 0, 1, 1 //, 0, 0, 0, 1, 0, 1 //, 0, 1, 1, 1, 1, 0 ///*--------------------------------- Graph 20 ----------------------------------*/ // Eigen::MatrixXi g20_adj(11,11); //, 0, 1, 0, 0, 0 //, 1, 0, 1, 1, 0 //, 0, 1, 0, 1, 1 //, 0, 1, 1, 0, 1 //, 0, 0, 1, 1, 0 ///*--------------------------------- Graph 21 ----------------------------------*/ // Eigen::MatrixXi g21_adj(11,11); //, 0, 1, 1, 1, 0, 0, 0 //, 1, 0, 1, 0, 0, 0, 0 //, 1, 1, 0, 1, 0, 1, 1 //, 1, 0, 1, 0, 1, 1, 0 //, 0, 0, 0, 1, 0, 1, 0 //, 0, 0, 1, 1, 1, 0, 0 //, 0, 0, 1, 0, 0, 0, 0 ///*--------------------------------- Graph 22 ----------------------------------*/ // Eigen::MatrixXi g22_adj(11,11); //, 0, 1, 1, 0, 0 //, 1, 0, 1, 0, 0 //, 1, 1, 0, 1, 0 //, 0, 0, 1, 0, 1 //, 0, 0, 0, 1, 1 ///*--------------------------------- Graph 23 ----------------------------------*/ // Eigen::MatrixXi g23_adj(11,11); //, 0, 1, 1 //, 1, 0, 1 //, 1, 1, 0 ///*--------------------------------- Graph 24 ----------------------------------*/ // Eigen::MatrixXi g24_adj(11,11); // g24_adj << 0, 1, 1, 0, 1, 1, 0, 0, 0, // 1, 0, 1, 1, 1, 0, 0, 0, 0, // 1, 1, 0, 1, 1, 0, 1, 0, 0, // 0, 1, 1, 0, 1, 1, 1, 1, 0, // 1, 1, 1, 1, 0, 0, 1, 0, 0, // 1, 0, 0, 1, 0, 0, 0, 0, 0, // 0, 0, 1, 1, 1, 0, 0, 0, 0, // 0, 0, 0, 1, 0, 0, 0, 0, 1, // 0, 0, 0, 0, 0, 0, 0, 1, 0; ///*--------------------------------- Graph 25 ----------------------------------*/ // Eigen::MatrixXi g25_adj(11,11); // g25_adj << 0, 1, 1, 0, 0, // 1, 0, 1, 1, 1, // 1, 1, 0, 0, 0, // 0, 1, 0, 0, 1, // 0, 1, 0, 1, 0; static boost::mt19937 rng; rng.seed(std::time(0)); size_t N_graphsForTraining = 9; size_t absoluteSuccess_Greedy = 0; size_t absoluteSuccess_ICM = 0; size_t absoluteSuccess_AlphaExpansion = 0; size_t absoluteSuccess_AlphaBetaSwap = 0; size_t absoluteSuccess_LBP = 0; size_t absoluteSuccess_TRP = 0; size_t absoluteSuccess_RBP = 0; size_t absoluteNumberOfNodes = 0; size_t N_repetitions = 100; for ( size_t rep = 0; rep < N_repetitions; rep++ ) { vector<size_t> graphs_to_train; size_t N_graphsAdded = 0; while ( N_graphsAdded < N_graphsForTraining ) { boost::uniform_int<> int_generator(0,11); int rand = int_generator(rng); if ( std::find(graphs_to_train.begin(),graphs_to_train.end(),rand) == graphs_to_train.end() ) { graphs_to_train.push_back(rand); N_graphsAdded++; } } vector<size_t> graphs_to_test; for ( size_t i = 0; i < graphs.size(); i++ ) if ( std::find(graphs_to_train.begin(),graphs_to_train.end(), i) == graphs_to_train.end() ) graphs_to_test.push_back(i); cout << "Graphs to test: "; for ( size_t i = 0; i < graphs_to_test.size(); i++) cout << graphs_to_test[i] << " "; cout << endl; // graphs_to_train.push_back(0); // graphs_to_train.push_back(1); // graphs_to_train.push_back(2); // graphs_to_train.push_back(3); // graphs_to_train.push_back(4); // graphs_to_train.push_back(5); // graphs_to_train.push_back(6); // graphs_to_train.push_back(7); // graphs_to_train.push_back(8); // graphs_to_train.push_back(9); // graphs_to_train.push_back(10); // graphs_to_test.push_back(11); for ( size_t i = 0; i < graphs_to_train.size(); i++ ) { trainingDataset.addGraph( graphs[graphs_to_train[i]] ); trainingDataset.addGraphGroundTruth( groundTruths[graphs_to_train[i]] ); } /*------------------------------------------------------------------------------ * * TRAINING! * *----------------------------------------------------------------------------*/ UPGMpp::TTrainingOptions to; to.l2Regularization = true; to.nodeLambda = 10; to.edgeLambda = 15; to.showTrainedWeights = false; to.showTrainingProgress = false; cout << "------------------------------------------------------" << endl; cout << " TRAINING" << endl; cout << "------------------------------------------------------" << endl; trainingDataset.setTrainingOptions( to ); int res = trainingDataset.train(); if (res!