/// Set the priority of the thread specified by handle Result SetThreadPriority(Handle handle, s32 priority) { Thread* thread = nullptr; if (!handle) { thread = GetCurrentThread(); // TODO(bunnei): Is this correct behavior? } else { thread = g_object_pool.GetFast<Thread>(handle); } _assert_msg_(KERNEL, (thread != nullptr), "called, but thread is nullptr!"); // If priority is invalid, clamp to valid range if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); WARN_LOG(KERNEL, "invalid priority=0x%08X, clamping to %08X", priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } // Change thread priority s32 old = thread->current_priority; g_thread_ready_queue.remove(old, handle); thread->current_priority = priority; g_thread_ready_queue.prepare(thread->current_priority); // Change thread status to "ready" and push to ready queue if (thread->IsRunning()) { thread->status = (thread->status & ~THREADSTATUS_RUNNING) | THREADSTATUS_READY; } if (thread->IsReady()) { g_thread_ready_queue.push_back(thread->current_priority, handle); } return 0; }
/** * Switches the CPU's active thread context to that of the specified thread * @param new_thread The thread to switch to */ static void SwitchContext(Thread* new_thread) { DEBUG_ASSERT_MSG(new_thread->status == THREADSTATUS_READY, "Thread must be ready to become running."); Thread* previous_thread = GetCurrentThread(); // Save context for previous thread if (previous_thread) { Core::g_app_core->SaveContext(previous_thread->context); if (previous_thread->status == THREADSTATUS_RUNNING) { // This is only the case when a reschedule is triggered without the current thread // yielding execution (i.e. an event triggered, system core time-sliced, etc) ready_queue.push_front(previous_thread->current_priority, previous_thread); previous_thread->status = THREADSTATUS_READY; } } // Load context of new thread if (new_thread) { current_thread = new_thread; ready_queue.remove(new_thread->current_priority, new_thread); new_thread->status = THREADSTATUS_RUNNING; Core::g_app_core->LoadContext(new_thread->context); } else { current_thread = nullptr; } }
/** * Pops and returns the next thread from the thread queue * @return A pointer to the next ready thread */ static Thread* PopNextReadyThread() { Thread* next; Thread* thread = GetCurrentThread(); if (thread && thread->status == THREADSTATUS_RUNNING) { // We have to do better than the current thread. // This call returns null when that's not possible. next = ready_queue.pop_first_better(thread->current_priority); } else { next = ready_queue.pop_first(); } return next; }
/// Gets the next thread that is ready to be run by priority Thread* NextThread() { Handle next; Thread* cur = GetCurrentThread(); if (cur && cur->IsRunning()) { next = g_thread_ready_queue.pop_first_better(cur->current_priority); } else { next = g_thread_ready_queue.pop_first(); } if (next == 0) { return nullptr; } return Kernel::g_object_pool.GetFast<Thread>(next); }
/// Change a thread to "ready" state void ChangeReadyState(Thread* t, bool ready) { Handle handle = t->GetHandle(); if (t->IsReady()) { if (!ready) { g_thread_ready_queue.remove(t->current_priority, handle); } } else if (ready) { if (t->IsRunning()) { g_thread_ready_queue.push_front(t->current_priority, handle); } else { g_thread_ready_queue.push_back(t->current_priority, handle); } t->status = THREADSTATUS_READY; } }
void Thread::Stop() { // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); wakeup_callback_handle_table.Close(callback_handle); callback_handle = 0; // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == THREADSTATUS_READY){ ready_queue.remove(current_priority, this); } status = THREADSTATUS_DEAD; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } wait_objects.clear(); // Mark the TLS slot in the thread's page as free. u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE; u32 tls_slot = ((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE; Kernel::g_current_process->tls_slots[tls_page].reset(tls_slot); HLE::Reschedule(__func__); }
