예제 #1
0
void projectorFromSvd(const Eigen::MatrixXd& jac,
                      Eigen::JacobiSVD<Eigen::MatrixXd>& svd,
                      Eigen::VectorXd& svdSingular,
                      Eigen::MatrixXd& preResult,
                      Eigen::MatrixXd& result,
                      double epsilon=std::numeric_limits<double>::epsilon(),
                      double minTol=1e-8)
{
  // we are force to compute the Full matrix because of
  // the nullspace matrix computation
  svd.compute(jac, Eigen::ComputeFullU | Eigen::ComputeFullV);

  double tolerance =
      epsilon*double(std::max(jac.cols(), jac.rows()))*
      std::abs(svd.singularValues()[0]);
  tolerance = std::max(tolerance, minTol);

  svdSingular.setOnes();
  for(int i = 0; i < svd.singularValues().rows(); ++i)
  {
    svdSingular[i] = svd.singularValues()[i] > tolerance ? 0. : 1.;
  }

  preResult.noalias() = svd.matrixV()*svdSingular.asDiagonal();
  result.noalias() = preResult*svd.matrixV().adjoint();
}
예제 #2
0
파일: Math.cpp 프로젝트: CrazyHeex/woo
bool MatrixXr_pseudoInverse(const MatrixXr &a, MatrixXr &a_pinv, double epsilon) {

    // see : http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#The_general_case_and_the_SVD_method
    if ( a.rows()<a.cols() ) return false;

    // SVD
    Eigen::JacobiSVD<MatrixXr> svdA;
    svdA.compute(a,Eigen::ComputeThinU|Eigen::ComputeThinV);
    MatrixXr vSingular = svdA.singularValues();

    // Build a diagonal matrix with the Inverted Singular values
    // The pseudo inverted singular matrix is easy to compute :
    // is formed by replacing every nonzero entry by its reciprocal (inversing).
    VectorXr vPseudoInvertedSingular(svdA.matrixV().cols(),1);

    for (int iRow =0; iRow<vSingular.rows(); iRow++) {
        if(fabs(vSingular(iRow))<=epsilon) vPseudoInvertedSingular(iRow,0)=0.;
        else vPseudoInvertedSingular(iRow,0)=1./vSingular(iRow);
    }

    // A little optimization here
    MatrixXr mAdjointU = svdA.matrixU().adjoint().block(0,0,vSingular.rows(),svdA.matrixU().adjoint().cols());

    // Pseudo-Inversion : V * S * U'
    a_pinv = (svdA.matrixV() *  vPseudoInvertedSingular.asDiagonal()) * mAdjointU;

    return true;
}
예제 #3
0
bool pseudoInverse(
    const _Matrix_Type_ &a, _Matrix_Type_ &result,
    double epsilon =
        std::numeric_limits<typename _Matrix_Type_::Scalar>::epsilon()) {
  if (a.rows() < a.cols())
    return false;

  Eigen::JacobiSVD<_Matrix_Type_> svd = a.jacobiSvd();

  typename _Matrix_Type_::Scalar tolerance =
      epsilon * std::max(a.cols(), a.rows()) *
      svd.singularValues().array().abs().maxCoeff();

  result = svd.matrixV() *
           _Matrix_Type_(
               _Matrix_Type_((svd.singularValues().array().abs() > tolerance)
                                 .select(svd.singularValues().array().inverse(),
                                         0)).diagonal()) *
           svd.matrixU().adjoint();
}
예제 #4
0
void pseudoInverse(const Eigen::MatrixXd& jac,
                   Eigen::JacobiSVD<Eigen::MatrixXd>& svd,
                   Eigen::VectorXd& svdSingular,
                   Eigen::MatrixXd& prePseudoInv,
                   Eigen::MatrixXd& result,
                   double epsilon=std::numeric_limits<double>::epsilon(),
                   double minTol=1e-8)
{
  svd.compute(jac, Eigen::ComputeThinU | Eigen::ComputeThinV);

  // singular values are sorted in decreasing order
  // so the first one is the max one
  double tolerance =
      epsilon*double(std::max(jac.cols(), jac.rows()))*
      std::abs(svd.singularValues()[0]);
  tolerance = std::max(tolerance, minTol);

  svdSingular = ((svd.singularValues().array().abs() > tolerance).
      select(svd.singularValues().array().inverse(), 0.));

  prePseudoInv.noalias() = svd.matrixV()*svdSingular.asDiagonal();
  result.noalias() = prePseudoInv*svd.matrixU().adjoint();
}
예제 #5
0
int main() {

  std::ifstream file;
  file.open("SVD_benchmark");
  if (!file) 
  {
    CGAL_TRACE_STREAM << "Error loading file!\n";
    return 0;
  }

  int ite = 200000;
  Eigen::JacobiSVD<Eigen::Matrix3d> svd;
  Eigen::Matrix3d u, v, cov, r;         
  Eigen::Vector3d w;   

  int matrix_idx = rand()%200;
  for (int i = 0; i < matrix_idx; i++)
  {
    for (int j = 0; j < 3; j++)
    {
      for (int k = 0; k < 3; k++)
      {
        file >> cov(j, k);
      }
    }
  }


