예제 #1
0
파일: common.hpp 프로젝트: Bastl34/PCL
template <typename PointT> inline void
pcl::getMinMax3D (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
                  Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt)
{
  min_pt.setConstant (FLT_MAX);
  max_pt.setConstant (-FLT_MAX);

  // If the data is dense, we don't need to check for NaN
  if (cloud.is_dense)
  {
    for (size_t i = 0; i < indices.size (); ++i)
    {
      pcl::Array4fMapConst pt = cloud.points[indices[i]].getArray4fMap ();
      min_pt = min_pt.array ().min (pt);
      max_pt = max_pt.array ().max (pt);
    }
  }
  // NaN or Inf values could exist => check for them
  else
  {
    for (size_t i = 0; i < indices.size (); ++i)
    {
      // Check if the point is invalid
      if (!pcl_isfinite (cloud.points[indices[i]].x) || 
          !pcl_isfinite (cloud.points[indices[i]].y) || 
          !pcl_isfinite (cloud.points[indices[i]].z))
        continue;
      pcl::Array4fMapConst pt = cloud.points[indices[i]].getArray4fMap ();
      min_pt = min_pt.array ().min (pt);
      max_pt = max_pt.array ().max (pt);
    }
  }
}
예제 #2
0
template <typename PointT, typename PointNT> void
pcl::SampleConsensusModelNormalPlane<PointT, PointNT>::getDistancesToModel (
      const Eigen::VectorXf &model_coefficients, std::vector<double> &distances)
{
  if (!normals_)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelNormalPlane::getDistancesToModel] No input dataset containing normals was given!\n");
    return;
  }

  // Check if the model is valid given the user constraints
  if (!isModelValid (model_coefficients))
  {
    distances.clear ();
    return;
  }

  // Obtain the plane normal
  Eigen::Vector4f coeff = model_coefficients;
  coeff[3] = 0;

  distances.resize (indices_->size ());

  // Iterate through the 3d points and calculate the distances from them to the plane
  for (size_t i = 0; i < indices_->size (); ++i)
  {
    // Calculate the distance from the point to the plane normal as the dot product
    // D = (P-A).N/|N|
    Eigen::Vector4f p (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0);
    Eigen::Vector4f n (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0);
    double d_euclid = fabs (coeff.dot (p) + model_coefficients[3]);

    // Calculate the angular distance between the point normal and the plane normal
    double d_normal = fabs (getAngle3D (n, coeff));
    d_normal = (std::min) (d_normal, M_PI - d_normal);

    distances[i] = fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid);
  }
}
예제 #3
0
파일: mlesac.hpp 프로젝트: 9gel/hellopcl
template <typename PointT> void
pcl::MaximumLikelihoodSampleConsensus<PointT>::getMinMax (
    const PointCloudConstPtr &cloud, 
    const boost::shared_ptr <std::vector<int> > &indices, 
    Eigen::Vector4f &min_p, 
    Eigen::Vector4f &max_p)
{
  min_p.setConstant (FLT_MAX);
  max_p.setConstant (-FLT_MAX);
  min_p[3] = max_p[3] = 0;

  for (size_t i = 0; i < indices->size (); ++i)
  {
    if (cloud->points[(*indices)[i]].x < min_p[0]) min_p[0] = cloud->points[(*indices)[i]].x;
    if (cloud->points[(*indices)[i]].y < min_p[1]) min_p[1] = cloud->points[(*indices)[i]].y;
    if (cloud->points[(*indices)[i]].z < min_p[2]) min_p[2] = cloud->points[(*indices)[i]].z;

    if (cloud->points[(*indices)[i]].x > max_p[0]) max_p[0] = cloud->points[(*indices)[i]].x;
    if (cloud->points[(*indices)[i]].y > max_p[1]) max_p[1] = cloud->points[(*indices)[i]].y;
    if (cloud->points[(*indices)[i]].z > max_p[2]) max_p[2] = cloud->points[(*indices)[i]].z;
  }
}
예제 #4
0
inline void
pcl::solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
                           const Eigen::Vector4f &point,
                           Eigen::Vector4f &plane_parameters, float &curvature)
{
    solvePlaneParameters (covariance_matrix,
                          (float &)plane_parameters [0], (float &)plane_parameters [1], (float &)plane_parameters [2],
                          curvature);