void Thread::SetPriority(s32 priority) { ClampPriority(this, &priority); if (current_priority == priority) { return; } if (status == THREADSTATUS_READY) { // If thread was ready, adjust queues ready_queue.remove(current_priority, this); ready_queue.prepare(priority); ready_queue.push_back(priority, this); } current_priority = priority; }
void Thread::ResumeFromWait() { // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); switch (status) { case THREADSTATUS_WAIT_SYNCH: // Remove this thread from all other WaitObjects for (auto wait_object : wait_objects) wait_object->RemoveWaitingThread(this); break; case THREADSTATUS_WAIT_ARB: case THREADSTATUS_WAIT_SLEEP: break; case THREADSTATUS_RUNNING: case THREADSTATUS_READY: DEBUG_ASSERT_MSG(false, "Thread with object id %u has already resumed.", GetObjectId()); return; case THREADSTATUS_DEAD: // This should never happen, as threads must complete before being stopped. DEBUG_ASSERT_MSG(false, "Thread with object id %u cannot be resumed because it's DEAD.", GetObjectId()); return; } ready_queue.push_back(current_priority, this); status = THREADSTATUS_READY; }
/// Creates a new thread Thread* CreateThread(Handle& handle, const char* name, u32 entry_point, s32 priority, s32 processor_id, u32 stack_top, int stack_size) { _assert_msg_(KERNEL, (priority >= THREADPRIO_HIGHEST && priority <= THREADPRIO_LOWEST), "CreateThread priority=%d, outside of allowable range!", priority) Thread* thread = new Thread; handle = Kernel::g_object_pool.Create(thread); g_thread_queue.push_back(handle); g_thread_ready_queue.prepare(priority); thread->status = THREADSTATUS_DORMANT; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->stack_size = stack_size; thread->initial_priority = thread->current_priority = priority; thread->processor_id = processor_id; thread->wait_type = WAITTYPE_NONE; thread->wait_handle = 0; strncpy(thread->name, name, Kernel::MAX_NAME_LENGTH); thread->name[Kernel::MAX_NAME_LENGTH] = '\0'; return thread; }
ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority, u32 arg, s32 processor_id, VAddr stack_top) { if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = MathUtil::Clamp<s32>(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d", name.c_str(), priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } if (!Memory::GetPointer(entry_point)) { LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point); // TODO: Verify error return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent); } SharedPtr<Thread> thread(new Thread); thread_list.push_back(thread); ready_queue.prepare(priority); thread->thread_id = NewThreadId(); thread->status = THREADSTATUS_DORMANT; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->initial_priority = thread->current_priority = priority; thread->processor_id = processor_id; thread->wait_set_output = false; thread->wait_all = false; thread->wait_objects.clear(); thread->wait_address = 0; thread->name = std::move(name); thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom(); // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // to initialize the context Core::g_app_core->ResetContext(thread->context, stack_top, entry_point, arg); ready_queue.push_back(thread->current_priority, thread.get()); thread->status = THREADSTATUS_READY; return MakeResult<SharedPtr<Thread>>(std::move(thread)); }
/// Prints the thread queue for debugging purposes void DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { return; } INFO_LOG(KERNEL, "0x%02X 0x%08X (current)", thread->current_priority, GetCurrentThreadHandle()); for (u32 i = 0; i < g_thread_queue.size(); i++) { Handle handle = g_thread_queue[i]; s32 priority = g_thread_ready_queue.contains(handle); if (priority != -1) { INFO_LOG(KERNEL, "0x%02X 0x%08X", priority, handle); } } }
/** * Prints the thread queue for debugging purposes */ static void DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD"); } else { LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId()); } for (auto& t : thread_list) { s32 priority = ready_queue.contains(t.get()); if (priority != -1) { LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId()); } } }
