void TractsToDWIImageFilter::GenerateParticleGrid() { MITK_INFO << "Generating particle grid from fiber bundle"; m_ParticleGrid = mitk::ParticleGrid::New(); float* bounds = m_FiberBundle->GetBounds(); int size[] = {(int)bounds[0],(int)bounds[1],(int)bounds[2]}; m_ParticleGrid->SetSize(size); typedef itk::Point<float,3> ContainerPointType; //no need to init, is no smartpointer typedef itk::VectorContainer<unsigned int, ContainerPointType> ContainerTractType; typedef itk::VectorContainer< unsigned int, ContainerTractType::Pointer > ContainerType; //init via smartpointer ContainerType::Pointer tractContainer = m_FiberBundle->GetTractContainer(); for (int i=0; i<tractContainer->Size(); i++) { ContainerTractType::Pointer tract = tractContainer->GetElement(i); for (int j=0; j<tract->Size(); j++) { vnl_vector_fixed<float,3> pos = tract->GetElement(j).GetVnlVector(); vnl_vector_fixed<float,3> next; vnl_vector_fixed<float,3> dir; if (j<tract->Size()-1) next = tract->GetElement(j+1).GetVnlVector(); else next = tract->GetElement(j-1).GetVnlVector(); dir = next-pos; dir.normalize(); mitk::Particle* p = new mitk::Particle(); p->SetPosition(pos); p->SetDirection(dir); m_ParticleGrid->AddParticle(p); } } }
void TractsToFiberEndingsImageFilter< TInputImage, TOutputPixelType > ::GenerateData() { MITK_INFO << "Generating 2D fiber endings image"; if(&typeid(TOutputPixelType) != &typeid(unsigned char)) { MITK_INFO << "Only 'unsigned char' and 'itk::RGBAPixel<unsigned char> supported as OutputPixelType"; return; } mitk::Geometry3D::Pointer geometry = m_FiberBundle->GetGeometry(); typename OutputImageType::Pointer outImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); outImage->SetSpacing( geometry->GetSpacing()/m_UpsamplingFactor ); // Set the image spacing mitk::Point3D origin = geometry->GetOrigin(); mitk::Point3D indexOrigin; geometry->WorldToIndex(origin, indexOrigin); indexOrigin[0] = indexOrigin[0] - .5 * (1.0-1.0/m_UpsamplingFactor); indexOrigin[1] = indexOrigin[1] - .5 * (1.0-1.0/m_UpsamplingFactor); indexOrigin[2] = indexOrigin[2] - .5 * (1.0-1.0/m_UpsamplingFactor); mitk::Point3D newOrigin; geometry->IndexToWorld(indexOrigin, newOrigin); outImage->SetOrigin( newOrigin ); // Set the image origin itk::Matrix<double, 3, 3> matrix; for (int i=0; i<3; i++) for (int j=0; j<3; j++) matrix[j][i] = geometry->GetMatrixColumn(i)[j]/geometry->GetSpacing().GetElement(i); outImage->SetDirection( matrix ); // Set the image direction float* bounds = m_FiberBundle->GetBounds(); ImageRegion<3> upsampledRegion; upsampledRegion.SetSize(0, bounds[0]); upsampledRegion.SetSize(1, bounds[1]); upsampledRegion.SetSize(2, bounds[2]); typename InputImageType::RegionType::SizeType upsampledSize = upsampledRegion.GetSize(); for (unsigned int n = 0; n < 3; n++) { upsampledSize[n] = upsampledSize[n] * m_UpsamplingFactor; } upsampledRegion.SetSize( upsampledSize ); outImage->SetRegions( upsampledRegion ); outImage->Allocate(); int w = upsampledSize[0]; int h = upsampledSize[1]; int d = upsampledSize[2]; unsigned char* accuout; accuout = reinterpret_cast<unsigned char*>(outImage->GetBufferPointer()); for (int i=0; i<w*h*d; i++) accuout[i] = 0; typedef mitk::FiberBundle::ContainerTractType ContainerTractType; typedef mitk::FiberBundle::ContainerType ContainerType; typedef mitk::FiberBundle::ContainerPointType ContainerPointType; ContainerType::Pointer tractContainer = m_FiberBundle->GetTractContainer(); for (int i=0; i<tractContainer->Size(); i++) { ContainerTractType::Pointer tract = tractContainer->GetElement(i); int tractsize = tract->Size(); if (tractsize>1) { ContainerPointType start = tract->GetElement(0); ContainerPointType end = tract->GetElement(tractsize-1); start[0] = (start[0]+0.5) * m_UpsamplingFactor; start[1] = (start[1]+0.5) * m_UpsamplingFactor; start[2] = (start[2]+0.5) * m_UpsamplingFactor; // int coordinates inside image? int px = (int) (start[0]); if (px < 0 || px >= w) continue; int py = (int) (start[1]); if (py < 0 || py >= h) continue; int pz = (int) (start[2]); if (pz < 0 || pz >= d) continue; accuout[( px + w*(py + h*pz ))] += 1; end[0] = (end[0]+0.5) * m_UpsamplingFactor; end[1] = (end[1]+0.5) * m_UpsamplingFactor; end[2] = (end[2]+0.5) * m_UpsamplingFactor; // int coordinates inside image? px = (int) (end[0]); if (px < 0 || px >= w) continue; py = (int) (end[1]); if (py < 0 || py >= h) continue; pz = (int) (end[2]); if (pz < 0 || pz >= d) continue; accuout[( px + w*(py + h*pz ))] += 1; } } MITK_INFO << "2D fiber endings image generated"; }