    plane_parameters[3] = 0;
    // Hessian form (D = nc . p_plane (centroid here) + p)
    plane_parameters[3] = -1 * plane_parameters.dot (point);
}
예제 #5
0
template <typename PointT, typename PointNT> int
pcl::SampleConsensusModelCylinder<PointT, PointNT>::countWithinDistance (
      const Eigen::VectorXf &model_coefficients, const double threshold)
{
  // Check if the model is valid given the user constraints
  if (!isModelValid (model_coefficients))
    return (0);

  int nr_p = 0;

  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float ptdotdir = line_pt.dot (line_dir);
  float dirdotdir = 1.0f / line_dir.dot (line_dir);
  // Iterate through the 3d points and calculate the distances from them to the sphere
  for (size_t i = 0; i < indices_->size (); ++i)
  {
    // Aproximate the distance from the point to the cylinder as the difference between
    // dist(point,cylinder_axis) and cylinder radius
    Eigen::Vector4f pt (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0);
    Eigen::Vector4f n  (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0);
    double d_euclid = fabs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);

    // Calculate the point's projection on the cylinder axis
    float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
    Eigen::Vector4f pt_proj = line_pt + k * line_dir;
    Eigen::Vector4f dir = pt - pt_proj;
    dir.normalize ();

    // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
    double d_normal = fabs (getAngle3D (n, dir));
    d_normal = (std::min) (d_normal, M_PI - d_normal);

    if (fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid) < threshold)
      nr_p++;
  }
  return (nr_p);
}
//TODO: move to semantics
void
PlaneExtraction::findClosestTable(std::vector<pcl::PointCloud<Point>, Eigen::aligned_allocator<pcl::PointCloud<Point> > >& v_cloud_hull,
                                  std::vector<pcl::ModelCoefficients>& v_coefficients_plane,
                                  Eigen::Vector3f& robot_pose,
                                  unsigned int& idx)
{
  std::vector<unsigned int> table_candidates;
  for(unsigned int i=0; i<v_cloud_hull.size(); i++)
  {
    //if(fabs(v_coefficients_plane[i].values[3])>0.5 && fabs(v_coefficients_plane[i].values[3])<1.2)
    table_candidates.push_back(i);
  }
  if(table_candidates.size()>0)
  {
    for(unsigned int i=0; i<table_candidates.size(); i++)
    {
      double d_min = 1000;
      double d = d_min;
      Eigen::Vector4f centroid;
      pcl::compute3DCentroid(v_cloud_hull[i], centroid);
      //for(unsigned int j=0; j<v_cloud_hull[i].size(); j++)
      //{
      //  Eigen::Vector3f p = v_cloud_hull[i].points[j].getVector3fMap();
      //  d += fabs((p-robot_pose).norm());
      //}
      //d /= v_cloud_hull[i].size();
      Eigen::Vector3f centroid3 = centroid.head(3);
      d = fabs((centroid3-robot_pose).norm());
      ROS_INFO("d: %f", d);
      if(d<d_min)
      {
        d_min = d;
        idx = table_candidates[i];
      }
    }
  }
}
예제 #7
0
geometry_msgs::Quaternion calc_quaternion_average( std::vector<geometry_msgs::Pose> pose_vector ){
	
	Eigen::Matrix4f averaging_matrix;
	Eigen::Vector4f quaternion;
	
	averaging_matrix.setZero();
	for( unsigned int sample_ii=0; sample_ii<pose_vector.size(); sample_ii++){
		quaternion(0) = pose_vector[sample_ii].orientation.x;
		quaternion(1) = pose_vector[sample_ii].orientation.y;
		quaternion(2) = pose_vector[sample_ii].orientation.z;
		quaternion(3) = pose_vector[sample_ii].orientation.w;
		averaging_matrix =  averaging_matrix + quaternion*quaternion.transpose();
	  }// for all samples
	 
