예제 #1
0
/// CloneDominatorInfo - Clone basicblock's dominator tree and, if available,
/// dominance info. It is expected that basic block is already cloned.
static void CloneDominatorInfo(BasicBlock *BB, 
                               DenseMap<const Value *, Value *> &ValueMap,
                               DominatorTree *DT,
                               DominanceFrontier *DF) {

  assert (DT && "DominatorTree is not available");
  DenseMap<const Value *, Value*>::iterator BI = ValueMap.find(BB);
  assert (BI != ValueMap.end() && "BasicBlock clone is missing");
  BasicBlock *NewBB = cast<BasicBlock>(BI->second);

  // NewBB already got dominator info.
  if (DT->getNode(NewBB))
    return;

  assert (DT->getNode(BB) && "BasicBlock does not have dominator info");
  // Entry block is not expected here. Infinite loops are not to cloned.
  assert (DT->getNode(BB)->getIDom() && "BasicBlock does not have immediate dominator");
  BasicBlock *BBDom = DT->getNode(BB)->getIDom()->getBlock();

  // NewBB's dominator is either BB's dominator or BB's dominator's clone.
  BasicBlock *NewBBDom = BBDom;
  DenseMap<const Value *, Value*>::iterator BBDomI = ValueMap.find(BBDom);
  if (BBDomI != ValueMap.end()) {
    NewBBDom = cast<BasicBlock>(BBDomI->second);
    if (!DT->getNode(NewBBDom))
      CloneDominatorInfo(BBDom, ValueMap, DT, DF);
  }
  DT->addNewBlock(NewBB, NewBBDom);

  // Copy cloned dominance frontiner set
  if (DF) {
    DominanceFrontier::DomSetType NewDFSet;
    DominanceFrontier::iterator DFI = DF->find(BB);
    if ( DFI != DF->end()) {
      DominanceFrontier::DomSetType S = DFI->second;
        for (DominanceFrontier::DomSetType::iterator I = S.begin(), E = S.end();
             I != E; ++I) {
          BasicBlock *DB = *I;
          DenseMap<const Value*, Value*>::iterator IDM = ValueMap.find(DB);
          if (IDM != ValueMap.end())
            NewDFSet.insert(cast<BasicBlock>(IDM->second));
          else
            NewDFSet.insert(DB);
        }
    }
    DF->addBasicBlock(NewBB, NewDFSet);
  }
}
예제 #2
0
파일: Dominators.cpp 프로젝트: aaasz/SHP
// NewBB is split and now it has one successor. Update dominace frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
  assert(NewBB->getTerminator()->getNumSuccessors() == 1
         && "NewBB should have a single successor!");
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);

  SmallVector<BasicBlock*, 8> PredBlocks;
  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
       PI != PE; ++PI)
      PredBlocks.push_back(*PI);  

  if (PredBlocks.empty())
    // If NewBB does not have any predecessors then it is a entry block.
    // In this case, NewBB and its successor NewBBSucc dominates all
    // other blocks.
    return;

  // NewBBSucc inherits original NewBB frontier.
  DominanceFrontier::iterator NewBBI = find(NewBB);
  if (NewBBI != end()) {
    DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
    DominanceFrontier::DomSetType NewBBSuccSet;
    NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
    addBasicBlock(NewBBSucc, NewBBSuccSet);
  }

  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
  // DF(PredBlocks[0]) without the stuff that the new block does not dominate
  // a predecessor of.
  DominatorTree &DT = getAnalysis<DominatorTree>();
  if (DT.dominates(NewBB, NewBBSucc)) {
    DominanceFrontier::iterator DFI = find(PredBlocks[0]);
    if (DFI != end()) {
      DominanceFrontier::DomSetType Set = DFI->second;
      // Filter out stuff in Set that we do not dominate a predecessor of.
      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
             E = Set.end(); SetI != E;) {
        bool DominatesPred = false;
        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
             PI != E; ++PI)
          if (DT.dominates(NewBB, *PI))
            DominatesPred = true;
        if (!DominatesPred)
          Set.erase(SetI++);
        else
          ++SetI;
      }

      if (NewBBI != end()) {
        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
               E = Set.end(); SetI != E; ++SetI) {
          BasicBlock *SB = *SetI;
          addToFrontier(NewBBI, SB);
        }
      } else 
        addBasicBlock(NewBB, Set);
    }
    
