/** Orthogonal matching pursuit
* x: input signal, N * 1 
* D: dictionary, N * M 
* L: number of non_zero elements in output
* coeff: coefficent of each atoms in dictionary, M * 1
*/
void OMP(const cv::Mat_<double>& x, const cv::Mat_<double>& D, int L, cv::Mat_<double>& coeff){
    int dim = x.rows;
    int atom_num = D.cols;
    coeff = Mat::zeros(atom_num, 1, CV_64FC1);
    Mat_<double> residual = x.clone();
    Mat_<double> selected_index(L, 1);
    Mat_<double> a;
    for (int i = 0; i < L; i++){
        cout << "here ok 1" << endl;
        Mat_<double> dot_p = D.t() * residual; 
        Point max_index;
        minMaxLoc(abs(dot_p), NULL, NULL, NULL, &max_index);
        int max_row = max_index.y;
        selected_index(i) = max_row;
        Mat_<double> temp(dim, i + 1);
        for (int j = 0; j < i + 1; j++){
            D.col(selected_index(j)).copyTo(temp.col(j));
        }
        Mat_<double> invert_temp;
        invert(temp, invert_temp, CV_SVD);
        a = invert_temp * x;
        residual = x - temp * a;
    }

    for (int i = 0; i < L; i++){
        coeff(selected_index(i)) = a(i);
    }
} 
cv::Mat test_with_args(const cv::Mat_<float>& in, const int& var1 = 1,
const double& var2 = 10.0, const std::string& name=std::string("test_name")) {
    std::cerr << "in: " << in << std::endl;
    std::cerr << "sz: " << in.size() << std::endl;
    std::cerr << "Returning transpose" << std::endl;
    return in.t();
}
예제 #3
0
CrossValidator::CrossValidator( const cv::Mat_<float> &xs, const cv::Mat_<int> &labs, int numEVs)
    : _numEVs( numEVs), _txs(xs), _tlabels(labs)
{
    assert( _tlabels.total() == _txs.rows);

    // Ensure labs are given as a single row vector
    if ( labs.rows > labs.cols)
        _tlabels = labs.t();

    // Count the number of entries of each class
    const int* labArray = _tlabels.ptr<int>(0);
    for ( int i = 0; i < _tlabels.cols; ++i)
    {
        const int lab = labArray[i];
        while ( lab >= (int)_cCounts.size())
            _cCounts.push_back(0);
        _cCounts[lab]++;
    }   // end for

    // At the moment, CrossValidator can only deal with two class problems
    if ( _cCounts.size() != 2)
        std::cerr << "ERROR: Currently CrossValidator can only deal with 2 class problems!" << std::endl;
    assert( _cCounts.size() == 2);

    if ( _numEVs <= 0)
        _numEVs = 0;
    if ( _numEVs > _txs.cols)
        _numEVs = _txs.cols;
}   // end ctor
예제 #4
0
// static
cv::Mat_<float> CrossValidator::createCrossValidationMatrix( const vector< const vector<cv::Mat_<float> >* >& rowVectors,
                                                             cv::Mat_<int>& labels)
{
    assert( !rowVectors.empty());
    cv::Mat_<float> vecs;
    labels.create( 0,1);
    for ( int label = 0; label < rowVectors.size(); ++label)
    {
        assert( rowVectors[label] != 0);
        const vector<cv::Mat_<float> >& rvecs = *rowVectors[label];
        assert( !rvecs.empty());
        const int colDim = rvecs[0].cols; // Should be the length of each row vector in this class
        if ( vecs.empty())
            vecs.create(0, colDim);
        assert( colDim == vecs.cols);   // Ensure this class's row vector length matches what's already stored

        for ( int i = 0; i < rvecs.size(); ++i)
        {
            const cv::Mat_<float>& rv = rvecs[i];
            if ( rv.rows != 1 || rv.cols != colDim)
            {
                std::cerr << "ERROR feature vector size: " << rv.size() << std::endl;
                assert( rv.rows == 1 && rv.cols == colDim);
            }   // end if

            vecs.push_back( rv);    // Append the row vector to the bottom of the matrix
            labels.push_back(label);    // Set this vector's class label
        }   // end for
    }   // end for