	 Eigen::EigenSolver<Eigen::Matrix4f> ev_solver;
	 ev_solver.compute( averaging_matrix);
	 Eigen::Vector4cf eigen_values = ev_solver.eigenvalues();
	 float max_ev=eigen_values(0).real();
	 unsigned int max_ii = 0;
	 for( unsigned int ev_ii=1; ev_ii<4; ev_ii++){
		 if( eigen_values(ev_ii).real()>max_ev ){
			 max_ev = eigen_values(ev_ii).real();
			 max_ii=ev_ii;
		 }
	 }
	 
	 Eigen::Vector4f eigen_vector = ev_solver.eigenvectors().col(max_ii).real();
	 eigen_vector.normalize();
	  
	 geometry_msgs::Quaternion quaternion_msg;
	 quaternion_msg.x = eigen_vector(0);
	 quaternion_msg.y = eigen_vector(1);
	 quaternion_msg.z = eigen_vector(2);
	 quaternion_msg.w = eigen_vector(3);
	 return quaternion_msg;
	 
}
예제 #8
0
template <typename PointT, typename PointNT> int
pcl::SampleConsensusModelCone<PointT, PointNT>::countWithinDistance (
    const Eigen::VectorXf &model_coefficients, const double threshold)
{

  // Check if the model is valid given the user constraints
  if (!isModelValid (model_coefficients))
    return (0);

  int nr_p = 0;

  Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float opening_angle = model_coefficients[6];

  float apexdotdir = apex.dot (axis_dir);
  float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
  // Iterate through the 3d points and calculate the distances from them to the cone
  for (size_t i = 0; i < indices_->size (); ++i)
  {
    Eigen::Vector4f pt (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0);
    Eigen::Vector4f n  (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0);

    // Calculate the point's projection on the cone axis
    float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
    Eigen::Vector4f pt_proj = apex + k * axis_dir;

    // Calculate the direction of the point from center
    Eigen::Vector4f pp_pt_dir = pt - pt_proj;
    pp_pt_dir.normalize ();

    // Calculate the actual radius of the cone at the level of the projected point
    Eigen::Vector4f height = apex - pt_proj;
    double actual_cone_radius = tan(opening_angle) * height.norm ();
    height.normalize ();

    // Calculate the cones perfect normals
    Eigen::Vector4f cone_normal = sinf (opening_angle) * height + cosf (opening_angle) * pp_pt_dir;

    // Aproximate the distance from the point to the cone as the difference between
    // dist(point,cone_axis) and actual cone radius
    double d_euclid = fabs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);

    // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
    double d_normal = fabs (getAngle3D (n, cone_normal));
    d_normal = (std::min) (d_normal, M_PI - d_normal);

    if (fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid) < threshold)
      nr_p++;
  }
  return (nr_p);
}
예제 #9
0
template <typename PointInT> double 
pcl::tracking::NormalCoherence<PointInT>::computeCoherence (PointInT &source, PointInT &target)
{
    Eigen::Vector4f n = source.getNormalVector4fMap ();
    Eigen::Vector4f n_dash = target.getNormalVector4fMap ();
    if ( n.norm () <= 1e-5 || n_dash.norm () <= 1e-5 )
    {
        PCL_ERROR("norm might be ZERO!\n");
        std::cout << "source: " << source << std::endl;
        std::cout << "target: " << target << std::endl;
        exit (1);
        return 0.0;
    }
    else
    {
        n.normalize ();
        n_dash.normalize ();
        double theta = pcl::getAngle3D (n, n_dash);
        if (!pcl_isnan (theta))
            return 1.0 / (1.0 + weight_ * theta * theta);
        else
            return 0.0;
    }
}
예제 #10
0
vtkSmartPointer<vtkDataSet>
pcl::visualization::createLine (const Eigen::Vector4f &pt1, const Eigen::Vector4f &pt2)
{
  vtkSmartPointer<vtkLineSource> line = vtkSmartPointer<vtkLineSource>::New ();
  line->SetPoint1 (pt1.x (), pt1.y (), pt1.z ());
  line->SetPoint2 (pt2.x (), pt2.y (), pt2.z ());
  line->Update ();