=0) continue; /*------------------------------------------------------------------------------ * * PREPARE A GRAPH FOR PERFORMING DECODING AND INFERENCE * *----------------------------------------------------------------------------*/ cout << "------------------------------------------------------" << endl; cout << " TESTING" << endl; cout << "------------------------------------------------------" << endl; for ( size_t i = 0; i < graphs_to_test.size(); i++ ) { graphs[graphs_to_test[i]].computePotentials(); /*------------------------------------------------------------------------------ * * DECODING! * *----------------------------------------------------------------------------*/ cout << endl; cout << "------------------------------------------------------" << endl; cout << " DECODING" << endl; cout << "------------------------------------------------------" << endl; CICMInferenceMAP decodeICM; CICMGreedyInferenceMAP decodeICMGreedy; CAlphaExpansionInferenceMAP decodeAlphaExpansion; CAlphaBetaSwapInferenceMAP decodeAlphaBetaSawp; CLBPInferenceMAP decodeLBP; CTRPBPInferenceMAP decodeTRPBP; CRBPInferenceMAP decodeRBP; double totalSuccess_Greedy = 0; double totalSuccess_ICM = 0; double totalSuccess_AlphaExpansion = 0; double totalSuccess_AlphaBetaSwap = 0; double totalSuccess_LBP = 0; double totalSuccess_TRP = 0; double totalSuccess_RBP = 0; TInferenceOptions options; options.maxIterations = 100; std::map<size_t,size_t> resultsMap; std::map<size_t,size_t>::iterator it; //std::cout << " RESULTS ICM " << std::endl; //std::cout << "-----------------------------------" << std::endl; decodeICM.setOptions( options ); decodeICM.infer( graphs[graphs_to_test[i]], resultsMap ); for ( it = resultsMap.begin(); it != resultsMap.end(); it++ ) if ( it->second == groundTruths[graphs_to_test[i]][ it->first ]) totalSuccess_ICM++; //showResults( resultsMap ); //std::cout << "-----------------------------------" << std::endl; //std::cout << " RESULTS ICM GREEDY" << std::endl; //std::cout << "-----------------------------------" << std::endl; decodeICMGreedy.setOptions( options ); decodeICMGreedy.infer( graphs[graphs_to_test[i]], resultsMap ); for ( it = resultsMap.begin(); it != resultsMap.end(); it++ ) if ( it->second == groundTruths[graphs_to_test[i]][ it->first ]) totalSuccess_Greedy++; //showResults( resultsMap ); //std::cout << "-----------------------------------" << std::endl; //std::cout << " RESULTS ALPHA-EXPANSIONS" << std::endl; //std::cout << "-----------------------------------" << std::endl; options.maxIterations = 10000; decodeAlphaExpansion.setOptions( options ); decodeAlphaExpansion.infer( graphs[graphs_to_test[i]], resultsMap ); for ( it = resultsMap.begin(); it != resultsMap.end(); it++ ) if ( it->second == groundTruths[graphs_to_test[i]][ it->first ]) totalSuccess_AlphaExpansion++; //showResults( resultsMap ); //std::cout << "-----------------------------------" << std::endl; //std::cout << " RESULTS ALPHA-BETA" << std::endl; //std::cout << "-----------------------------------" << std::endl; options.maxIterations = 10000; decodeAlphaBetaSawp.setOptions( options ); decodeAlphaBetaSawp.infer( graphs[graphs_to_test[i]], resultsMap ); for ( it = resultsMap.begin(); it != resultsMap.end(); it++ ) { if ( it->second == groundTruths[graphs_to_test[i]][ it->first ]) totalSuccess_AlphaBetaSwap++; } //showResults( resultsMap ); //std::cout << "-----------------------------------" << std::endl; //std::cout << " RESULTS LBP" << std::endl; //std::cout << "-----------------------------------" << std::endl; options.maxIterations = 10000; decodeLBP.setOptions( options ); decodeLBP.infer( graphs[graphs_to_test[i]], resultsMap ); for ( it = resultsMap.begin(); it != resultsMap.end(); it++ ) if ( it->second == groundTruths[graphs_to_test[i]][ it->first ]) totalSuccess_LBP++; //showResults( resultsMap ); //std::cout << "-----------------------------------" << std::endl; //std::cout << " RESULTS TRP" << std::endl; //std::cout << "-----------------------------------" << std::endl; options.maxIterations = 10000; decodeTRPBP.setOptions( options ); decodeTRPBP.infer( graphs[graphs_to_test[i]], resultsMap ); for ( it = resultsMap.begin(); it != resultsMap.end(); it++ ) if ( it->second == groundTruths[graphs_to_test[i]][ it->first ]) totalSuccess_TRP++; //showResults( resultsMap ); //std::cout << "-----------------------------------" << std::endl; //std::cout << " RESULTS RBP" << std::endl; //std::cout << "-----------------------------------" << std::endl; options.maxIterations = 10000; decodeRBP.setOptions( options ); //decodeRBP.infer( graphs[graphs_to_test[i]], resultsMap ); for ( it = resultsMap.begin(); it != resultsMap.end(); it++ ) if ( it->second == groundTruths[graphs_to_test[i]][ it->first ]) totalSuccess_RBP++; //showResults( resultsMap ); //std::cout << "-----------------------------------" << std::endl; double totalNumberOfNodes = graphs[graphs_to_test[i]].getNodes().size(); //cout << "Total MaxNodePot success: " << 100*(totalSuccess_MaxNodePot / totalNumberOfNodes) << "%" << endl; cout << "Total Greedy success: " << 100*(totalSuccess_Greedy / totalNumberOfNodes) << "%" << endl; cout << "Total ICM success: " << 100*(totalSuccess_ICM / totalNumberOfNodes) << "%" << endl; //cout << "Total Exact success: " << 100*(totalSuccess_Exact / totalNumberOfNodes) << "%" << endl; cout << "Total AlphaExpan success: " << 100*(totalSuccess_AlphaExpansion / totalNumberOfNodes) << "%" << endl; cout << "Total AlphaBetaS success: " << 100*(totalSuccess_AlphaBetaSwap / totalNumberOfNodes) << "%" << endl; cout << "Total LBP success: " << 100*(totalSuccess_LBP / totalNumberOfNodes) << "%" << endl; cout << "Total TRP success: " << 100*(totalSuccess_TRP / totalNumberOfNodes) << "%" << endl; cout << "Total RBP success: " << 100*(totalSuccess_RBP / totalNumberOfNodes) << "%" << endl; absoluteNumberOfNodes += totalNumberOfNodes; absoluteSuccess_Greedy += totalSuccess_Greedy; absoluteSuccess_ICM += totalSuccess_ICM; absoluteSuccess_AlphaExpansion += totalSuccess_AlphaExpansion; absoluteSuccess_AlphaBetaSwap += totalSuccess_AlphaBetaSwap; absoluteSuccess_LBP += totalSuccess_LBP; absoluteSuccess_TRP += totalSuccess_TRP; absoluteSuccess_RBP += totalSuccess_RBP; /*------------------------------------------------------------------------------ * * INFERENCE! * *----------------------------------------------------------------------------*/ /*cout << endl; cout << "------------------------------------------------------" << endl; cout << " INFERENCE" << endl; cout << "------------------------------------------------------" << endl; std::cout << " LOOPY BELIEF PROPAGATION " << std::endl; std::cout << "-----------------------------------" << std::endl; CLBPInference LBPInference; map<size_t,VectorXd> nodeBeliefs; map<size_t,MatrixXd> edgeBeliefs; double logZ; LBPInference.infer( graphs[graphs_to_test[i]], nodeBeliefs, edgeBeliefs, logZ ); map<size_t,VectorXd>::iterator itNodeBeliefs; for ( itNodeBeliefs = nodeBeliefs.begin(); itNodeBeliefs != nodeBeliefs.end(); itNodeBeliefs++ ) { std::cout << "Node id " << itNodeBeliefs->first << " beliefs (marginals): " << endl << itNodeBeliefs->second << std::endl << std::endl; } map<size_t,MatrixXd>::iterator itEdgeBeliefs; for ( itEdgeBeliefs = edgeBeliefs.begin(); itEdgeBeliefs != edgeBeliefs.end(); itEdgeBeliefs++ ) { std::cout << "Edge id " << itEdgeBeliefs->first << " beliefs (marginals): " << endl << itEdgeBeliefs->second << std::endl << std::endl; } cout << "Log Z : " << logZ << endl;*/ } } cout << " FINAL RESULTS: " << endl; //cout << "Total MaxNodePot success: " << 100*(totalSuccess_MaxNodePot / totalNumberOfNodes) << "%" << endl; cout << "Total Greedy success: " << 100*((double)absoluteSuccess_Greedy / absoluteNumberOfNodes) << "%" << endl; cout << "Total ICM success: " << 100*((double)absoluteSuccess_ICM / absoluteNumberOfNodes) << "%" << endl; //cout << "Total Exact success: " << 100*(totalSuccess_Exact / totalNumberOfNodes) << "%" << endl; cout << "Total AlphaExpan success: " << 100*((double)absoluteSuccess_AlphaExpansion / absoluteNumberOfNodes) << "%" << endl; cout << "Total AlphaBetaS success: " << 100*((double)absoluteSuccess_AlphaBetaSwap / absoluteNumberOfNodes) << "%" << endl; cout << "Total LBP success: " << 100*((double)absoluteSuccess_LBP / absoluteNumberOfNodes) << "%" << endl; cout << "Total TRP success: " << 100*((double)absoluteSuccess_TRP / absoluteNumberOfNodes) << "%" << endl; cout << "Total RBP success: " << 100*((double)absoluteSuccess_RBP / absoluteNumberOfNodes) << "%" << endl; // We are ready to take a beer :) return 0; }
int main(int argc, char** argv) { int args = 1; #ifdef USE_OPENCL if (argc < 10) { #else if (argc < 7) { #endif std::cout << "Not enough arguments" << std::endl; system("pause"); return 1; } DIM = util::toInt(argv[args++]); N = util::toInt(argv[args++]); K = util::toInt(argv[args++]); ITERATIONS = util::toInt(argv[args++]); RUNS = util::toInt(argv[args++]); #ifdef USE_OPENCL AM_LWS = util::toInt(argv[args++]); RP_LWS = util::toInt(argv[args++]); CT_LWS = util::toInt(argv[args++]); USE_ALL_DEVICES = util::toInt(argv[args++]); #else device_count = util::toInt(argv[args++]); #endif std::cout << "DIM = " << DIM << std::endl; std::cout << "N = " << N << std::endl; std::cout << "K = " << K << std::endl; std::cout << "ITERATIONS = " << ITERATIONS << std::endl; std::cout << "RUNS = " << RUNS << std::endl; #ifdef USE_OPENCL std::cout << "AM_LWS = " << AM_LWS << std::endl; std::cout << "RP_LWS = " << RP_LWS << std::endl; std::cout << "CT_LWS = " << CT_LWS << std::endl; std::cout << "USE_ALL_DEVICES = " << USE_ALL_DEVICES << std::endl << std::endl; #else std::cout << "device_count = " << device_count << std::endl << std::endl; #endif #ifdef _WIN32 rng.seed(); srand(GetTickCount()); #else rng.seed(); srand(getTimeMs()); #endif u = boost::uniform_real<float>(0.0f, 1000000.0f); gen = new boost::variate_generator<boost::mt19937&, boost::uniform_real<float> >(rng, u); #ifdef USE_OPENCL cl_int clError = CL_SUCCESS; initCL(); for (int i = 0; i < clDevices.size(); ++i) { clInputBuf.push_back(cl::Buffer(clContext, CL_MEM_READ_ONLY, N * DIM * sizeof(float), NULL, &clError)); if (clError != CL_SUCCESS) std::cout << "OpenCL Error: Could not create buffer" << std::endl; clCentroidBuf.push_back(cl::Buffer(clContext, CL_MEM_READ_WRITE, K * DIM * sizeof(float), NULL, &clError)); if (clError != CL_SUCCESS) std::cout << "OpenCL Error: Could not create buffer" << std::endl; clMappingBuf.push_back(cl::Buffer(clContext, CL_MEM_READ_WRITE, N * sizeof(int), NULL, &clError)); if (clError != CL_SUCCESS) std::cout << "OpenCL Error: Could not create buffer" << std::endl; clReductionBuf.push_back(cl::Buffer(clContext, CL_MEM_WRITE_ONLY, N * sizeof(float), NULL, &clError)); if (clError != CL_SUCCESS) std::cout << "OpenCL Error: Could not create buffer" << std::endl; clClusterAssignment[i].setArgs(clInputBuf[i](), clCentroidBuf[i](), clMappingBuf[i]()); clClusterReposition[i].setArgs(clInputBuf[i](), clMappingBuf[i](), clCentroidBuf[i]()); clClusterReposition_k[i].setArgs(clInputBuf[i](), clMappingBuf[i](), clCentroidBuf[i]()); //clClusterReposition_k_c[i].setArgs(clInputBuf[i](), clMappingBuf[i](), clCentroidBuf[i](), clConvergedBuf[i]()); clComputeCost[i].setArgs(clInputBuf[i](), clCentroidBuf[i](), clMappingBuf[i](), clReductionBuf[i]()); } device_count = clDevices.size(); #endif util::Clock clock; clock.reset(); for (int i = 0; i < RUNS; ++i) { mapping_list.push_back(NULL); centroids_list.push_back(NULL); cost_list.push_back(0.0f); } float* source = new float[N*DIM]; for (int i = 0; i < N*DIM; ++i) source[i] = gen_random_float(); input_list.push_back(source); for (int i = 1; i < device_count; ++i) { float* copy = new float[N*DIM]; memcpy(copy, source, N*DIM*sizeof(float)); input_list.push_back(copy); } if (device_count > 1) { boost::thread_group threads; for (int i = 0; i < device_count; ++i) { threads.create_thread(boost::bind(exec, i, true)); } threads.join_all(); } else { exec(0, false); } #ifdef USE_OPENCL reduction_group.join_all(); #endif int best_result = 0; float best_cost = std::numeric_limits<float>::max(); for (int i = 0; i < RUNS; ++i) { if (cost_list[i] < best_cost) { best_cost = cost_list[i]; best_result = i; } } FILE *out_fdesc = fopen("centroids.out", "wb"); fwrite((void*)centroids_list[best_result], K * DIM * sizeof(float), 1, out_fdesc); fclose(out_fdesc); out_fdesc = fopen("mapping.out", "wb"); fwrite((void*)mapping_list[best_result], N * sizeof(int), 1, out_fdesc); fclose(out_fdesc); std::cout << "Best result is " << best_result << std::endl; for (int i = 0; i < device_count; ++i) { delete[] input_list[i]; } for (int i = 0; i < RUNS; ++i) { delete[] mapping_list[i]; delete[] centroids_list[i]; } float now = clock.get(); std::cout << "Total: " << now << std::endl; system("pause"); return 0; }
void modify_seed(unsigned thread) { rng.seed(thread); }
int scheduler::batch_run(int max_thread) { // every single line of run stat file vector<shared_ptr<stringstream> > pvec_stat_line;// dummy file buffer to write,this buffer is to keep the run stat data output FIFO ordered for post-computation analysis convenience // using pointer to work around the problem that stringstream is non-copyable { try { // load batch run script file batch_conf batch_conf; batch_conf.load_conf(m_batch_conf_path); vector<shared_ptr<func_base> > vec_ptr_func;// function object base class pointer vector<shared_ptr<para_base> > vec_ptr_para;// parameter object base class pointer vector<shared_ptr<alg_base> > vec_ptr_alg;// algorithm object base class pointer int num_alg;// number of algorithm wait to test