  } else {
    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
    DominanceFrontier::DomSetType NewDFSet;
    NewDFSet.insert(NewBBSucc);
    addBasicBlock(NewBB, NewDFSet);
  }
  
  // Now we must loop over all of the dominance frontiers in the function,
  // replacing occurrences of NewBBSucc with NewBB in some cases.  All
  // blocks that dominate a block in PredBlocks and contained NewBBSucc in
  // their dominance frontier must be updated to contain NewBB instead.
  //
  for (Function::iterator FI = NewBB->getParent()->begin(),
         FE = NewBB->getParent()->end(); FI != FE; ++FI) {
    DominanceFrontier::iterator DFI = find(FI);
    if (DFI == end()) continue;  // unreachable block.
    
    // Only consider nodes that have NewBBSucc in their dominator frontier.
    if (!DFI->second.count(NewBBSucc)) continue;

    // Verify whether this block dominates a block in predblocks.  If not, do
    // not update it.
    bool BlockDominatesAny = false;
    for (SmallVectorImpl<BasicBlock*>::const_iterator BI = PredBlocks.begin(), 
           BE = PredBlocks.end(); BI != BE; ++BI) {
      if (DT.dominates(FI, *BI)) {
        BlockDominatesAny = true;
        break;
      }
    }

    // If NewBBSucc should not stay in our dominator frontier, remove it.
    // We remove it unless there is a predecessor of NewBBSucc that we
    // dominate, but we don't strictly dominate NewBBSucc.
    bool ShouldRemove = true;
    if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) {
      // Okay, we know that PredDom does not strictly dominate NewBBSucc.
      // Check to see if it dominates any predecessors of NewBBSucc.
      for (pred_iterator PI = pred_begin(NewBBSucc),
           E = pred_end(NewBBSucc); PI != E; ++PI)
        if (DT.dominates(FI, *PI)) {
          ShouldRemove = false;
          break;
        }
    }
    
    if (ShouldRemove)
      removeFromFrontier(DFI, NewBBSucc);
    if (BlockDominatesAny && (&*FI == NewBB || !DT.dominates(FI, NewBB)))
      addToFrontier(DFI, NewBB);
  }
}
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
/// split the critical edge.  This will update DominatorTree and
/// DominatorFrontier information if it is available, thus calling this pass
/// will not invalidate either of them. This returns the new block if the edge
/// was split, null otherwise.
///
/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
/// specified successor will be merged into the same critical edge block.  
/// This is most commonly interesting with switch instructions, which may 
/// have many edges to any one destination.  This ensures that all edges to that
/// dest go to one block instead of each going to a different block, but isn't 
/// the standard definition of a "critical edge".
///
/// It is invalid to call this function on a critical edge that starts at an
/// IndirectBrInst.  Splitting these edges will almost always create an invalid
/// program because the address of the new block won't be the one that is jumped
/// to.
///
BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
                                    Pass *P, bool MergeIdenticalEdges) {
  if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
  
  assert(!isa<IndirectBrInst>(TI) &&
         "Cannot split critical edge from IndirectBrInst");
  
  BasicBlock *TIBB = TI->getParent();
  BasicBlock *DestBB = TI->getSuccessor(SuccNum);

  // Create a new basic block, linking it into the CFG.
  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
  // Create our unconditional branch.
  BranchInst::Create(DestBB, NewBB);

  // Branch to the new block, breaking the edge.
  TI->setSuccessor(SuccNum, NewBB);

  // Insert the block into the function... right after the block TI lives in.
  Function &F = *TIBB->getParent();
  Function::iterator FBBI = TIBB;
  F.getBasicBlockList().insert(++FBBI, NewBB);
  