  return (line->GetOutput ());
}
예제 #11
0
bool
pcl::lineWithLineIntersection (const Eigen::VectorXf &line_a, 
                               const Eigen::VectorXf &line_b, 
                               Eigen::Vector4f &point, double sqr_eps)
{
  Eigen::Vector4f p1, p2;
  lineToLineSegment (line_a, line_b, p1, p2);

  // If the segment size is smaller than a pre-given epsilon...
  double sqr_dist = (p1 - p2).squaredNorm ();
  if (sqr_dist < sqr_eps)
  {
    point = p1;
    return (true);
  }
  point.setZero ();
  return (false);
}
예제 #12
0
template <typename PointT, typename PointNT> bool
pcl::SampleConsensusModelCone<PointT, PointNT>::doSamplesVerifyModel (
      const std::set<int> &indices, const Eigen::VectorXf &model_coefficients, const double threshold)
{
  // Needs a valid model coefficients
  if (model_coefficients.size () != 7)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelCone::doSamplesVerifyModel] Invalid number of model coefficients given (%lu)!\n", model_coefficients.size ());
    return (false);
  }

  Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
  float openning_angle = model_coefficients[6];

  float apexdotdir = apex.dot (axis_dir);
  float dirdotdir = 1.0f / axis_dir.dot (axis_dir);

  // Iterate through the 3d points and calculate the distances from them to the cone
  for (std::set<int>::const_iterator it = indices.begin (); it != indices.end (); ++it)
  {
    Eigen::Vector4f pt (input_->points[*it].x, input_->points[*it].y, input_->points[*it].z, 0);

    // Calculate the point's projection on the cone axis
    float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
    Eigen::Vector4f pt_proj = apex + k * axis_dir;
    Eigen::Vector4f dir = pt - pt_proj;
    dir.normalize ();

    // Calculate the actual radius of the cone at the level of the projected point
    Eigen::Vector4f height = apex - pt_proj;
    double actual_cone_radius = tan (openning_angle) * height.norm ();

    // Aproximate the distance from the point to the cone as the difference between
    // dist(point,cone_axis) and actual cone radius
    if (fabs (static_cast<double>(pointToAxisDistance (pt, model_coefficients) - actual_cone_radius)) > threshold)
      return (false);
  }

  return (true);
}
예제 #13
0
파일: centroid.hpp 프로젝트: 9gel/hellopcl
template <typename PointT> inline unsigned int
pcl::compute3DCentroid (const pcl::PointCloud<PointT> &cloud, Eigen::Vector4f &centroid)
{
  if (cloud.points.empty ())
    return (0);

  // Initialize to 0
  centroid.setZero ();
  // For each point in the cloud
  // If the data is dense, we don't need to check for NaN
  if (cloud.is_dense)
  {
    for (size_t i = 0; i < cloud.points.size (); ++i)
      centroid += cloud.points[i].getVector4fMap ();
    centroid[3] = 0;
    centroid /= static_cast<float> (cloud.points.size ());

    return (static_cast<unsigned int> (cloud.points.size ()));
  }
  // NaN or Inf values could exist => check for them
  else
  {
    unsigned cp = 0;
    for (size_t i = 0; i < cloud.points.size (); ++i)
    {
      // Check if the point is invalid
      if (!isFinite (cloud [i]))
        continue;

      centroid += cloud[i].getVector4fMap ();
      ++cp;
    }
    centroid[3] = 0;
    centroid /= static_cast<float> (cp);

    return (cp);
  }
}
예제 #14
0
파일: feature.hpp 프로젝트: jonaswitt/nestk
template <typename PointT> inline void
pcl::compute3DCentroid (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
                        Eigen::Vector4f &centroid)
{
  // Initialize to 0
  centroid.setZero ();
  if (indices.empty ()) 
    return;
  // For each point in the cloud
  int cp = 0;

