void EDTAFile::store(const String& filename, const ConsensusMap& map) const { TextFile tf; // search for maximum number of sub-features (since this determines the number of columns) Size max_sub(0); for (Size i = 0; i < map.size(); ++i) { max_sub = std::max(max_sub, map[i].getFeatures().size()); } // write header String header("RT\tm/z\tintensity\tcharge"); for (Size i = 1; i <= max_sub; ++i) { header += "\tRT" + String(i) + "\tm/z" + String(i) + "\tintensity" + String(i) + "\tcharge" + String(i); } tf.addLine(header); for (Size i = 0; i < map.size(); ++i) { ConsensusFeature f = map[i]; // consensus String entry = String(f.getRT()) + "\t" + f.getMZ() + "\t" + f.getIntensity() + "\t" + f.getCharge(); // sub-features ConsensusFeature::HandleSetType handle = f.getFeatures(); for (ConsensusFeature::HandleSetType::const_iterator it = handle.begin(); it != handle.end(); ++it) { entry += String("\t") + it->getRT() + "\t" + it->getMZ() + "\t" + it->getIntensity() + "\t" + it->getCharge(); } // missing sub-features for (Size j = handle.size(); j < max_sub; ++j) { entry += "\tNA\tNA\tNA\tNA"; } tf.addLine(entry); } tf.store(filename); }
// need an instance of FeatureGroupingAlgorithm: String algo_name = Factory<FeatureGroupingAlgorithm>::registeredProducts()[0]; FeatureGroupingAlgorithm* algo = Factory<FeatureGroupingAlgorithm>::create( algo_name); algo->transferSubelements(maps, out); TEST_EQUAL(out.getFileDescriptions().size(), 4); TEST_EQUAL(out.getFileDescriptions()[0].filename, "file1"); TEST_EQUAL(out.getFileDescriptions()[3].filename, "file4"); TEST_EQUAL(out.size(), 1); TEST_EQUAL(out[0].size(), 4); ConsensusFeature::HandleSetType group = out[0].getFeatures(); ConsensusFeature::HandleSetType::const_iterator it = group.begin(); handle3.setMapIndex(2); handle4.setMapIndex(3); TEST_EQUAL(*it++ == handle1, true); TEST_EQUAL(*it++ == handle2, true); TEST_EQUAL(*it++ == handle3, true); TEST_EQUAL(*it++ == handle4, true); } END_SECTION ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// END_TEST
TEST_EQUAL(result.size(),3); ABORT_IF(result.size()!=3); ConsensusFeature::HandleSetType group1 = result[0].getFeatures(); ConsensusFeature::HandleSetType group2 = result[1].getFeatures(); ConsensusFeature::HandleSetType group3 = result[2].getFeatures(); FeatureHandle ind1(0,feat1); FeatureHandle ind2(0,feat2); FeatureHandle ind3(0,feat3); FeatureHandle ind4(1,feat4); FeatureHandle ind5(1,feat5); FeatureHandle ind6(1,feat6); ConsensusFeature::HandleSetType::const_iterator it; it = group1.begin(); STATUS(*it); STATUS(ind1); TEST_EQUAL(*(it) == ind1, true) ++it; STATUS(*it); STATUS(ind4); TEST_EQUAL(*(it) == ind4, true) it = group2.begin(); STATUS(*it); STATUS(ind2); TEST_EQUAL(*(it) == ind2, true) ++it; STATUS(*it); STATUS(ind5); TEST_EQUAL(*(it) == ind5, true)
void IBSpectraFile::store(const String& filename, const ConsensusMap& cm) { // typdefs for shorter code typedef std::vector<ProteinHit>::iterator ProtHitIt; // general settings .. do we need to expose these? // ---------------------------------------------------------------------- /// Allow also non-unique peptides to be exported bool allow_non_unique = true; /// Intensities below this value will be set to 0.0 to avoid numerical problems when quantifying double intensity_threshold = 0.00001; // ---------------------------------------------------------------------- // guess experiment type boost::shared_ptr<IsobaricQuantitationMethod> quantMethod = guessExperimentType_(cm); // we need the protein