num_alg=batch_conf.tasks.size(); vec_ptr_func.resize(num_alg); vec_ptr_para.resize(num_alg); vec_ptr_alg.resize(num_alg); // pool algo_pool(num_alg<max_thread?num_alg:max_thread);// thread pool of algorithms pool algo_pool(max_thread); // thread pool of algorithms int cur_task_count=0; // batch run of specified algorithm int alloc_algo_res; int algo_type; string conf_path; bool first_task_run=true;// first time run of batch run bool seq_task_first_time=true;// first time run of single sequential value task bool different_algo=true; int pre_algo_type=0; int i,j; vec_task::iterator itr=batch_conf.tasks.begin(); for ( i=0;itr!=batch_conf.tasks.end();++itr,i++ ) { algo_type=(*itr).algo_code; conf_path=(*itr).conf_path; // allocate specific algorithm object dynamically alloc_algo_res=allocate_alg(algo_type,vec_ptr_alg[i],conf_path); allocate_para(algo_type,vec_ptr_para[i],conf_path); int load_res; // load configuration file data load_res=vec_ptr_para[i]->read_para(conf_path); if ( -1==load_res ) { cout << "read config file ERROR!" << "\n"; return -1; } different_algo=(pre_algo_type!=algo_type); if ( different_algo ) seq_task_first_time=true; int func_type=vec_ptr_para[i]->get_obj_func();// test problem type int num_dim=vec_ptr_para[i]->get_dim();// dimension of test problem int stop_type=vec_ptr_para[i]->get_stop_type();// termination criterion value // allocate Objective Function object dynamically int alloc_fun_res=allocate_func(func_type,vec_ptr_func[i],num_dim); bool max_gen_set=has_max_gen(stop_type); // seed random number generator for EACH task gen.seed(static_cast<uint32_t>(time(0))); // generate output file name generic prefix string str_out_prefix_common; str_out_prefix_common=gen_out_prefix_common(algo_type,vec_ptr_func[i],vec_ptr_para[i]); if ( first_task_run ) // print overall batch run stat file title once { print_algo_stat_title(run_stat_file,max_gen_set); print_common_filelist_title(com_filelist); first_task_run=false; } // start sequential parameter valus SPECIFIC processing bool has_seq_val=vec_ptr_para[i]->has_seq_value(); if ( has_seq_val ) { // open sequential parameter value stat file BEFORE all combination is scheduled string para_stat_path=gen_para_stat_file_name(str_out_prefix_common); // using heap memory and smart pointer to shared the data to sub-threads locked_para_stat_os lps_os={shared_ptr<ostream>(new ofstream(para_stat_path.c_str())),shared_ptr<mutex>(new mutex)}; shared_ptr<ostream> &ppara_stat_file=lps_os.pos; if ( seq_task_first_time ) { print_para_stat_title(*ppara_stat_file,gen_seq_var_name_str(vec_ptr_para[i]),gen_seq_var_num_str(vec_ptr_para[i]),max_gen_set); print_file_name(para_stat_filelist,func_type,algo_type,para_stat_path); seq_task_first_time=false; } // start sequential paramter value processing const vector<string>& seq_var_name=vec_ptr_para[i]->get_seq_var_name_vec(); const int seq_var_size=seq_var_name.size(); const vector<int>& seq_dim_size=vec_ptr_para[i]->get_seq_dim_size_vec(); int comb_num=1; // calc total combination number for ( j=0;j<seq_var_size;j++ ) comb_num *= seq_dim_size[j]; // generate all parameter value combination index vector<vector<int> > para_comb_idx; para_comb_idx.push_back(vector<int>(seq_var_size,0)); int cur_dim; int last_dim=seq_var_size-1; // using this method since seq_var_size is NOT constant, // hence we can't use for loop to iterate for ( j=1;j<comb_num;j++ ) { cur_dim=last_dim; vector<int> cur_comb_idx=para_comb_idx.back(); // find approriate dim to increment index while ( cur_comb_idx[cur_dim] == seq_dim_size[cur_dim]-1 ) cur_dim--; cur_comb_idx[cur_dim]++;// 'carry propagation' if ( cur_dim<last_dim ) { int j; for ( j=cur_dim+1;j<seq_var_size;j++ ) cur_comb_idx[j]=0; } para_comb_idx.push_back(cur_comb_idx); } // start combination schedule string cur_para; int val_idx; vector<int> cur_comb_idx(seq_var_size); int k; // allocate EXTRA algorithm objects andd function objects // Parameters object are SHARED between different parameter value combination(const) vector<shared_ptr<alg_base> > vec_seq_alg; vector<shared_ptr<func_base> > vec_seq_func; vector<shared_ptr<para_base> > vec_seq_para; vec_seq_alg.resize(comb_num); vec_seq_func.resize(comb_num); vec_seq_para.resize(comb_num); vec_seq_alg[0]=vec_ptr_alg[i]; vec_seq_func[0]=vec_ptr_func[i]; vec_seq_para[0]=vec_ptr_para[i]; for ( k=1;k<comb_num;k++ ) { allocate_alg(algo_type,vec_seq_alg[k],conf_path); allocate_func(func_type,vec_seq_func[k],num_dim); allocate_para(algo_type,vec_seq_para[k],conf_path); (*vec_seq_para[k])=(*vec_ptr_para[i]);// copy parameter values } for ( k=0;k<comb_num;k++ ) { // alter the sequential parameter value for grouped run cur_comb_idx=para_comb_idx[k]; int j; for ( j=0;j<seq_var_size;j++ ) { cur_para=seq_var_name[j]; val_idx=cur_comb_idx[j]; vec_seq_para[k]->set_cur_seq_val_idx(cur_para,val_idx); } // all combination values are set // set task description text for output string str_out_prefix_para; str_out_prefix_para=gen_out_prefix_para(vec_seq_para[k],"_"); vec_seq_alg[k]->set_para_val_desc(gen_seq_val_str(vec_seq_para[k])); string str_para_stat=gen_out_prefix_para(vec_seq_para[k],","); // output common stat file path list for post-computation plotting and analysis common_path com_out_path;// common stat file output gen_common_file_path(com_out_path,str_out_prefix_common,str_out_prefix_para); vec_seq_alg[k]->set_com_file_path(com_out_path); print_common_filelist(com_filelist,func_type,algo_type,com_out_path); print_para_stat_All_Best_Val_Path(para_stat_all_bst_val_filelist,func_type,str_para_stat,com_out_path.all_bst_val_path);// sequential parameters tuning SPECIFIC // set algorithm specific stat file name algo_spec_output(func_type,algo_type,vec_seq_alg[k],str_out_prefix_common,str_out_prefix_para); // run the algo according to single parameter value combination vec_seq_alg[k]->set_eval_func(vec_seq_func[k]); vec_seq_alg[k]->load_parameter(vec_seq_para[k]);// Loading algorithm parameters from outer source vec_seq_alg[k]->initialize(); // progress_timer p_t;// timer of specified algorithm cur_task_count++; output_running_prompt(cur_task_count,vec_seq_para[k]); pvec_stat_line.push_back(shared_ptr<stringstream>(new stringstream));// expand size by 1 shared_ptr<stringstream> pcur_line=pvec_stat_line.back(); shared_ptr<boost::mutex> pmutex=lps_os.pmut; algo_pool.schedule( boost::bind(thread_fun,vec_seq_alg[k],func_type,algo_type, max_gen_set,has_seq_val,pcur_line, ppara_stat_file,pmutex ) ); }// for every single value combination } else { // NO value combination:no need to schedule common_path com_out_path; gen_common_file_path(com_out_path,str_out_prefix_common,""); vec_ptr_alg[i]->set_com_file_path(com_out_path); print_common_filelist(com_filelist,func_type,algo_type,com_out_path); algo_spec_output(func_type,algo_type,vec_ptr_alg[i],str_out_prefix_common,""); // run the algo according to specified parameter value combination vec_ptr_alg[i]->set_eval_func(vec_ptr_func[i]); vec_ptr_alg[i]->load_parameter(vec_ptr_para[i]);// Loading algorithm parameters from outer source