  // If the data is dense, we don't need to check for NaN
  if (cloud.is_dense)
  {
    for (size_t i = 0; i < indices.size (); ++i)
      centroid += cloud.points[indices[i]].getVector4fMap ();
    centroid[3] = 0;
    centroid /= indices.size ();
  }
  // NaN or Inf values could exist => check for them
  else
  {
    for (size_t i = 0; i < indices.size (); ++i)
    {
      // Check if the point is invalid
      if (!pcl_isfinite (cloud.points[indices[i]].x) || 
          !pcl_isfinite (cloud.points[indices[i]].y) || 
          !pcl_isfinite (cloud.points[indices[i]].z))
        continue;

      centroid += cloud.points[indices[i]].getVector4fMap ();
      cp++;
    }
    centroid[3] = 0;
    centroid /= cp;
  }
}
예제 #15
0
template<typename PointType> void
pcl::apps::DominantPlaneSegmentation<PointType>::compute_table_plane ()
{
  // Has the input dataset been set already?
  if (!input_)
  {
    PCL_WARN ("[pcl::apps::DominantPlaneSegmentation] No input dataset given!\n");
    return;
  }

  CloudConstPtr cloud_;
  CloudPtr cloud_filtered_ (new Cloud ());
  CloudPtr cloud_downsampled_ (new Cloud ());
  pcl::PointCloud<pcl::Normal>::Ptr cloud_normals_ (new pcl::PointCloud<pcl::Normal> ());
  pcl::PointIndices::Ptr table_inliers_ (new pcl::PointIndices ());
  pcl::ModelCoefficients::Ptr table_coefficients_ (new pcl::ModelCoefficients ());
  CloudPtr table_projected_ (new Cloud ());
  CloudPtr table_hull_ (new Cloud ());

  typename pcl::search::KdTree<PointType>::Ptr normals_tree_ (new pcl::search::KdTree<PointType>);

  // Normal estimation parameters
  n3d_.setKSearch (k_);
  n3d_.setSearchMethod (normals_tree_);

  // Table model fitting parameters
  seg_.setDistanceThreshold (sac_distance_threshold_);
  seg_.setMaxIterations (2000);
  seg_.setNormalDistanceWeight (0.1);
  seg_.setOptimizeCoefficients (true);
  seg_.setModelType (pcl::SACMODEL_NORMAL_PLANE);
  seg_.setMethodType (pcl::SAC_RANSAC);
  seg_.setProbability (0.99);

  proj_.setModelType (pcl::SACMODEL_NORMAL_PLANE);
  bb_cluster_proj_.setModelType (pcl::SACMODEL_NORMAL_PLANE);

  // ---[ PassThroughFilter
  pass_.setFilterLimits (min_z_bounds_, max_z_bounds_);
  pass_.setFilterFieldName ("z");
  pass_.setInputCloud (input_);
  pass_.filter (*cloud_filtered_);

  if (int (cloud_filtered_->points.size ()) < k_)
  {
    PCL_WARN ("[DominantPlaneSegmentation] Filtering returned %zu points! Aborting.",
        cloud_filtered_->points.size ());
    return;
  }

  // Downsample the point cloud
  grid_.setLeafSize (downsample_leaf_, downsample_leaf_, downsample_leaf_);
  grid_.setDownsampleAllData (false);
  grid_.setInputCloud (cloud_filtered_);
  grid_.filter (*cloud_downsampled_);

  // ---[ Estimate the point normals
  n3d_.setInputCloud (cloud_downsampled_);
  n3d_.compute (*cloud_normals_);