/// Boost low priority threads (temporarily) that have been starved static void PriorityBoostStarvedThreads() { u64 current_ticks = CoreTiming::GetTicks(); for (auto& thread : thread_list) { // TODO(bunnei): Threads that have been waiting to be scheduled for `boost_ticks` (or // longer) will have their priority temporarily adjusted to 1 higher than the highest // priority thread to prevent thread starvation. This general behavior has been verified // on hardware. However, this is almost certainly not perfect, and the real CTR OS scheduler // should probably be reversed to verify this. const u64 boost_timeout = 2000000; // Boost threads that have been ready for > this long u64 delta = current_ticks - thread->last_running_ticks; if (thread->status == THREADSTATUS_READY && delta > boost_timeout) { const s32 priority = std::max(ready_queue.get_first()->current_priority - 1, 0); thread->BoostPriority(priority); } } }
void Thread::Stop() { // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == THREADSTATUS_READY){ ready_queue.remove(current_priority, this); } status = THREADSTATUS_DEAD; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } }
namespace Kernel { /// Event type for the thread wake up event static int ThreadWakeupEventType = -1; bool Thread::ShouldWait() { return status != THREADSTATUS_DEAD; } void Thread::Acquire() { ASSERT_MSG(!ShouldWait(), "object unavailable!"); } // Lists all thread ids that aren't deleted/etc. static std::vector<SharedPtr<Thread>> thread_list; // Lists only ready thread ids. static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST+1> ready_queue; static Thread* current_thread; // The first available thread id at startup static u32 next_thread_id = 1; /** * Creates a new thread ID * @return The new thread ID */ inline static u32 const NewThreadId() { return next_thread_id++; } Thread::Thread() {} Thread::~Thread() {} Thread* GetCurrentThread() { return current_thread; } /** * Check if a thread is waiting on the specified wait object * @param thread The thread to test * @param wait_object The object to test against * @return True if the thread is waiting, false otherwise */ static bool CheckWait_WaitObject(const Thread* thread, WaitObject* wait_object) { if (thread->status != THREADSTATUS_WAIT_SYNCH) return false; auto itr = std::find(thread->wait_objects.begin(), thread->wait_objects.end(), wait_object); return itr != thread->wait_objects.end(); } /** * Check if the specified thread is waiting on the specified address to be arbitrated * @param thread The thread to test * @param wait_address The address to test against * @return True if the thread is waiting, false otherwise */ static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) { return thread->status == THREADSTATUS_WAIT_ARB && wait_address == thread->wait_address; } void Thread::Stop() { // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == THREADSTATUS_READY){ ready_queue.remove(current_priority, this); } status = THREADSTATUS_DEAD; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } } Thread* ArbitrateHighestPriorityThread(u32 address) { Thread* highest_priority_thread = nullptr; s32 priority = THREADPRIO_LOWEST; // Iterate through threads, find highest priority thread that is waiting to be arbitrated... for (auto& thread : thread_list) { if (!CheckWait_AddressArbiter(thread.get(), address)) continue; if (thread == nullptr) continue; if(thread->current_priority <= priority) { highest_priority_thread = thread.get(); priority = thread->current_priority; } } // If a thread was arbitrated, resume it if (nullptr != highest_priority_thread) { highest_priority_thread->ResumeFromWait(); } return highest_priority_thread; } void ArbitrateAllThreads(u32 address) { // Resume all threads found to be waiting on the address for (auto& thread : thread_list) { if (CheckWait_AddressArbiter(thread.get(), address)) thread->ResumeFromWait(); } } /** * Switches the CPU's active thread context to that of the specified thread * @param new_thread The thread to switch to */ static void SwitchContext(Thread* new_thread) { DEBUG_ASSERT_MSG(new_thread->status == THREADSTATUS_READY, "Thread must be ready to become running."); Thread* previous_thread = GetCurrentThread(); // Save context for previous thread if (previous_thread) { Core::g_app_core->SaveContext(previous_thread->context); if (previous_thread->status == THREADSTATUS_RUNNING) { // This is only the case when a reschedule is triggered without the current thread // yielding execution (i.e. an event triggered, system core time-sliced, etc) ready_queue.push_front(previous_thread->current_priority, previous_thread); previous_thread->status = THREADSTATUS_READY; } } // Load context of new thread if (new_thread) { current_thread = new_thread; ready_queue.remove(new_thread->current_priority, new_thread); new_thread->status = THREADSTATUS_RUNNING; Core::g_app_core->LoadContext(new_thread->context); } else { current_thread = nullptr; } } /** * Pops and returns the next thread from the thread queue * @return A pointer to the next ready thread */ static Thread* PopNextReadyThread() { Thread* next; Thread* thread = GetCurrentThread(); if (thread && thread->status == THREADSTATUS_RUNNING) { // We have to do better than the current thread. // This call returns null when that's not possible. next = ready_queue.pop_first_better(thread->current_priority); } else { next = ready_queue.pop_first(); } return next; } void WaitCurrentThread_Sleep() { Thread* thread = GetCurrentThread(); thread->status = THREADSTATUS_WAIT_SLEEP; } void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects, bool wait_set_output, bool wait_all) { Thread* thread = GetCurrentThread(); thread->wait_set_output = wait_set_output; thread->wait_all = wait_all; thread->wait_objects = std::move(wait_objects); thread->status = THREADSTATUS_WAIT_SYNCH; } void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) { Thread* thread = GetCurrentThread(); thread->wait_address = wait_address; thread->status = THREADSTATUS_WAIT_ARB; } // TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing // us to simply use a pool index or similar. static Kernel::HandleTable wakeup_callback_handle_table; /** * Callback that will wake up the thread it was scheduled for * @param thread_handle The handle of the thread that's been awoken * @param cycles_late The number of CPU cycles that have passed since the desired wakeup time */ static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) { SharedPtr<Thread> thread = wakeup_callback_handle_table.Get<Thread>((Handle)thread_handle); if (thread == nullptr) { LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", (Handle)thread_handle); return; } if (thread->status == THREADSTATUS_WAIT_SYNCH) { thread->SetWaitSynchronizationResult(ResultCode(ErrorDescription::Timeout, ErrorModule::OS, ErrorSummary::StatusChanged, ErrorLevel::Info)); if (thread->wait_set_output) thread->SetWaitSynchronizationOutput(-1); } thread->ResumeFromWait(); } void Thread::WakeAfterDelay(s64 nanoseconds) { // Don't schedule a wakeup if the thread wants to wait forever if (nanoseconds == -1) return; u64 microseconds = nanoseconds / 1000; CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, callback_handle); } void Thread::ReleaseWaitObject(WaitObject* wait_object) { if (status != THREADSTATUS_WAIT_SYNCH || wait_objects.empty()) { LOG_CRITICAL(Kernel, "thread is not waiting on any objects!"); return; } // Remove this thread from the waiting object's thread list wait_object->RemoveWaitingThread(this); unsigned index = 0; bool wait_all_failed = false; // Will be set to true if any object is unavailable // Iterate through all waiting objects to check availability... for (auto itr = wait_objects.begin(); itr != wait_objects.end(); ++itr) { if ((*itr)->ShouldWait()) wait_all_failed = true; // The output should be the last index of wait_object if (*itr == wait_object) index = itr - wait_objects.begin(); } // If we are waiting on all objects... if (wait_all) { // Resume the thread only if all are available... if (!wait_all_failed) { SetWaitSynchronizationResult(RESULT_SUCCESS); SetWaitSynchronizationOutput(-1); ResumeFromWait(); } } else { // Otherwise, resume SetWaitSynchronizationResult(RESULT_SUCCESS); if (wait_set_output) SetWaitSynchronizationOutput(index); ResumeFromWait(); } } void