  CGAL::Timer task_timer; 

  CGAL_TRACE_STREAM << "Start SVD decomposition...";
  task_timer.start();
  for (int i = 0; i < ite; i++)
  {
    
    svd.compute( cov, Eigen::ComputeFullU | Eigen::ComputeFullV );
    u = svd.matrixU(); v = svd.matrixV(); w = svd.singularValues();
    r = v*u.transpose();
  }
  task_timer.stop();
  file.close();

  CGAL_TRACE_STREAM << "done: " << task_timer.time() << "s\n";

  return 0;
}
예제 #6
0
// Derived from code by Yohann Solaro ( http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2010/01/msg00187.html )
// see : http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#The_general_case_and_the_SVD_method
Eigen::MatrixXd pinv( const Eigen::MatrixXd &b, double rcond )
{
  // TODO: Figure out why it wants fewer rows than columns
  // if ( a.rows()<a.cols() )
  // return false;
  bool flip = false;
  Eigen::MatrixXd a;
  if( a.rows() < a.cols() )
  {
    a = b.transpose();
    flip = true;
  }
  else
    a = b;
  // SVD
  Eigen::JacobiSVD<Eigen::MatrixXd> svdA;
  svdA.compute( a, Eigen::ComputeFullU | Eigen::ComputeThinV );
  Eigen::JacobiSVD<Eigen::MatrixXd>::SingularValuesType vSingular = svdA.singularValues();
  // Build a diagonal matrix with the Inverted Singular values
  // The pseudo inverted singular matrix is easy to compute :
  // is formed by replacing every nonzero entry by its reciprocal (inversing).
  Eigen::VectorXd vPseudoInvertedSingular( svdA.matrixV().cols() );

  for (int iRow=0; iRow<vSingular.rows(); iRow++)
  {
    if ( fabs(vSingular(iRow)) <= rcond )
    {
      vPseudoInvertedSingular(iRow)=0.;
    }
    else
      vPseudoInvertedSingular(iRow)=1./vSingular(iRow);
  }
  // A little optimization here
  Eigen::MatrixXd mAdjointU = svdA.matrixU().adjoint().block( 0, 0, vSingular.rows(), svdA.matrixU().adjoint().cols() );
  // Pseudo-Inversion : V * S * U'
  Eigen::MatrixXd a_pinv = (svdA.matrixV() * vPseudoInvertedSingular.asDiagonal()) * mAdjointU;
  if( flip )
  {
    a = a.transpose();
    a_pinv = a_pinv.transpose();
  }
  return a_pinv;
}
// typename DerivedA::Scalar
void pseudo_inverse_svd(const Eigen::MatrixBase<DerivedA>& M,
  Eigen::MatrixBase<OutputMatrixType>& Minv,
  typename DerivedA::Scalar epsilon = 1e-6)//std::numeric_limits<typename DerivedA::Scalar>::epsilon())
{
  // CONTROLIT_INFO << "Method called!\n  epsilon = " << epsilon << ", M = \n" << M;

  // Ensure matrix Minv has the correct size.  Its size should be equal to M.transpose().
  assert_msg(M.rows() == Minv.cols(), "Minv has invalid number of columns.  Expected " << M.rows() << " got " << Minv.cols());
  assert_msg(M.cols() == Minv.rows(), "Minv has invalid number of rows.  Expected " << M.cols() << " got " << Minv.rows());

  // According to Eigen documentation, "If the input matrix has inf or nan coefficients, the result of the
  // computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time."
  Eigen::JacobiSVD<DerivedA> svd = M.jacobiSvd(Eigen::ComputeFullU | Eigen::ComputeFullV);

  // Get the max singular value
  typename DerivedA::Scalar maxSingularValue = svd.singularValues().array().abs().maxCoeff();

  // Use Minv to temporarily hold sigma
  Minv.setZero();

  typename DerivedA::Scalar tolerance = 0;

  // Only compute sigma if the max singular value is greater than zero.
  if (maxSingularValue > epsilon)
  {
    tolerance = epsilon * std::max(M.cols(), M.rows()) * maxSingularValue;

    // For each singular value of matrix M's SVD decomposition, check if it is greater than
    // the tolerance value.  If it is, save 1/(singular value) in the sigma vector.
    // Otherwise save zero in the sigma vector.
    DerivedA sigmaVector = DerivedA( (svd.singularValues().array().abs() > tolerance).select(svd.singularValues().array().inverse(), 0) );
    // DerivedA zeroSVs = DerivedA( (svd.singularValues().array().abs() <= tolerance).select(svd.singularValues().array().inverse(), 0) );

    // CONTROLIT_INFO << "epsilon: " << epsilon << ", std::max(M.cols(), M.rows()): " << std::max(M.cols(), M.rows()) << ", maxSingularValue: " << maxSingularValue << ", tolerance: " << tolerance;
    // CONTROLIT_INFO << "sigmaVector = " << sigmaVector.transpose();
    // CONTROLIT_INFO << "zeroSigmaVector : "<< zeroSVs.transpose();