  // ---[ Perform segmentation
  seg_.setInputCloud (cloud_downsampled_);
  seg_.setInputNormals (cloud_normals_);
  seg_.segment (*table_inliers_, *table_coefficients_);

  if (table_inliers_->indices.size () == 0)
  {
    PCL_WARN ("[DominantPlaneSegmentation] No Plane Inliers points! Aborting.");
    return;
  }

  // ---[ Extract the plane
  proj_.setInputCloud (cloud_downsampled_);
  proj_.setIndices (table_inliers_);
  proj_.setModelCoefficients (table_coefficients_);
  proj_.filter (*table_projected_);

  // ---[ Estimate the convex hull
  std::vector<pcl::Vertices> polygons;
  CloudPtr table_hull (new Cloud ());
  hull_.setInputCloud (table_projected_);
  hull_.reconstruct (*table_hull, polygons);

  // Compute the plane coefficients
  Eigen::Vector4f model_coefficients;
  EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;

  model_coefficients[0] = table_coefficients_->values[0];
  model_coefficients[1] = table_coefficients_->values[1];
  model_coefficients[2] = table_coefficients_->values[2];
  model_coefficients[3] = table_coefficients_->values[3];

  // Need to flip the plane normal towards the viewpoint
  Eigen::Vector4f vp (0, 0, 0, 0);
  // See if we need to flip any plane normals
  vp -= table_hull->points[0].getVector4fMap ();
  vp[3] = 0;
  // Dot product between the (viewpoint - point) and the plane normal
  float cos_theta = vp.dot (model_coefficients);
  // Flip the plane normal
  if (cos_theta < 0)
  {
    model_coefficients *= -1;
    model_coefficients[3] = 0;
    // Hessian form (D = nc . p_plane (centroid here) + p)
    model_coefficients[3] = -1 * (model_coefficients.dot (table_hull->points[0].getVector4fMap ()));
  }

  //Set table_coeffs
  table_coeffs_ = model_coefficients;
}
예제 #16
0
template<typename PointType> void
pcl::apps::DominantPlaneSegmentation<PointType>::compute_fast (std::vector<CloudPtr> & clusters)
{
  // Has the input dataset been set already?
  if (!input_)
  {
    PCL_WARN ("[pcl::apps::DominantPlaneSegmentation] No input dataset given!\n");
    return;
  }

  // Is the input dataset organized?
  if (input_->is_dense)
  {
    PCL_WARN ("[pcl::apps::DominantPlaneSegmentation] compute_fast can only be used with organized point clouds!\n");
    return;
  }

  CloudConstPtr cloud_;
  CloudPtr cloud_filtered_ (new Cloud ());
  CloudPtr cloud_downsampled_ (new Cloud ());
  pcl::PointCloud<pcl::Normal>::Ptr cloud_normals_ (new pcl::PointCloud<pcl::Normal> ());
  pcl::PointIndices::Ptr table_inliers_ (new pcl::PointIndices ());
  pcl::ModelCoefficients::Ptr table_coefficients_ (new pcl::ModelCoefficients ());
  CloudPtr table_projected_ (new Cloud ());
  CloudPtr table_hull_ (new Cloud ());
  CloudPtr cloud_objects_ (new Cloud ());
  CloudPtr cluster_object_ (new Cloud ());

  typename pcl::search::KdTree<PointType>::Ptr normals_tree_ (new pcl::search::KdTree<PointType>);
  typename pcl::search::KdTree<PointType>::Ptr clusters_tree_ (new pcl::search::KdTree<PointType>);
  clusters_tree_->setEpsilon (1);

  // Normal estimation parameters
  n3d_.setKSearch (k_);
  n3d_.setSearchMethod (normals_tree_);

  // Table model fitting parameters
  seg_.setDistanceThreshold (sac_distance_threshold_);
  seg_.setMaxIterations (2000);
  seg_.setNormalDistanceWeight (0.1);
  seg_.setOptimizeCoefficients (true);
  seg_.setModelType (pcl::SACMODEL_NORMAL_PLANE);
  seg_.setMethodType (pcl::SAC_RANSAC);
  seg_.setProbability (0.99);

  proj_.setModelType (pcl::SACMODEL_NORMAL_PLANE);
  bb_cluster_proj_.setModelType (pcl::SACMODEL_NORMAL_PLANE);

  prism_.setHeightLimits (object_min_height_, object_max_height_);