    labels = labels.t();    // Make row vector
    return vecs;
}   // end createCrossValidationMatrix
예제 #5
0
cv::Point3f GetPupilPosition(cv::Mat_<double> eyeLdmks3d){
	
	eyeLdmks3d = eyeLdmks3d.t();

	cv::Mat_<double> irisLdmks3d = eyeLdmks3d.rowRange(0,8);

	cv::Point3f p (mean(irisLdmks3d.col(0))[0], mean(irisLdmks3d.col(1))[0], mean(irisLdmks3d.col(2))[0]);
	return p;
}
void Cv_mat_to_arma_mat(const cv::Mat_<T>& cv_mat_in, arma::Mat<T>& arma_mat_out)
{
    cv::Mat_<T> temp(cv_mat_in.t()); //todo any way to not create a temporary?
    //This compiles on both but is not as nice
    arma_mat_out = arma::Mat<T>(reinterpret_cast<T*>(temp.data),
                                static_cast<arma::uword>(temp.cols),
                                static_cast<arma::uword>(temp.rows),
                                true,
                                true);
};
예제 #7
0
	//=============================================================================
	// Basically Kabsch's algorithm but also allows the collection of points to be different in scale from each other
	cv::Matx22f AlignShapesWithScale(cv::Mat_<float>& src, cv::Mat_<float> dst)
	{
		int n = src.rows;

		// First we mean normalise both src and dst
		float mean_src_x = cv::mean(src.col(0))[0];
		float mean_src_y = cv::mean(src.col(1))[0];

		float mean_dst_x = cv::mean(dst.col(0))[0];
		float mean_dst_y = cv::mean(dst.col(1))[0];

		cv::Mat_<float> src_mean_normed = src.clone();
		src_mean_normed.col(0) = src_mean_normed.col(0) - mean_src_x;
		src_mean_normed.col(1) = src_mean_normed.col(1) - mean_src_y;

		cv::Mat_<float> dst_mean_normed = dst.clone();
		dst_mean_normed.col(0) = dst_mean_normed.col(0) - mean_dst_x;
		dst_mean_normed.col(1) = dst_mean_normed.col(1) - mean_dst_y;

		// Find the scaling factor of each
		cv::Mat src_sq;
		cv::pow(src_mean_normed, 2, src_sq);

		cv::Mat dst_sq;
		cv::pow(dst_mean_normed, 2, dst_sq);

		float s_src = sqrt(cv::sum(src_sq)[0] / n);
		float s_dst = sqrt(cv::sum(dst_sq)[0] / n);

		src_mean_normed = src_mean_normed / s_src;
		dst_mean_normed = dst_mean_normed / s_dst;

		float s = s_dst / s_src;

		// Get the rotation
		cv::Matx22f R = AlignShapesKabsch2D(src_mean_normed, dst_mean_normed);

		cv::Matx22f	A;
		cv::Mat(s * R).copyTo(A);

		cv::Mat_<float> aligned = (cv::Mat(cv::Mat(A) * src.t())).t();
		cv::Mat_<float> offset = dst - aligned;

		float t_x = cv::mean(offset.col(0))[0];
		float t_y = cv::mean(offset.col(1))[0];

		return A;

	}
예제 #8
0
	//===========================================================================
	// Point set and landmark manipulation functions
	//===========================================================================
	// Using Kabsch's algorithm for aligning shapes
	//This assumes that align_from and align_to are already mean normalised
	cv::Matx22f AlignShapesKabsch2D(const cv::Mat_<float>& align_from, const cv::Mat_<float>& align_to)
	{

		cv::SVD svd(align_from.t() * align_to);

		// make sure no reflection is there
		// corr ensures that we do only rotaitons and not reflections
		float d = cv::determinant(svd.vt.t() * svd.u.t());

		cv::Matx22f corr = cv::Matx22f::eye();
		if (d > 0)
		{
			corr(1, 1) = 1;
		}
		else
		{
			corr(1, 1) = -1;
		}

		cv::Matx22f R;
		cv::Mat(svd.vt.t()*cv::Mat(corr)*svd.u.t()).copyTo(R);

		return R;
	}