Thread::ResumeFromWait() { // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); switch (status) { case THREADSTATUS_WAIT_SYNCH: // Remove this thread from all other WaitObjects for (auto wait_object : wait_objects) wait_object->RemoveWaitingThread(this); break; case THREADSTATUS_WAIT_ARB: case THREADSTATUS_WAIT_SLEEP: break; case THREADSTATUS_RUNNING: case THREADSTATUS_READY: DEBUG_ASSERT_MSG(false, "Thread with object id %u has already resumed.", GetObjectId()); return; case THREADSTATUS_DEAD: // This should never happen, as threads must complete before being stopped. DEBUG_ASSERT_MSG(false, "Thread with object id %u cannot be resumed because it's DEAD.", GetObjectId()); return; } ready_queue.push_back(current_priority, this); status = THREADSTATUS_READY; } /** * Prints the thread queue for debugging purposes */ static void DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD"); } else { LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId()); } for (auto& t : thread_list) { s32 priority = ready_queue.contains(t.get()); if (priority != -1) { LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId()); } } } ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority, u32 arg, s32 processor_id, VAddr stack_top) { if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = MathUtil::Clamp<s32>(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d", name.c_str(), priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } if (!Memory::GetPointer(entry_point)) { LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point); // TODO: Verify error return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent); } SharedPtr<Thread> thread(new Thread); thread_list.push_back(thread); ready_queue.prepare(priority); thread->thread_id = NewThreadId(); thread->status = THREADSTATUS_DORMANT; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->initial_priority = thread->current_priority = priority; thread->processor_id = processor_id; thread->wait_set_output = false; thread->wait_all = false; thread->wait_objects.clear(); thread->wait_address = 0; thread->name = std::move(name); thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom(); // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // to initialize the context Core::g_app_core->ResetContext(thread->context, stack_top, entry_point, arg); ready_queue.push_back(thread->current_priority, thread.get()); thread->status = THREADSTATUS_READY; return MakeResult<SharedPtr<Thread>>(std::move(thread)); } // TODO(peachum): Remove this. Range checking should be done, and an appropriate error should be returned. static void ClampPriority(const Thread* thread, s32* priority) { if (*priority < THREADPRIO_HIGHEST || *priority > THREADPRIO_LOWEST) { DEBUG_ASSERT_MSG(false, "Application passed an out of range priority. An error should be returned."); s32 new_priority = MathUtil::Clamp<s32>(*priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d", thread->name.c_str(), *priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this *priority = new_priority; } } void Thread::SetPriority(s32 priority) { ClampPriority(this, &priority); if (current_priority == priority) { return; } if (status == THREADSTATUS_READY) { // If thread was ready, adjust queues ready_queue.remove(current_priority, this); ready_queue.prepare(priority); ready_queue.push_back(priority, this); } current_priority = priority; } SharedPtr<Thread> SetupIdleThread() { // We need to pass a few valid values to get around parameter checking in Thread::Create. auto thread = Thread::Create("idle", Memory::KERNEL_MEMORY_VADDR, THREADPRIO_LOWEST, 0, THREADPROCESSORID_0, 0).MoveFrom(); thread->idle = true; return thread; } SharedPtr<Thread> SetupMainThread(u32 stack_size, u32 entry_point, s32 priority) { DEBUG_ASSERT(!GetCurrentThread()); // Initialize new "main" thread auto thread_res = Thread::Create("main", entry_point, priority, 0, THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END); SharedPtr<Thread> thread = thread_res.MoveFrom(); // Run new "main" thread SwitchContext(thread.get()); return thread; } void Reschedule() { Thread* prev = GetCurrentThread(); Thread* next = PopNextReadyThread(); HLE::g_reschedule = false; if (next != nullptr) { LOG_TRACE(Kernel, "context switch %u -> %u", prev->GetObjectId(), next->GetObjectId()); SwitchContext(next); } else { LOG_TRACE(Kernel, "cannot context switch from %u, no higher priority thread!", prev->GetObjectId()); for (auto& thread : thread_list) { LOG_TRACE(Kernel, "\tid=%u prio=0x%02X, status=0x%08X", thread->GetObjectId(), thread->current_priority, thread->status); } } } void Thread::SetWaitSynchronizationResult(ResultCode result) { context.cpu_registers[0] = result.raw; } void Thread::SetWaitSynchronizationOutput(s32 output) { context.cpu_registers[1] = output; } //////////////////////////////////////////////////////////////////////////////////////////////////// void ThreadingInit() { ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback); // Setup the idle thread SetupIdleThread(); } void ThreadingShutdown() { } } // namespace
namespace Kernel { class Thread : public Kernel::Object { public: const char* GetName() const { return name; } const char* GetTypeName() const { return "Thread"; } static Kernel::HandleType GetStaticHandleType() { return Kernel::HandleType::Thread; } Kernel::HandleType GetHandleType() const { return Kernel::HandleType::Thread; } inline bool IsRunning() const { return (status & THREADSTATUS_RUNNING) != 0; } inline bool IsStopped() const { return (status & THREADSTATUS_DORMANT) != 0; } inline bool IsReady() const { return (status & THREADSTATUS_READY) != 0; } inline bool IsWaiting() const { return (status & THREADSTATUS_WAIT) != 0; } inline bool IsSuspended() const { return (status & THREADSTATUS_SUSPEND) != 0; } /** * Wait for kernel object to synchronize * @param wait Boolean wait set if current thread should wait as a result of sync operation * @return Result of operation, 0 on success, otherwise error code */ Result WaitSynchronization(bool* wait) { if (status != THREADSTATUS_DORMANT) { Handle thread = GetCurrentThreadHandle(); if (std::find(waiting_threads.begin(), waiting_threads.end(), thread) == waiting_threads.end()) { waiting_threads.push_back(thread); } WaitCurrentThread(WAITTYPE_THREADEND, this->GetHandle()); *wait = true; } return 0; } ThreadContext context; u32 status; u32 entry_point; u32 stack_top; u32 stack_size; s32 initial_priority; s32 current_priority; s32 processor_id; WaitType wait_type; Handle wait_handle; std::vector<Handle> waiting_threads; char name[Kernel::MAX_NAME_LENGTH + 1]; }; // Lists all thread ids that aren't deleted/etc. std::vector<Handle> g_thread_queue; // Lists only ready thread ids. Common::ThreadQueueList<Handle> g_thread_ready_queue; Handle g_current_thread_handle; Thread* g_current_thread; /// Gets the current thread inline Thread* GetCurrentThread() { return g_current_thread; } /// Gets the current thread handle Handle GetCurrentThreadHandle() { return GetCurrentThread()->GetHandle(); } /// Sets the current thread inline void SetCurrentThread(Thread* t) { g_current_thread = t; g_current_thread_handle = t->GetHandle(); } /// Saves the current CPU context void SaveContext(ThreadContext& ctx) { Core::g_app_core->SaveContext(ctx); } /// Loads a CPU context void LoadContext(ThreadContext& ctx) { Core::g_app_core->LoadContext(ctx); } /// Resets a thread void ResetThread(Thread* t, u32 arg, s32 lowest_priority) { memset(&t->context, 0, sizeof(ThreadContext)); t->context.cpu_registers[0] = arg; t->context.pc = t->context.reg_15 = t->entry_point; t->context.sp = t->stack_top; t->context.cpsr = 0x1F; // Usermode if (t->current_priority < lowest_priority) { t->current_priority = t->initial_priority; } t->wait_type = WAITTYPE_NONE; t->wait_handle = 0; } /// Change a thread to "ready" state void ChangeReadyState(Thread* t, bool ready) { Handle handle = t->GetHandle(); if (t->IsReady()) { if (!ready) { g_thread_ready_queue.remove(t->current_priority, handle); } } else if (ready) { if (t->IsRunning()) { g_thread_ready_queue.push_front(t->current_priority, handle); } else { g_thread_ready_queue.push_back(t->current_priority, handle); } t->status = THREADSTATUS_READY; } } /// Verify that