  // Clustering parameters
  cluster_.setClusterTolerance (object_cluster_tolerance_);
  cluster_.setMinClusterSize (object_cluster_min_size_);
  cluster_.setSearchMethod (clusters_tree_);

  // ---[ PassThroughFilter
  pass_.setFilterLimits (min_z_bounds_, max_z_bounds_);
  pass_.setFilterFieldName ("z");
  pass_.setInputCloud (input_);
  pass_.filter (*cloud_filtered_);

  if (int (cloud_filtered_->points.size ()) < k_)
  {
    PCL_WARN ("[DominantPlaneSegmentation] Filtering returned %zu points! Aborting.",
        cloud_filtered_->points.size ());
    return;
  }

  // Downsample the point cloud
  grid_.setLeafSize (downsample_leaf_, downsample_leaf_, downsample_leaf_);
  grid_.setDownsampleAllData (false);
  grid_.setInputCloud (cloud_filtered_);
  grid_.filter (*cloud_downsampled_);

  // ---[ Estimate the point normals
  n3d_.setInputCloud (cloud_downsampled_);
  n3d_.compute (*cloud_normals_);

  // ---[ Perform segmentation
  seg_.setInputCloud (cloud_downsampled_);
  seg_.setInputNormals (cloud_normals_);
  seg_.segment (*table_inliers_, *table_coefficients_);

  if (table_inliers_->indices.size () == 0)
  {
    PCL_WARN ("[DominantPlaneSegmentation] No Plane Inliers points! Aborting.");
    return;
  }

  // ---[ Extract the plane
  proj_.setInputCloud (cloud_downsampled_);
  proj_.setIndices (table_inliers_);
  proj_.setModelCoefficients (table_coefficients_);
  proj_.filter (*table_projected_);

  // ---[ Estimate the convex hull
  std::vector<pcl::Vertices> polygons;
  CloudPtr table_hull (new Cloud ());
  hull_.setInputCloud (table_projected_);
  hull_.reconstruct (*table_hull, polygons);

  // Compute the plane coefficients
  Eigen::Vector4f model_coefficients;
  EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;

  model_coefficients[0] = table_coefficients_->values[0];
  model_coefficients[1] = table_coefficients_->values[1];
  model_coefficients[2] = table_coefficients_->values[2];
  model_coefficients[3] = table_coefficients_->values[3];

  // Need to flip the plane normal towards the viewpoint
  Eigen::Vector4f vp (0, 0, 0, 0);
  // See if we need to flip any plane normals
  vp -= table_hull->points[0].getVector4fMap ();
  vp[3] = 0;
  // Dot product between the (viewpoint - point) and the plane normal
  float cos_theta = vp.dot (model_coefficients);
  // Flip the plane normal
  if (cos_theta < 0)
  {
    model_coefficients *= -1;
    model_coefficients[3] = 0;
    // Hessian form (D = nc . p_plane (centroid here) + p)
    model_coefficients[3] = -1 * (model_coefficients.dot (table_hull->points[0].getVector4fMap ()));
  }

  //Set table_coeffs
  table_coeffs_ = model_coefficients;

  // ---[ Get the objects on top of the table
  pcl::PointIndices cloud_object_indices;
  prism_.setInputCloud (input_);
  prism_.setInputPlanarHull (table_hull);
  prism_.segment (cloud_object_indices);

  pcl::ExtractIndices<PointType> extract_object_indices;
  extract_object_indices.setInputCloud (input_);
  extract_object_indices.setIndices (boost::make_shared<const pcl::PointIndices> (cloud_object_indices));
  extract_object_indices.filter (*cloud_objects_);