    Minv.block(0, 0, sigmaVector.rows(), sigmaVector.rows()) = sigmaVector.asDiagonal();
  }

  // Double check to make sure the matrices have the correct dimensions
  assert_msg(svd.matrixV().cols() == Minv.rows(),
    "Matrix dimension mismatch, svd.matrixV().cols() = " << svd.matrixV().cols() << ", Minv.rows() = " << Minv.rows() << ".");
  assert_msg(Minv.cols() == svd.matrixU().adjoint().rows(),
    "Matrix dimension mismatch, Minv.cols() = " << Minv.cols() << ", svd.matrixU().adjoint().rows() = " << svd.matrixU().adjoint().rows() << ".");

  Minv = svd.matrixV() *
         Minv *
         svd.matrixU().adjoint(); // take the transpose of matrix U

  // CONTROLIT_INFO << "Done method call! Minv = " << Minv;

  // typename DerivedA::Scalar errorNorm = std::abs((M * Minv - DerivedA::Identity(M.rows(), Minv.cols())).norm());

  // if (tolerance != 0 && errorNorm > tolerance * 10)
  // {
  //   CONTROLIT_WARN << "Problems computing pseudoinverse.  Perhaps the tolerance is too high?\n"
  //     << "  - epsilon: " << epsilon << "\n"
  //     << "  - tolerance: " << tolerance << "\n"
  //     << "  - maxSingularValue: " << maxSingularValue << "\n"
  //     << "  - errorNorm: " << errorNorm << "\n"
  //     << "  - M:\n" << M << "\n"
  //     << "  - Minv:\n" << Minv;
  // }

  // return errorNorm;
}
예제 #8
0
IGL_INLINE void igl::min_quad_dense_precompute(
  const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,    
  const bool use_lu_decomposition,
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S)
{
  typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> Mat;
        // This threshold seems to matter a lot but I'm not sure how to
        // set it
  const T treshold = igl::FLOAT_EPS;
  //const T treshold = igl::DOUBLE_EPS;

  const int n = A.rows();
  assert(A.cols() == n);
  const int m = Aeq.rows();
  assert(Aeq.cols() == n);

  // Lagrange multipliers method:
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> LM(n + m, n + m);
  LM.block(0, 0, n, n) = A;
  LM.block(0, n, n, m) = Aeq.transpose();
  LM.block(n, 0, m, n) = Aeq;
  LM.block(n, n, m, m).setZero();

  Mat LMpinv;
  if(use_lu_decomposition)
  {
    // if LM is close to singular, use at your own risk :)
    LMpinv = LM.inverse();
  }else
  {
    // use SVD
    typedef Eigen::Matrix<T, Eigen::Dynamic, 1> Vec; 
    Vec singValues;
    Eigen::JacobiSVD<Mat> svd;
    svd.compute(LM, Eigen::ComputeFullU | Eigen::ComputeFullV );
    const Mat& u = svd.matrixU();
    const Mat& v = svd.matrixV();
    const Vec& singVals = svd.singularValues();

    Vec pi_singVals(n + m);
    int zeroed = 0;
    for (int i=0; i<n + m; i++)
    {
      T sv = singVals(i, 0);
      assert(sv >= 0);      
                 // printf("sv: %lg ? %lg\n",(double) sv,(double)treshold);
      if (sv > treshold) pi_singVals(i, 0) = T(1) / sv;
      else 
      {
        pi_singVals(i, 0) = T(0);
        zeroed++;
      }
    }

    printf("min_quad_dense_precompute: %i singular values zeroed (threshold = %e)\n", zeroed, treshold);
    Eigen::DiagonalMatrix<T, Eigen::Dynamic> pi_diag(pi_singVals);

    LMpinv = v * pi_diag * u.transpose();
  }
  S = LMpinv.block(0, 0, n, n + m);

  //// debug:
  //mlinit(&g_pEngine);
  //
  //mlsetmatrix(&g_pEngine, "A", A);
  //mlsetmatrix(&g_pEngine, "Aeq", Aeq);
  //mlsetmatrix(&g_pEngine, "LM", LM);
  //mlsetmatrix(&g_pEngine, "u", u);
  //mlsetmatrix(&g_pEngine, "v", v);
  //MatrixXd svMat = singVals;
  //mlsetmatrix(&g_pEngine, "singVals", svMat);
  //mlsetmatrix(&g_pEngine, "LMpinv", LMpinv);
  //mlsetmatrix(&g_pEngine, "S", S);

  //int hu = 1;
}
예제 #9
0
//Do the interpolation calculations
bool SIM_SnowSolver::solveGasSubclass(SIM_Engine &engine, SIM_Object *obj, SIM_Time time, SIM_Time framerate){