a thread has not been released from waiting inline bool VerifyWait(const Handle& handle, WaitType type, Handle wait_handle) { Thread* thread = g_object_pool.GetFast<Thread>(handle); _assert_msg_(KERNEL, (thread != nullptr), "called, but thread is nullptr!"); if (type != thread->wait_type || wait_handle != thread->wait_handle) return false; return true; } /// Stops the current thread void StopThread(Handle handle, const char* reason) { Thread* thread = g_object_pool.GetFast<Thread>(handle); _assert_msg_(KERNEL, (thread != nullptr), "called, but thread is nullptr!"); ChangeReadyState(thread, false); thread->status = THREADSTATUS_DORMANT; for (size_t i = 0; i < thread->waiting_threads.size(); ++i) { const Handle waiting_thread = thread->waiting_threads[i]; if (VerifyWait(waiting_thread, WAITTYPE_THREADEND, handle)) { ResumeThreadFromWait(waiting_thread); } } thread->waiting_threads.clear(); // Stopped threads are never waiting. thread->wait_type = WAITTYPE_NONE; thread->wait_handle = 0; } /// Changes a threads state void ChangeThreadState(Thread* t, ThreadStatus new_status) { if (!t || t->status == new_status) { return; } ChangeReadyState(t, (new_status & THREADSTATUS_READY) != 0); t->status = new_status; if (new_status == THREADSTATUS_WAIT) { if (t->wait_type == WAITTYPE_NONE) { ERROR_LOG(KERNEL, "Waittype none not allowed"); } } } /// Calls a thread by marking it as "ready" (note: will not actually execute until current thread yields) void CallThread(Thread* t) { // Stop waiting if (t->wait_type != WAITTYPE_NONE) { t->wait_type = WAITTYPE_NONE; } ChangeThreadState(t, THREADSTATUS_READY); } /// Switches CPU context to that of the specified thread void SwitchContext(Thread* t) { Thread* cur = GetCurrentThread(); // Save context for current thread if (cur) { SaveContext(cur->context); if (cur->IsRunning()) { ChangeReadyState(cur, true); } } // Load context of new thread if (t) { SetCurrentThread(t); ChangeReadyState(t, false); t->status = (t->status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY; t->wait_type = WAITTYPE_NONE; LoadContext(t->context); } else { SetCurrentThread(nullptr); } } /// Gets the next thread that is ready to be run by priority Thread* NextThread() { Handle next; Thread* cur = GetCurrentThread(); if (cur && cur->IsRunning()) { next = g_thread_ready_queue.pop_first_better(cur->current_priority); } else { next = g_thread_ready_queue.pop_first(); } if (next == 0) { return nullptr; } return Kernel::g_object_pool.GetFast<Thread>(next); } /// Puts the current thread in the wait state for the given type void WaitCurrentThread(WaitType wait_type, Handle wait_handle) { Thread* thread = GetCurrentThread(); thread->wait_type = wait_type; thread->wait_handle = wait_handle; ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND))); } /// Resumes a thread from waiting by marking it as "ready" void ResumeThreadFromWait(Handle handle) { u32 error; Thread* thread = Kernel::g_object_pool.Get<Thread>(handle, error); if (thread) { thread->status &= ~THREADSTATUS_WAIT; if (!(thread->status & (THREADSTATUS_WAITSUSPEND | THREADSTATUS_DORMANT | THREADSTATUS_DEAD))) { ChangeReadyState(thread, true); } } } /// Prints the thread queue for debugging purposes void DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { return; } INFO_LOG(KERNEL, "0x%02X 0x%08X (current)", thread->current_priority, GetCurrentThreadHandle()); for (u32 i = 0; i < g_thread_queue.size(); i++) { Handle handle = g_thread_queue[i]; s32 priority = g_thread_ready_queue.contains(handle); if (priority != -1) { INFO_LOG(KERNEL, "0x%02X 0x%08X", priority, handle); } } } /// Creates a new thread Thread* CreateThread(Handle& handle, const char* name, u32 entry_point, s32 priority, s32 processor_id, u32 stack_top, int stack_size) { _assert_msg_(KERNEL, (priority >= THREADPRIO_HIGHEST && priority <= THREADPRIO_LOWEST), "CreateThread priority=%d, outside of allowable range!", priority) Thread* thread = new Thread; handle = Kernel::g_object_pool.Create(thread); g_thread_queue.push_back(handle); g_thread_ready_queue.prepare(priority); thread->status = THREADSTATUS_DORMANT; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->stack_size = stack_size; thread->initial_priority = thread->current_priority = priority; thread->processor_id = processor_id; thread->wait_type = WAITTYPE_NONE; thread->wait_handle = 0; strncpy(thread->name, name, Kernel::MAX_NAME_LENGTH); thread->name[Kernel::MAX_NAME_LENGTH] = '\0'; return thread; } /// Creates a new thread - wrapper for external user Handle CreateThread(const char* name, u32 entry_point, s32 priority, u32 arg, s32 processor_id, u32 stack_top, int stack_size) { if (name == nullptr) { ERROR_LOG(KERNEL, "CreateThread(): nullptr name"); return -1; } if ((u32)stack_size < 0x200) { ERROR_LOG(KERNEL, "CreateThread(name=%s): invalid stack_size=0x%08X", name, stack_size); return -1; } if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); WARN_LOG(KERNEL, "CreateThread(name=%s): invalid priority=0x%08X, clamping to %08X", name, priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } if (!Memory::GetPointer(entry_point)) { ERROR_LOG(KERNEL, "CreateThread(name=%s): invalid entry %08x", name, entry_point); return -1; } Handle handle; Thread* thread = CreateThread(handle, name, entry_point, priority, processor_id, stack_top, stack_size); ResetThread(thread, arg, 0); CallThread(thread); return handle; } /// Get the priority of the thread specified by handle u32 GetThreadPriority(const Handle handle) { Thread* thread = g_object_pool.GetFast<Thread>(handle); _assert_msg_(KERNEL, (thread != nullptr), "called, but thread is nullptr!"); return thread->current_priority; } /// Set the priority of the thread specified by handle Result SetThreadPriority(Handle handle, s32 priority) { Thread* thread = nullptr; if (!handle) { thread = GetCurrentThread(); // TODO(bunnei): Is this correct behavior? } else { thread = g_object_pool.GetFast<Thread>(handle); } _assert_msg_(KERNEL, (thread != nullptr), "called, but thread is nullptr!"); // If priority is invalid, clamp to valid range if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); WARN_LOG(KERNEL, "invalid priority=0x%08X, clamping to %08X", priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } // Change thread priority s32 old = thread->current_priority; g_thread_ready_queue.remove(old, handle); thread->current_priority = priority; g_thread_ready_queue.prepare(thread->current_priority); // Change thread status to "ready" and push to ready queue if (thread->IsRunning()) { thread->status = (thread->status & ~THREADSTATUS_RUNNING) | THREADSTATUS_READY; } if (thread->IsReady()) { g_thread_ready_queue.push_back(thread->current_priority, handle); } return 0; } /// Sets up the primary application thread Handle SetupMainThread(s32 priority, int stack_size) { Handle handle; // Initialize new "main" thread Thread* thread = CreateThread(handle, "main", Core::g_app_core->GetPC(), priority, THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END, stack_size); ResetThread(thread, 0, 0); // If running another thread already, set it to "ready" state Thread* cur = GetCurrentThread(); if (cur && cur->IsRunning()) { ChangeReadyState(cur, true); } // Run new "main" thread SetCurrentThread(thread); thread->status = THREADSTATUS_RUNNING; LoadContext(thread->context); return handle; } /// Reschedules to the next available thread (call after current thread is suspended) void Reschedule() { Thread* prev = GetCurrentThread(); Thread* next = NextThread(); HLE::g_reschedule = false; if (next > 0) { INFO_LOG(KERNEL, "context switch 0x%08X -> 0x%08X", prev->GetHandle(), next->GetHandle()); SwitchContext(next); // Hack - There is no mechanism yet to waken the primary thread if it has been put to sleep // by a simulated VBLANK thread switch. So, we'll just immediately set it to "ready" again. // This results in the current thread yielding on a VBLANK once, and then it will be // immediately placed back in the queue for execution. if (prev->wait_type == WAITTYPE_VBLANK) { ResumeThreadFromWait(prev->GetHandle()); } } } //////////////////////////////////////////////////////////////////////////////////////////////////// void ThreadingInit() { } void ThreadingShutdown() { } } // namespace