vec_ptr_alg[i]->initialize(); // progress_timer p_t;// timer of specified algorithm cur_task_count++; output_running_prompt(cur_task_count,vec_ptr_para[i]); pvec_stat_line.push_back(shared_ptr<stringstream>(new stringstream));// expand size by 1,use heap memory to shared the data between main thread and sub-thread shared_ptr<stringstream> pcur_line=pvec_stat_line.back(); algo_pool.schedule( boost::bind(thread_fun, vec_ptr_alg[i], func_type, algo_type, max_gen_set, has_seq_val, pcur_line, shared_ptr<ostream>(), shared_ptr<boost::mutex>())); }// if ( has_seq_val ) pre_algo_type=algo_type; }// for every single algorithm task }// try catch(bad_cast &bc) { cout<<"bad_cast caught in batch_run:" << bc.what() << "\n"; return -1; } catch(logic_error &le) { cout<<"logic_error caught in batch_run:" << le.what() << "\n"; return -1; } catch(exception& e) { cout<<"exception caught in batch_run:" <<e.what()<< "\n"; return -1; } } // all task are finished print_stat_file(pvec_stat_line);// keep run stat file output data ordered according to FIFO return 0; }// end function batch_run
void UPGMpp::getSpanningTree( CGraph &graph, std::vector<size_t> &tree) { // TODO: The efficiency of this method can be improved // Reset tree tree.clear(); static boost::mt19937 rng; static bool firstExecution = true; if ( firstExecution ) { rng.seed(time(0)); firstExecution = false; } vector<CNodePtr> &v_nodes = graph.getNodes(); vector<CNodePtr> v_nodesToExplore; map<size_t,size_t> nodesToExploreMap; size_t N_nodes = v_nodes.size(); //cout << "Random: "; for ( size_t i_node = 0; i_node < N_nodes; i_node++ ) { boost::uniform_real<> real_generator(0,1); real_generator.reset(); double rand = real_generator(rng); //cout << rand << " "; if ( rand > 0.25 ) { v_nodesToExplore.push_back( v_nodes[i_node] ); nodesToExploreMap[ v_nodes[i_node]->getID() ] = v_nodesToExplore.size()-1; } } //cout << endl; //SHOW_VECTOR_NODES_ID("Nodes to explore: ", v_nodesToExplore) size_t N_nodesToExplore = v_nodesToExplore.size(); if ( !N_nodesToExplore ) return; bool nodeAdded = true; vector<bool> v_nodesAdded( N_nodesToExplore, false ); // // Randomly select the root node // boost::uniform_int<> generator(0,N_nodesToExplore-1); int rand = generator(rng); //cout << "Root:" << rand << endl; v_nodesAdded[rand] = true; multimap<size_t, CEdgePtr> &edgesF = graph.getEdgesF(); while ( nodeAdded ) { nodeAdded = false; for ( size_t i_node = 0; i_node < N_nodesToExplore; i_node++ ) { //cout << "Node " << i_node << " ID "<< v_nodesToExplore[i_node]->getID() << " Added? " << v_nodesAdded[i_node] << endl; // Check that the node has not been added to the tree yet if ( !v_nodesAdded[i_node] ) { size_t nodeID = v_nodesToExplore[i_node]->getID(); NEIGHBORS_IT neighbors = edgesF.equal_range(nodeID); for ( multimap<size_t,CEdgePtr>::iterator itNeigbhor = neighbors.first; itNeigbhor != neighbors.second; itNeigbhor++ ) { CEdgePtr edgePtr = (*itNeigbhor).second; size_t neighborID; if ( !edgePtr->getNodePosition( nodeID ) ) neighborID = edgePtr->getSecondNodeID(); else neighborID = edgePtr->getFirstNodeID(); //cout << "Current node ID: " << nodeID << " neighbor: " << neighborID << endl; if ( v_nodesAdded[nodesToExploreMap[neighborID]] ) { v_nodesAdded[i_node] = true; nodeAdded = true; } } } } } //SHOW_VECTOR("Nodes in tree: ", v_nodesAdded) for ( size_t i_node = 0; i_node < v_nodesToExplore.size(); i_node++ ) { if ( v_nodesAdded[i_node] ) tree.push_back( v_nodesToExplore[i_node]->getID() ); } //SHOW_VECTOR("Tree: ", tree) }