	/// STEP #0: Retrieve all data objects from Houdini

	//Scalar params
	freal particle_mass = getPMass();
	freal YOUNGS_MODULUS = getYoungsModulus();
	freal POISSONS_RATIO = getPoissonsRatio();
	freal CRIT_COMPRESS = getCritComp();
	freal CRIT_STRETCH = getCritStretch();
	freal FLIP_PERCENT = getFlipPercent();
	freal HARDENING = getHardening();
	freal CFL = getCfl();
	freal COF = getCof();
	freal division_size = getDivSize();
	freal max_vel = getMaxVel();
	//Vector params
	vector3 GRAVITY = getGravity();
	vector3 bbox_min_limit = getBboxMin();
	vector3 bbox_max_limit = getBboxMax();

	//Particle params
	UT_String s_p, s_vol, s_den, s_vel, s_fe, s_fp;
	getParticles(s_p);
	getPVol(s_vol);
	getPD(s_den);
	getPVel(s_vel);
	getPFe(s_fe);
	getPFp(s_fp);

	SIM_Geometry* geometry = (SIM_Geometry*) obj->getNamedSubData(s_p);
	if (!geometry) return true;
	
	//Get particle data
	//Do we use the attribute name???
	// GU_DetailHandle gdh = geometry->getGeometry().getWriteableCopy();
	GU_DetailHandle gdh = geometry->getOwnGeometry();
	const GU_Detail* gdp_in = gdh.readLock(); // Must unlock later
	GU_Detail* gdp_out = gdh.writeLock();

	GA_RWAttributeRef p_ref_position = gdp_out->findPointAttribute("P");
	GA_RWHandleT<vector3> p_position(p_ref_position.getAttribute());

	GA_RWAttributeRef p_ref_volume = gdp_out->findPointAttribute(s_vol);
	GA_RWHandleT<freal> p_volume(p_ref_volume.getAttribute());

	GA_RWAttributeRef p_ref_density = gdp_out->findPointAttribute(s_den);
	GA_RWHandleT<freal> p_density(p_ref_density.getAttribute());

	GA_RWAttributeRef p_ref_vel = gdp_out->findPointAttribute(s_vel);
	GA_RWHandleT<vector3> p_vel(p_ref_vel.getAttribute());

	GA_RWAttributeRef p_ref_Fe = gdp_out->findPointAttribute(s_fe);
	GA_RWHandleT<matrix3> p_Fe(p_ref_Fe.getAttribute());

	GA_RWAttributeRef p_ref_Fp = gdp_out->findPointAttribute(s_fp);
	GA_RWHandleT<matrix3> p_Fp(p_ref_Fp.getAttribute());

	//EVALUATE PARAMETERS
	freal mu = YOUNGS_MODULUS/(2+2*POISSONS_RATIO);
	freal lambda = YOUNGS_MODULUS*POISSONS_RATIO/((1+POISSONS_RATIO)*(1-2*POISSONS_RATIO));

	//Get grid data
	SIM_ScalarField *g_mass_field;
	SIM_DataArray g_mass_data;
	getMatchingData(g_mass_data, obj, MPM_G_MASS);	
	g_mass_field = SIM_DATA_CAST(g_mass_data(0), SIM_ScalarField);

	SIM_VectorField *g_nvel_field;
	SIM_DataArray g_nvel_data;
	getMatchingData(g_nvel_data, obj, MPM_G_NVEL);
	g_nvel_field = SIM_DATA_CAST(g_nvel_data(0), SIM_VectorField);

	SIM_VectorField *g_ovel_field;
	SIM_DataArray g_ovel_data;
	getMatchingData(g_ovel_data, obj, MPM_G_OVEL);
	g_ovel_field = SIM_DATA_CAST(g_ovel_data(0), SIM_VectorField);

	SIM_ScalarField *g_active_field;
	SIM_DataArray g_active_data;
	getMatchingData(g_active_data, obj, MPM_G_ACTIVE);	
	g_active_field = SIM_DATA_CAST(g_active_data(0), SIM_ScalarField);

	SIM_ScalarField *g_density_field;
	SIM_DataArray g_density_data;
	getMatchingData(g_density_data, obj, MPM_G_DENSITY);	
	g_density_field = SIM_DATA_CAST(g_density_data(0), SIM_ScalarField);

	SIM_ScalarField *g_col_field;
	SIM_DataArray g_col_data;
	getMatchingData(g_col_data, obj, MPM_G_COL);	
	g_col_field = SIM_DATA_CAST(g_col_data(0), SIM_ScalarField);

	SIM_VectorField *g_colVel_field;
	SIM_DataArray g_colVel_data;
	getMatchingData(g_colVel_data, obj, MPM_G_COLVEL);	
	g_colVel_field = SIM_DATA_CAST(g_colVel_data(0), SIM_VectorField);

	SIM_VectorField *g_extForce_field;
	SIM_DataArray g_extForce_data;
	getMatchingData(g_extForce_data, obj, MPM_G_EXTFORCE);	
	g_extForce_field = SIM_DATA_CAST(g_extForce_data(0), SIM_VectorField);
	