  // If there are any PHI nodes in DestBB, we need to update them so that they
  // merge incoming values from NewBB instead of from TIBB.
  if (PHINode *APHI = dyn_cast<PHINode>(DestBB->begin())) {
    // This conceptually does:
    //  foreach (PHINode *PN in DestBB)
    //    PN->setIncomingBlock(PN->getIncomingBlock(TIBB), NewBB);
    // but is optimized for two cases.
    
    if (APHI->getNumIncomingValues() <= 8) {  // Small # preds case.
      unsigned BBIdx = 0;
      for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
        // We no longer enter through TIBB, now we come in through NewBB.
        // Revector exactly one entry in the PHI node that used to come from
        // TIBB to come from NewBB.
        PHINode *PN = cast<PHINode>(I);
        
        // Reuse the previous value of BBIdx if it lines up.  In cases where we
        // have multiple phi nodes with *lots* of predecessors, this is a speed
        // win because we don't have to scan the PHI looking for TIBB.  This
        // happens because the BB list of PHI nodes are usually in the same
        // order.
        if (PN->getIncomingBlock(BBIdx) != TIBB)
          BBIdx = PN->getBasicBlockIndex(TIBB);
        PN->setIncomingBlock(BBIdx, NewBB);
      }
    } else {
      // However, the foreach loop is slow for blocks with lots of predecessors
      // because PHINode::getIncomingBlock is O(n) in # preds.  Instead, walk
      // the user list of TIBB to find the PHI nodes.
      SmallPtrSet<PHINode*, 16> UpdatedPHIs;
    
      for (Value::use_iterator UI = TIBB->use_begin(), E = TIBB->use_end();
           UI != E; ) {
        Value::use_iterator Use = UI++;
        if (PHINode *PN = dyn_cast<PHINode>(Use)) {
          // Remove one entry from each PHI.
          if (PN->getParent() == DestBB && UpdatedPHIs.insert(PN))
            PN->setOperand(Use.getOperandNo(), NewBB);
        }
      }
    }
  }
   
  // If there are any other edges from TIBB to DestBB, update those to go
  // through the split block, making those edges non-critical as well (and
  // reducing the number of phi entries in the DestBB if relevant).
  if (MergeIdenticalEdges) {
    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
      if (TI->getSuccessor(i) != DestBB) continue;
      
      // Remove an entry for TIBB from DestBB phi nodes.
      DestBB->removePredecessor(TIBB);
      
      // We found another edge to DestBB, go to NewBB instead.
      TI->setSuccessor(i, NewBB);
    }
  }
  
  

  // If we don't have a pass object, we can't update anything...
  if (P == 0) return NewBB;
  
  DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
  DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>();
  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
  ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
  
  // If we have nothing to update, just return.
  if (DT == 0 && DF == 0 && LI == 0 && PI == 0)
    return NewBB;

  // Now update analysis information.  Since the only predecessor of NewBB is
  // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
  // anything, as there are other successors of DestBB.  However, if all other
  // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
  // loop header) then NewBB dominates DestBB.
  SmallVector<BasicBlock*, 8> OtherPreds;

  // If there is a PHI in the block, loop over predecessors with it, which is
  // faster than iterating pred_begin/end.
  if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (PN->getIncomingBlock(i) != NewBB)
        OtherPreds.push_back(PN->getIncomingBlock(i));
  } else {
    for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
         I != E; ++I)
      if (*I != NewBB)
        OtherPreds.push_back(*I);
  }
  
  bool NewBBDominatesDestBB = true;
  
  // Should we update DominatorTree information?
  if (DT) {
    DomTreeNode *TINode = DT->getNode(TIBB);

    // The new block is not the immediate dominator for any other nodes, but
    // TINode is the immediate dominator for the new node.
    //
    if (TINode) {       // Don't break unreachable code!
      DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
      DomTreeNode *DestBBNode = 0;
     
      // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
      if (!OtherPreds.empty()) {
        DestBBNode = DT->getNode(DestBB);
        while (!OtherPreds.empty() && NewBBDominatesDestBB) {
          if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
            NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
          OtherPreds.pop_back();
        }
        OtherPreds.clear();
      }
      
      // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
      // doesn't dominate anything.
      if (NewBBDominatesDestBB) {
        if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
        DT->changeImmediateDominator(DestBBNode, NewBBNode);
      }
    }
  }

  // Should we update DominanceFrontier information?
  if (DF) {
    // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
    if (!OtherPreds.empty()) {
      // FIXME: IMPLEMENT THIS!
      llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
                       " not implemented yet!");
    }
    
    // Since the new block is dominated by its only predecessor TIBB,
    // it cannot be in any block's dominance frontier.  If NewBB dominates
    // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
    // just {DestBB}.
    DominanceFrontier::DomSetType NewDFSet;
    if (NewBBDominatesDestBB) {
      DominanceFrontier::iterator I = DF->find(DestBB);
      if (I != DF->end()) {
        DF->addBasicBlock(NewBB, I->second);
        
        if (I->second.count(DestBB)) {
          // However NewBB's frontier does not include DestBB.
          DominanceFrontier::iterator NF = DF->find(NewBB);
          DF->removeFromFrontier(NF, DestBB);
        }
      }
      else
        DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
    } else {
      DominanceFrontier::DomSetType NewDFSet;
      NewDFSet.insert(DestBB);
      DF->addBasicBlock(NewBB, NewDFSet);
    }
  }
  
  // Update LoopInfo if it is around.
  if (LI) {
    if (Loop *TIL = LI->getLoopFor(TIBB)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NewBB joins loop.
          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NewBB, LI->getBase());
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == DestBB &&
                 "Should not create irreducible loops!");
          if (Loop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NewBB, LI->getBase());
        }
      }
      // If TIBB is in a loop and DestBB is outside of that loop, split the
      // other exit blocks of the loop that also have predecessors outside
      // the loop, to maintain a LoopSimplify guarantee.
      if (!TIL->contains(DestBB) &&
          P->mustPreserveAnalysisID(LoopSimplifyID)) {
        assert(!TIL->contains(NewBB) &&
               "Split point for loop exit is contained in loop!");

        // Update LCSSA form in the newly created exit block.
        if (P->mustPreserveAnalysisID(LCSSAID)) {
          SmallVector<BasicBlock *, 1> OrigPred;
          OrigPred.push_back(TIBB);
          CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
        }

        // For each unique exit block...
        SmallVector<BasicBlock *, 4> ExitBlocks;
        TIL->getExitBlocks(ExitBlocks);
        for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
          // Collect all the preds that are inside the loop, and note
          // whether there are any preds outside the loop.
          SmallVector<BasicBlock *, 4> Preds;
          bool HasPredOutsideOfLoop = false;
          BasicBlock *Exit = ExitBlocks[i];
          for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
               I != E; ++I)
            if (TIL->contains(*I))
              Preds.push_back(*I);
            else
              HasPredOutsideOfLoop = true;
          // If there are any preds not in the loop, we'll need to split
          // the edges. The Preds.empty() check is needed because a block
          // may appear multiple times in the list. We can't use
          // getUniqueExitBlocks above because that depends on LoopSimplify
          // form, which we're in the process of restoring!
          if (!Preds.empty() && HasPredOutsideOfLoop) {
            BasicBlock *NewExitBB =
              SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
                                     "split", P);
            if (P->mustPreserveAnalysisID(LCSSAID))
              CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
          }
        }
      }
      // LCSSA form was updated above for the case where LoopSimplify is
      // available, which means that all predecessors of loop exit blocks
      // are within the loop. Without LoopSimplify form, it would be
      // necessary to insert a new phi.
      assert((!P->mustPreserveAnalysisID(LCSSAID) ||
              P->mustPreserveAnalysisID(LoopSimplifyID)) &&
             "SplitCriticalEdge doesn't know how to update LCCSA form "
             "without LoopSimplify!");
    }
  }

  // Update ProfileInfo if it is around.
  if (PI)
    PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);

  return NewBB;
}
예제 #4
0
// NewBB is split and now it has one successor. Update dominance frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
  assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
         "NewBB should have a single successor!");
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);