identifications to reference the protein names ProteinIdentification protIdent; bool has_proteinIdentifications = false; if (cm.getProteinIdentifications().size() > 0) { protIdent = cm.getProteinIdentifications()[0]; has_proteinIdentifications = true; } // start the file by adding the tsv header TextFile textFile; textFile.addLine(ListUtils::concatenate(constructHeader_(*quantMethod), "\t")); for (ConsensusMap::ConstIterator cm_iter = cm.begin(); cm_iter != cm.end(); ++cm_iter) { const ConsensusFeature& cFeature = *cm_iter; std::vector<IdCSV> entries; /// 1st we extract the identification information from the consensus feature if (cFeature.getPeptideIdentifications().size() == 0 || !has_proteinIdentifications) { // we store unidentified hits anyway, because the iTRAQ quant is still helpful for normalization entries.push_back(IdCSV()); } else { // protein name: const PeptideHit& peptide_hit = cFeature.getPeptideIdentifications()[0].getHits()[0]; std::set<String> protein_accessions = peptide_hit.extractProteinAccessions(); if (protein_accessions.size() != 1) { if (!allow_non_unique) continue; // we only want unique peptides } for (std::set<String>::const_iterator prot_ac = protein_accessions.begin(); prot_ac != protein_accessions.end(); ++prot_ac) { IdCSV entry; entry.charge = cFeature.getPeptideIdentifications()[0].getHits()[0].getCharge(); entry.peptide = cFeature.getPeptideIdentifications()[0].getHits()[0].getSequence().toUnmodifiedString(); entry.theo_mass = cFeature.getPeptideIdentifications()[0].getHits()[0].getSequence().getMonoWeight(Residue::Full, cFeature.getPeptideIdentifications()[0].getHits()[0].getCharge()); // write modif entry.modif = getModifString_(cFeature.getPeptideIdentifications()[0].getHits()[0].getSequence()); ProtHitIt proteinHit = protIdent.findHit(*prot_ac); if (proteinHit == protIdent.getHits().end()) { std::cerr << "Protein referenced in peptide not found...\n"; continue; // protein not found } entry.accession = proteinHit->getAccession(); entries.push_back(entry); } } // 2nd we add the quantitative information of the channels // .. skip features with 0 intensity if (cFeature.getIntensity() == 0) { continue; } for (std::vector<IdCSV>::iterator entry = entries.begin(); entry != entries.end(); ++entry) { // set parent intensity entry->parent_intens = cFeature.getIntensity(); entry->retention_time = cFeature.getRT(); entry->spectrum = cFeature.getUniqueId(); entry->exp_mass = cFeature.getMZ(); // create output line StringList currentLine; // add entry to currentLine entry->toStringList(currentLine); // extract channel intensities and positions std::map<Int, double> intensityMap; ConsensusFeature::HandleSetType features = cFeature.getFeatures(); for (ConsensusFeature::HandleSetType::const_iterator fIt = features.begin(); fIt != features.end(); ++fIt) { intensityMap[Int(fIt->getMZ())] = (fIt->getIntensity() > intensity_threshold ? fIt->getIntensity() : 0.0); } for (IsobaricQuantitationMethod::IsobaricChannelList::const_iterator it = quantMethod->getChannelInformation().begin(); it != quantMethod->getChannelInformation().end(); ++it) { currentLine.push_back(String(it->center)); } for (IsobaricQuantitationMethod::IsobaricChannelList::const_iterator it = quantMethod->getChannelInformation().begin(); it != quantMethod->getChannelInformation().end(); ++it) { currentLine.push_back(String(intensityMap[int(it->center)])); } textFile.addLine(ListUtils::concatenate(currentLine, "\t")); } } // write to file textFile.store(filename); }