	UT_VoxelArrayF
		*g_mass = g_mass_field->getField()->fieldNC(),
		*g_nvelX = g_nvel_field->getField(0)->fieldNC(),
		*g_nvelY = g_nvel_field->getField(1)->fieldNC(),
		*g_nvelZ = g_nvel_field->getField(2)->fieldNC(),
		*g_ovelX = g_ovel_field->getField(0)->fieldNC(),
		*g_ovelY = g_ovel_field->getField(1)->fieldNC(),
		*g_ovelZ = g_ovel_field->getField(2)->fieldNC(),
		*g_colVelX = g_colVel_field->getField(0)->fieldNC(),
		*g_colVelY = g_colVel_field->getField(1)->fieldNC(),
		*g_colVelZ = g_colVel_field->getField(2)->fieldNC(),
		*g_extForceX = g_extForce_field->getField(0)->fieldNC(),
		*g_extForceY = g_extForce_field->getField(1)->fieldNC(),
		*g_extForceZ = g_extForce_field->getField(2)->fieldNC(),
		*g_col = g_col_field->getField()->fieldNC(),
		*g_active = g_active_field->getField()->fieldNC();

	int point_count = gdp_out->getPointRange().getEntries();
	std::vector<boost::array<freal,64> > p_w(point_count);
	std::vector<boost::array<vector3,64> > p_wgh(point_count);

	//Get world-to-grid conversion ratios
	//Particle's grid position can be found via (pos - grid_origin)/voxel_dims
	vector3
		voxel_dims = g_mass_field->getVoxelSize(),
		grid_origin = g_mass_field->getOrig(),
		grid_divs = g_mass_field->getDivisions();
	//Houdini uses voxel centers for grid nodes, rather than grid corners
	grid_origin += voxel_dims/2.0;
	freal voxelArea = voxel_dims[0]*voxel_dims[1]*voxel_dims[2];
	
	/*
	//Reset grid
	for(int iX=0; iX < grid_divs[0]; iX++){
		for(int iY=0; iY < grid_divs[1]; iY++){
			for(int iZ=0; iZ < grid_divs[2]; iZ++){
				g_mass->setValue(iX,iY,iZ,0);
				g_active->setValue(iX,iY,iZ,0);
				g_ovelX->setValue(iX,iY,iZ,0);
				g_ovelY->setValue(iX,iY,iZ,0);
				g_ovelZ->setValue(iX,iY,iZ,0);
				g_nvelX->setValue(iX,iY,iZ,0);
				g_nvelY->setValue(iX,iY,iZ,0);
				g_nvelZ->setValue(iX,iY,iZ,0);
			}
		}
	}
	*/

	/// STEP #1: Transfer mass to grid

	if (p_position.isValid()){

		//Iterate through particles
		for (GA_Iterator it(gdp_out->getPointRange()); !it.atEnd(); it.advance()){
			int pid = it.getOffset();
							
			//Get grid position
			vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
			int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
			//g_mass_field->posToIndex(p_position.get(pid),p_gridx,p_gridy,p_gridz);
			freal particle_density = p_density.get(pid);
			//Compute weights and transfer mass
			for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
				//Z-dimension interpolation
				freal z_pos = gpos[2]-z,
					wz = SIM_SnowSolver::bspline(z_pos),
					dz = SIM_SnowSolver::bsplineSlope(z_pos);
				for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
					//Y-dimension interpolation
					freal y_pos = gpos[1]-y,
						wy = SIM_SnowSolver::bspline(y_pos),
						dy = SIM_SnowSolver::bsplineSlope(y_pos);
					for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
						//X-dimension interpolation
						freal x_pos = gpos[0]-x,
							wx = SIM_SnowSolver::bspline(x_pos),
							dx = SIM_SnowSolver::bsplineSlope(x_pos);
						
						//Final weight is dyadic product of weights in each dimension
						freal weight = wx*wy*wz;
						p_w[pid-1][idx] = weight;

						//Weight gradient is a vector of partial derivatives
						p_wgh[pid-1][idx] = vector3(dx*wy*wz, wx*dy*wz, wx*wy*dz)/voxel_dims;

						//Interpolate mass
						freal node_mass = g_mass->getValue(x,y,z);
						node_mass += weight*particle_mass;
						g_mass->setValue(x,y,z,node_mass);
					}
				}
			}
		}
	}
	
	/// STEP #2: First timestep only - Estimate particle volumes using grid mass

	/*
	if (time == 0.0){
		//Iterate through particles
		for (GA_Iterator it(gdp_out->getPointRange()); !it.atEnd(); it.advance()){
			int pid = it.getOffset();
			freal density = 0;

			//Get grid position
			int p_gridx = 0, p_gridy = 0, p_gridz = 0;
			vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
			int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
			//g_nvel_field->posToIndex(0,p_position.get(pid),p_gridx,p_gridy,p_gridz);
			//Transfer grid density (within radius) to particles
			for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
				for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
					for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
						freal w = p_w[pid-1][idx];
						if (w > EPSILON){
							//Transfer density
							density += w * g_mass->getValue(x,y,z);
						}
					}
				}
			}
			
			density /= voxelArea;
			p_density.set(pid,density);
			p_volume.set(pid, particle_mass/density);
		}
	}
	//*/
	
