int main() { // print seed std::cout << "Random seed: " << rd.get_seed() << std::endl; // options CGAL::Quadratic_program_options options; options.set_auto_validation(true); // generate a set of small random qp's for (int i=0; i<tries; ++i) { int Ax[] = {random_signed(), random_signed()}; int Ay[] = {random_signed(), random_signed()}; int* A[] = {Ax, Ay}; int b[] = {random_signed(), random_signed()}; CGAL::Comparison_result r[] = {random_rel(), random_rel()}; bool fl[] = {rd.get_bool(), rd.get_bool()}; int l[] = {random_signed(),random_signed()}; bool fu[] = {rd.get_bool(), rd.get_bool()}; int u[] = {random_signed(),random_signed()}; // make sure that l<=u if (l[0] > u[0]) {int h = l[0]; l[0] = u[0]; u[0] = h;} if (l[1] > u[1]) {int h = l[1]; l[1] = u[1]; u[1] = h;} int D1[] = {random_unsigned()}; int D2[] = {0, random_unsigned()}; // can still change D_21 as long as D remains positive-semidefinite if (D1[0] < D2[1]) D2[0] = rd.get_int(-D1[0], D1[0]+1); else D2[0] = rd.get_int(-D2[1], D2[1]+1); assert(D1[0] * D2[1] >= D2[0] * D2[0]); int* D[] = {D1, D2}; int c[] = {random_signed(), random_signed()}; int c0 = random_signed(); // now construct the quadratic program; the first two parameters are // the number of variables and the number of constraints (rows of A) Program qp (2, 2, A, b, r, fl, l, fu, u, D, c, c0); // write/read it and check equality std::stringstream inout; CGAL::print_quadratic_program (inout, qp); CGAL::Quadratic_program_from_mps<int> qp2 (inout); assert(CGAL::QP_functions_detail::are_equal_qp (qp, qp2)); // solve it Solution s = CGAL::solve_quadratic_program (qp, ET(), options); assert(s.is_valid()); statistics (s, qp_optimal, qp_infeasible, qp_unbounded); // also solve it as nqp, lp, nlp s = CGAL::solve_nonnegative_quadratic_program (qp, ET(), options); assert(s.is_valid()); statistics (s, nqp_optimal, nqp_infeasible, nqp_unbounded); s = CGAL::solve_linear_program (qp, ET(), options); assert(s.is_valid()); statistics (s, lp_optimal, lp_infeasible, lp_unbounded); s = CGAL::solve_nonnegative_linear_program (qp, ET(), options); assert(s.is_valid()); statistics (s, nlp_optimal, nlp_infeasible, nlp_unbounded); } // output statistics std::cout << "Solved " << tries << " random QP / NQP / LP / NLP .\n" << " Optimal: " << qp_optimal << " / " << nqp_optimal << " / " << lp_optimal << " / " << nlp_optimal << "\n" << " Infeasible: " << qp_infeasible << " / " << nqp_infeasible << " / " << lp_infeasible << " / " << nlp_infeasible << "\n" << " Unbounded: " << qp_unbounded << " / " << nqp_unbounded << " / " << lp_unbounded << " / " << nlp_unbounded << std::endl; return 0; }
int main() { // print seed std::cout << "Random seed: " << rd.get_seed() << std::endl; // options CGAL::Quadratic_program_options options; options.set_auto_validation(true); // generate a set of small random qp's for (int i=0; i<tries; ++i) { // first choose dimensions int n = rd.get_int(1,max_dim); int m = rd.get_int(1,max_dim); // construct matrix D as C^T C, for C randomly chosen with n columns int k = rd.get_int (1, 2*n); // number of rows of C std::vector<std::vector<int> > C (k, std::vector<int>(n, 0)); for (int j=0; j<k+n; ++j) // sparse C C[rd.get_int(0, k)][rd.get_int(0,n)] = rd.get_int(-max_entry, max_entry); // now fill the program Program p; // A for (int j=0; j<n+m; ++j) p.set_a (rd.get_int(0,n), rd.get_int(0,m), rd.get_double()); // b, r for (int i=0; i<m/2; ++i) { p.set_b (rd.get_int(0,m), rd.get_double()); p.set_r (rd.get_int(0,m), random_rel()); } // fl, l, fu, u for (int j=0; j<n; ++j) { double l = rd.get_double(); double u = rd.get_double(); if (l > u) std::swap (l, u); p.set_l(j, rd.get_bool(), l); p.set_u(j, rd.get_bool(), u); } // D for (int i=0; i<n; ++i) for (int j=0; j<=i; ++j) { double entry = 0; for (int l=0; l<k; ++l) entry += C[l][i] * C[l][j]; p.set_d(i, j, entry); } // c for (int j=0; j<n/2; ++j) p.set_c (rd.get_int(0, n), rd.get_double()); // c0 p.set_c0(rd.get_double()); // solve it Solution s = CGAL::solve_quadratic_program (p, ET(), options); assert(s.is_valid()); statistics (s, qp_optimal, qp_infeasible, qp_unbounded); // also solve it as nqp, lp, nlp s = CGAL::solve_nonnegative_quadratic_program (p, ET(), options); assert(s.is_valid()); statistics (s, nqp_optimal, nqp_infeasible, nqp_unbounded); s = CGAL::solve_linear_program (p, ET(), options); assert(s.is_valid()); statistics (s, lp_optimal, lp_infeasible, lp_unbounded); s = CGAL::solve_nonnegative_linear_program (p, ET(), options); assert(s.is_valid()); statistics (s, nlp_optimal, nlp_infeasible, nlp_unbounded); } // output statistics std::cout << "Solved " << tries << " random QP / NQP / LP / NLP .\n" << " Optimal: " << qp_optimal << " / " << nqp_optimal << " / " << lp_optimal << " / " << nlp_optimal << "\n" << " Infeasible: " << qp_infeasible << " / " << nqp_infeasible << " / " << lp_infeasible << " / " << nlp_infeasible << "\n" << " Unbounded: " << qp_unbounded << " / " << nqp_unbounded << " / " << lp_unbounded << " / " << nlp_unbounded << std::endl; return 0; }