예제 #1
0
void PolygonIterator::findSubmapParameters(const grid_map::Polygon& polygon, Eigen::Array2i& startIndex, Eigen::Array2i& bufferSize) const
{
  Eigen::Vector2d topLeft = polygon_.getVertices()[0];
  Eigen::Vector2d bottomRight = topLeft;
  for (const auto& vertex : polygon_.getVertices()) {
    topLeft = topLeft.array().max(vertex.array());
    bottomRight = bottomRight.array().min(vertex.array());
  }
  limitPositionToRange(topLeft, mapLength_, mapPosition_);
  limitPositionToRange(bottomRight, mapLength_, mapPosition_);
  getIndexFromPosition(startIndex, topLeft, mapLength_, mapPosition_, resolution_, bufferSize_, bufferStartIndex_);
  Eigen::Array2i endIndex;
  getIndexFromPosition(endIndex, bottomRight, mapLength_, mapPosition_, resolution_, bufferSize_, bufferStartIndex_);
  bufferSize = endIndex - startIndex + Eigen::Array2i::Ones();
}
예제 #2
0
파일: kernel.cpp 프로젝트: NICTA/obsidian
    Eigen::MatrixXd sqExp2d(const Eigen::Matrix<double, 2, -1> &x1,
        const Eigen::Matrix<double, 2, -1> &x2,
        const Eigen::Vector2d &lengthScale, bool noisy)
    {
      // assert(x1.rows() == x2.rows())
      int n1 = x1.cols(), n2 = x2.cols();

      // Compute the weighted square distances
      Eigen::Vector2d w = (lengthScale.array().square().cwiseInverse()).matrix();
      Eigen::RowVectorXd xx1 = w.replicate(1, n1).cwiseProduct(x1).cwiseProduct(x1).colwise().sum();
      Eigen::RowVectorXd xx2 = w.replicate(1, n2).cwiseProduct(x2).cwiseProduct(x2).colwise().sum();
      Eigen::MatrixXd x1x2 = w.replicate(1, n1).cwiseProduct(x1).transpose() * x2;
      
      // Compute the covariance matrix
      Eigen::MatrixXd K = (-0.5 *
        Eigen::MatrixXd::Zero(n1, n2).cwiseMax(
          xx1.transpose().replicate(1, n2) + xx2.replicate(n1, 1) - 2 * x1x2)).array().exp();

      if (noisy) {
        K += K.colwise().sum().asDiagonal();
      }

      return K;
    }