	/// STEP #3: Transfer velocity to grid

	//This must happen after transferring mass, to conserve momentum
	//Iterate through particles and transfer
	for (GA_Iterator it(gdp_in->getPointRange()); !it.atEnd(); it.advance()){
		int pid = it.getOffset();
		vector3 vel_fac = p_vel.get(pid)*particle_mass;

		//Get grid position
		vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
		int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
		//g_nvel_field->posToIndex(0,p_position.get(pid),p_gridx,p_gridy,p_gridz);

		//Transfer to grid nodes within radius
		for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
			for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
				for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
					freal w = p_w[pid-1][idx];
					if (w > EPSILON){
						freal nodex_vel = g_ovelX->getValue(x,y,z) + vel_fac[0]*w;
						freal nodey_vel = g_ovelY->getValue(x,y,z) + vel_fac[1]*w;
						freal nodez_vel = g_ovelZ->getValue(x,y,z) + vel_fac[2]*w;
						g_ovelX->setValue(x,y,z,nodex_vel);
						g_ovelY->setValue(x,y,z,nodey_vel);
						g_ovelZ->setValue(x,y,z,nodez_vel);			
						g_active->setValue(x,y,z,1.0);			
					}
				}
			}
		}
	}
	//Division is slow (maybe?); we only want to do divide by mass once, for each active node
	for(int iX=0; iX < grid_divs[0]; iX++){
		for(int iY=0; iY < grid_divs[1]; iY++){
			for(int iZ=0; iZ < grid_divs[2]; iZ++){
				//Only check nodes that have mass
				if (g_active->getValue(iX,iY,iZ)){
					freal node_mass = 1/(g_mass->getValue(iX,iY,iZ));
					g_ovelX->setValue(iX,iY,iZ,(g_ovelX->getValue(iX,iY,iZ)*node_mass));
					g_ovelY->setValue(iX,iY,iZ,(g_ovelY->getValue(iX,iY,iZ)*node_mass));
					g_ovelZ->setValue(iX,iY,iZ,(g_ovelZ->getValue(iX,iY,iZ)*node_mass));
				}
			}
		}
	}
	
	/// STEP #4: Compute new grid velocities

	//Temporary variables for plasticity and force calculation
	//We need one set of variables for each thread that will be running
	eigen_matrix3 def_elastic, def_plastic, energy, svd_u, svd_v;
	Eigen::JacobiSVD<eigen_matrix3, Eigen::NoQRPreconditioner> svd;
	eigen_vector3 svd_e;
	matrix3  HDK_def_plastic, HDK_def_elastic, HDK_energy;
	freal* data_dp = HDK_def_plastic.data();
	freal* data_de = HDK_def_elastic.data();
	freal* data_energy = HDK_energy.data();
	//Map Eigen matrices to HDK matrices
	Eigen::Map<eigen_matrix3> data_dp_map(data_dp);
	Eigen::Map<eigen_matrix3> data_de_map(data_de);
	Eigen::Map<eigen_matrix3> data_energy_map(data_energy);	

	//Compute force at each particle and transfer to Eulerian grid
	//We use "nvel" to hold the grid force, since that variable is not in use
	for (GA_Iterator it(gdp_in->getPointRange()); !it.atEnd(); it.advance()){
		int pid = it.getOffset();
		
		//Apply plasticity to deformation gradient, before computing forces
		//We need to use the Eigen lib to do the SVD; transfer houdini matrices to Eigen matrices
		HDK_def_plastic = p_Fp.get(pid);
		HDK_def_elastic = p_Fe.get(pid);
		def_plastic = Eigen::Map<eigen_matrix3>(data_dp);
		def_elastic = Eigen::Map<eigen_matrix3>(data_de);
		
		//Compute singular value decomposition (uev*)
		svd.compute(def_elastic, Eigen::ComputeFullV | Eigen::ComputeFullU);
		svd_e = svd.singularValues();
		svd_u = svd.matrixU();
		svd_v = svd.matrixV();
		//Clamp singular values
		for (int i=0; i<3; i++){
			if (svd_e[i] < CRIT_COMPRESS) 
				svd_e[i] = CRIT_COMPRESS;
			else if (svd_e[i] > CRIT_STRETCH)
				svd_e[i] = CRIT_STRETCH;
		}
		//Put SVD back together for new elastic and plastic gradients
		def_plastic = svd_v * svd_e.asDiagonal().inverse() * svd_u.transpose() * def_elastic * def_plastic;
		svd_v.transposeInPlace();
		def_elastic = svd_u * svd_e.asDiagonal() * svd_v;
		
		//Now compute the energy partial derivative (which we use to get force at each grid node)
		energy = 2*mu*(def_elastic - svd_u*svd_v)*def_elastic.transpose();
		//Je is the determinant of def_elastic (equivalent to svd_e.prod())
		freal Je = svd_e.prod(),
			contour = lambda*Je*(Je-1),
			jp = def_plastic.determinant(),
			particle_vol = p_volume.get(pid);
		for (int i=0; i<3; i++)
			energy(i,i) += contour;
		energy *=  particle_vol * exp(HARDENING*(1-jp));
		