  // NewBBSucc inherits original NewBB frontier.
  DominanceFrontier::iterator NewBBI = find(NewBB);
  if (NewBBI != end())
    addBasicBlock(NewBBSucc, NewBBI->second);

  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
  // DF(NewBBSucc) without the stuff that the new block does not dominate
  // a predecessor of.
  DominatorTree &DT = getAnalysis<DominatorTree>();
  DomTreeNode *NewBBNode = DT.getNode(NewBB);
  DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
  if (DT.dominates(NewBBNode, NewBBSuccNode)) {
    DominanceFrontier::iterator DFI = find(NewBBSucc);
    if (DFI != end()) {
      DominanceFrontier::DomSetType Set = DFI->second;
      // Filter out stuff in Set that we do not dominate a predecessor of.
      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
             E = Set.end(); SetI != E;) {
        bool DominatesPred = false;
        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
             PI != E; ++PI)
          if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
            DominatesPred = true;
            break;
          }
        if (!DominatesPred)
          Set.erase(SetI++);
        else
          ++SetI;
      }

      if (NewBBI != end()) {
        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
               E = Set.end(); SetI != E; ++SetI) {
          BasicBlock *SB = *SetI;
          addToFrontier(NewBBI, SB);
        }
      } else 
        addBasicBlock(NewBB, Set);
    }
    
  } else {
    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
    DominanceFrontier::DomSetType NewDFSet;
    NewDFSet.insert(NewBBSucc);
    addBasicBlock(NewBB, NewDFSet);
  }

  // Now update dominance frontiers which either used to contain NewBBSucc
  // or which now need to include NewBB.

  // Collect the set of blocks which dominate a predecessor of NewBB or
  // NewSuccBB and which don't dominate both. This is an initial
  // approximation of the blocks whose dominance frontiers will need updates.
  SmallVector<DomTreeNode *, 16> AllPredDoms;

  // Compute the block which dominates both NewBBSucc and NewBB. This is
  // the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
  // The code below which climbs dominator trees will stop at this point,
  // because from this point up, dominance frontiers are unaffected.
  DomTreeNode *DominatesBoth = 0;
  if (NewBBSuccNode) {
    DominatesBoth = NewBBSuccNode->getIDom();
    if (DominatesBoth == NewBBNode)
      DominatesBoth = NewBBNode->getIDom();
  }

  // Collect the set of all blocks which dominate a predecessor of NewBB.
  SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
    for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
      if (DTN == DominatesBoth)
        break;
      if (!NewBBPredDoms.insert(DTN))
        break;
      AllPredDoms.push_back(DTN);
    }

  // Collect the set of all blocks which dominate a predecessor of NewSuccBB.
  SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
  for (pred_iterator PI = pred_begin(NewBBSucc),
       E = pred_end(NewBBSucc); PI != E; ++PI)
    for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
      if (DTN == DominatesBoth)
        break;
      if (!NewBBSuccPredDoms.insert(DTN))
        break;
      if (!NewBBPredDoms.count(DTN))
        AllPredDoms.push_back(DTN);
    }

  // Visit all relevant dominance frontiers and make any needed updates.
  for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
       E = AllPredDoms.end(); I != E; ++I) {
    DomTreeNode *DTN = *I;
    iterator DFI = find((*I)->getBlock());

    // Only consider nodes that have NewBBSucc in their dominator frontier.
    if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;

    // If the block dominates a predecessor of NewBB but does not properly
    // dominate NewBB itself, add NewBB to its dominance frontier.
    if (NewBBPredDoms.count(DTN) &&
        !DT.properlyDominates(DTN, NewBBNode))
      addToFrontier(DFI, NewBB);

    // If the block does not dominate a predecessor of NewBBSucc or
    // properly dominates NewBBSucc itself, remove NewBBSucc from its
    // dominance frontier.
    if (!NewBBSuccPredDoms.count(DTN) ||
        DT.properlyDominates(DTN, NewBBSuccNode))
      removeFromFrontier(DFI, NewBBSucc);
  }
}