		//Transfer Eigen matrices back to HDK
		data_dp_map = def_plastic;
		data_de_map = def_elastic;
		data_energy_map = energy;
		
		p_Fp.set(pid,HDK_def_plastic);
		p_Fe.set(pid,HDK_def_elastic);
		
		//Transfer energy to surrounding grid nodes
		vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
		int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
		for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
			for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
				for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
					freal w = p_w[pid-1][idx];
					if (w > EPSILON){
						vector3 ngrad = p_wgh[pid-1][idx];
						g_nvelX->setValue(x,y,z,g_nvelX->getValue(x,y,z) + ngrad.dot(HDK_energy[0]));
						g_nvelY->setValue(x,y,z,g_nvelY->getValue(x,y,z) + ngrad.dot(HDK_energy[1]));
						g_nvelZ->setValue(x,y,z,g_nvelZ->getValue(x,y,z) + ngrad.dot(HDK_energy[2]));						
					}
				}
			}
		}
	}

	//Use new forces to solve for new velocities
	for(int iX=0; iX < grid_divs[0]; iX++){
		for(int iY=0; iY < grid_divs[1]; iY++){
			for(int iZ=0; iZ < grid_divs[2]; iZ++){
				//Only compute for active nodes
				if (g_active->getValue(iX,iY,iZ)){
					freal nodex_ovel = g_ovelX->getValue(iX,iY,iZ);
					freal nodey_ovel = g_ovelY->getValue(iX,iY,iZ);
					freal nodez_ovel = g_ovelZ->getValue(iX,iY,iZ);
					freal forcex = g_nvelX->getValue(iX,iY,iZ);
					freal forcey = g_nvelY->getValue(iX,iY,iZ);
					freal forcez = g_nvelZ->getValue(iX,iY,iZ);
					freal node_mass = 1/(g_mass->getValue(iX,iY,iZ));
					freal ext_forceX = GRAVITY[0] + g_extForceX->getValue(iX,iY,iZ);
					freal ext_forceY = GRAVITY[1] + g_extForceY->getValue(iX,iY,iZ);
					freal ext_forceZ = GRAVITY[2] + g_extForceZ->getValue(iX,iY,iZ);
					nodex_ovel += framerate*(ext_forceX - forcex*node_mass);
					nodey_ovel += framerate*(ext_forceY - forcey*node_mass);
					nodez_ovel += framerate*(ext_forceZ - forcez*node_mass);
					
					//Limit velocity to max_vel
					vector3 g_nvel(nodex_ovel, nodey_ovel, nodez_ovel);
					freal nvelNorm = g_nvel.length();
					if(nvelNorm > max_vel){
						freal velRatio = max_vel/nvelNorm;
						g_nvel*= velRatio;
					}

					g_nvelX->setValue(iX,iY,iZ,g_nvel[0]);
					g_nvelY->setValue(iX,iY,iZ,g_nvel[1]);
					g_nvelZ->setValue(iX,iY,iZ,g_nvel[2]);

				}
			}
		}
	}

	/// STEP #5: Grid collision resolution

	vector3 sdf_normal;
	//*
	for(int iX=1; iX < grid_divs[0]-1; iX++){
		for(int iY=1; iY < grid_divs[1]-1; iY++){
			for(int iZ=1; iZ < grid_divs[2]-1; iZ++){
				if (g_active->getValue(iX,iY,iZ)){
					if (!computeSDFNormal(g_col, iX, iY, iZ, sdf_normal))
						continue;

					//Collider velocity
					vector3 vco(
						g_colVelX->getValue(iX,iY,iZ),
						g_colVelY->getValue(iX,iY,iZ),
						g_colVelZ->getValue(iX,iY,iZ)
					);
					//Grid velocity
					vector3 v(
						g_nvelX->getValue(iX,iY,iZ),
						g_nvelY->getValue(iX,iY,iZ),
						g_nvelZ->getValue(iX,iY,iZ)
					);
					//Skip if bodies are separating
					vector3 vrel = v - vco;
					
					freal vn = vrel.dot(sdf_normal);
					if (vn >= 0) continue;
					//Resolve collisions; also add velocity of collision object to snow velocity
					//Sticks to surface (too slow to overcome static friction)
					vector3 vt = vrel - (sdf_normal*vn);

					freal stick = vn*COF, vt_norm = vt.length();
					if (vt_norm <= -stick)
						vt = vco;
					//Dynamic friction
					else vt += stick*vt/vt_norm + vco;
					
					g_nvelX->setValue(iX,iY,iZ,vt[0]);	
					g_nvelY->setValue(iX,iY,iZ,vt[1]);
					g_nvelZ->setValue(iX,iY,iZ,vt[2]);
				}
			}
		}
	}
	//*/

	/// STEP #6: Transfer grid velocities to particles and integrate
	/// STEP #7: Particle collision resolution

	vector3 pic, flip, col_vel;
	matrix3 vel_grad;
	//Iterate through particles
	for (GA_Iterator it(gdp_in->getPointRange()); !it.atEnd(); it.advance()){
		int pid = it.getOffset();
		//Particle position
		vector3 pos(p_position.get(pid));
		
		//Reset velocity
		pic[0] = 0.0;
		pic[1] = 0.0;
		pic[2] = 0.0;
		flip = p_vel.get(pid);
		vel_grad.zero();
		freal density = 0;

		 //Get grid position
		vector3 gpos = (pos - grid_origin)/voxel_dims;
		int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
		for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
			for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
				for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
					freal w = p_w[pid-1][idx];
					if (w > EPSILON){
						const vector3 node_wg = p_wgh[pid-1][idx];
						const vector3 node_nvel(
							g_nvelX->getValue(x,y,z),
							g_nvelY->getValue(x,y,z),
							g_nvelZ->getValue(x,y,z)
						);

						//Transfer velocities
						pic += node_nvel*w;	
						flip[0] += (node_nvel[0] - g_ovelX->getValue(x,y,z))*w;	
						flip[1] += (node_nvel[1]- g_ovelY->getValue(x,y,z))*w;	
						flip[2] += (node_nvel[2] - g_ovelZ->getValue(x,y,z))*w;
						//Transfer density
						density += w * g_mass->getValue(x,y,z);
						//Transfer veloctiy gradient
						vel_grad.outerproductUpdate(1.0, node_nvel, node_wg);
					}
				}
			}
		}

		//Finalize velocity update
		vector3 vel = flip*FLIP_PERCENT + pic*(1-FLIP_PERCENT);
		
		//Reset collision data
		freal col_sdf = 0;
		sdf_normal[0] = 0;
		sdf_normal[1] = 0;
		sdf_normal[2] = 0;
		col_vel[0] = 0;
		col_vel[1] = 0;
		col_vel[2] = 0;
		
		//Interpolate surrounding nodes' SDF info to the particle (trilinear interpolation)

		for (int idx=0, z=p_gridz, z_end=z+1; z<=z_end; z++){
			freal w_z = gpos[2]-z;
			for (int y=p_gridy, y_end=y+1; y<=y_end; y++){
				freal w_zy = w_z*(gpos[1]-y);
				for (int x=p_gridx, x_end=x+1; x<=x_end; x++, idx++){
					freal weight = fabs(w_zy*(gpos[0]-x));
					//cout << w_zy << "," << (gpos[0]-x) << "," << weight << endl;
					vector3 temp_normal;
					computeSDFNormal(g_col, x, y, z, temp_normal);
						//goto SKIP_PCOLLIDE;
					//cout << g_col->getValue(x, y, z) << endl;
					//Interpolate
					sdf_normal += temp_normal*weight;
					col_sdf += g_col->getValue(x, y, z)*weight;
					col_vel[0] += g_colVelX->getValue(x, y, z)*weight;
					col_vel[1] += g_colVelY->getValue(x, y, z)*weight;
					col_vel[2] += g_colVelZ->getValue(x, y, z)*weight;
				}
			}
		}

		//Resolve particle collisions	
		//cout << col_sdf << endl;
		if (col_sdf > 0){
			vector3 vrel = vel - col_vel;
			freal vn = vrel.dot(sdf_normal);
			
			//Skip if bodies are separating
			if (vn < 0){
				
				//Resolve and add velocity of collision object to snow velocity
				//Sticks to surface (too slow to overcome static friction)
				vel = vrel - (sdf_normal*vn);
				freal stick = vn*COF, vel_norm = vel.length();
				if (vel_norm <= -stick)
					vel = col_vel;
				//Dynamic friction
				else vel += stick*vel/vel_norm + col_vel;
			}
		}
		
		SKIP_PCOLLIDE:

		//Finalize density update
		density /= voxelArea;
		p_density.set(pid,density);

		//Update particle position
		pos += framerate*vel;
		//Limit particle position
		int mask = 0;
		/*		
		for (int i=0; i<3; i++){
			if (pos[i] > bbox_max_limit[i]){
				pos[i] = bbox_max_limit[i];
				vel[i] = 0.0;
				mask |= 1 << i;
			}
			else if (pos[i] < bbox_min_limit[i]){
				pos[i] = bbox_min_limit[i];
				vel[i] = 0.0;
				mask |= 1 << i;
			}
		}
		//Slow particle down at bounds (not really necessary...)
		if (mask){
			for (int i=0; i<3; i++){
				if (mask & 0x1)
					vel[i] *= .05;
				mask >>= 1;
			}
		}//*/
		p_vel.set(pid,vel);
		p_position.set(pid,pos);

		//Update particle deformation gradient
		//Note: plasticity is computed on the next timestep...
		vel_grad *= framerate;
		vel_grad(0,0) += 1;
		vel_grad(1,1) += 1;
		vel_grad(2,2) += 1;
		
		p_Fe.set(pid, vel_grad*p_Fe.get(pid));
	}

	gdh.unlock(gdp_out);
    gdh.unlock(gdp_in);
	
	return true;
}