  //create new binary pointcloud with intensity values (0 and 1), 0 for non-object pixels and 1 otherwise
  pcl::PointCloud<pcl::PointXYZI>::Ptr binary_cloud (new pcl::PointCloud<pcl::PointXYZI>);

  {
    binary_cloud->width = input_->width;
    binary_cloud->height = input_->height;
    binary_cloud->points.resize (input_->points.size ());
    binary_cloud->is_dense = input_->is_dense;

    size_t idx;
    for (size_t i = 0; i < cloud_object_indices.indices.size (); ++i)
    {
      idx = cloud_object_indices.indices[i];
      binary_cloud->points[idx].getVector4fMap () = input_->points[idx].getVector4fMap ();
      binary_cloud->points[idx].intensity = 1.0;
    }
  }

  //connected components on the binary image

  std::map<float, float> connected_labels;
  float c_intensity = 0.1f;
  float intensity_incr = 0.1f;

  {

    int wsize = wsize_;
    for (int i = 0; i < int (binary_cloud->width); i++)
    {
      for (int j = 0; j < int (binary_cloud->height); j++)
      {
        if (binary_cloud->at (i, j).intensity != 0)
        {
          //check neighboring pixels, first left and then top
          //be aware of margins

          if ((i - 1) < 0 && (j - 1) < 0)
          {
            //top-left pixel
            (*binary_cloud) (i, j).intensity = c_intensity;
          }
          else
          {
            if ((j - 1) < 0)
            {
              //top-row, check on the left of pixel to assign a new label or not
              int left = check ((*binary_cloud) (i - 1, j), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);
              if (left)
              {
                //Nothing found on the left, check bigger window

                bool found = false;
                for (int kk = 2; kk < wsize && !found; kk++)
                {
                  if ((i - kk) < 0)
                    continue;

                  int left = check ((*binary_cloud) (i - kk, j), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);
                  if (left == 0)
                  {
                    found = true;
                  }
                }

                if (!found)
                {
                  c_intensity += intensity_incr;
                  (*binary_cloud) (i, j).intensity = c_intensity;
                }

              }
            }
            else
            {
              if ((i - 1) == 0)
              {
                //check only top
                int top = check ((*binary_cloud) (i, j - 1), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);
                if (top)
                {
                  bool found = false;
                  for (int kk = 2; kk < wsize && !found; kk++)
                  {
                    if ((j - kk) < 0)
                      continue;

                    int top = check ((*binary_cloud) (i, j - kk), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);
                    if (top == 0)
                    {
                      found = true;
                    }
                  }

                  if (!found)
                  {
                    c_intensity += intensity_incr;
                    (*binary_cloud) (i, j).intensity = c_intensity;
                  }
                }

              }
              else
              {
                //check left and top
                int left = check ((*binary_cloud) (i - 1, j), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);
                int top = check ((*binary_cloud) (i, j - 1), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);

                if (left == 0 && top == 0)
                {
                  //both top and left had labels, check if they are different
                  //if they are, take the smallest one and mark labels to be connected..

                  if ((*binary_cloud) (i - 1, j).intensity != (*binary_cloud) (i, j - 1).intensity)
                  {
                    float smaller_intensity = (*binary_cloud) (i - 1, j).intensity;
                    float bigger_intensity = (*binary_cloud) (i, j - 1).intensity;

                    if ((*binary_cloud) (i - 1, j).intensity > (*binary_cloud) (i, j - 1).intensity)
                    {
                      smaller_intensity = (*binary_cloud) (i, j - 1).intensity;
                      bigger_intensity = (*binary_cloud) (i - 1, j).intensity;
                    }

                    connected_labels[bigger_intensity] = smaller_intensity;
                    (*binary_cloud) (i, j).intensity = smaller_intensity;
                  }
                }

                if (left == 1 && top == 1)
                {
                  //if none had labels, increment c_intensity
                  //search first on bigger window
                  bool found = false;
                  for (int dist = 2; dist < wsize && !found; dist++)
                  {
                    if (((i - dist) < 0) || ((j - dist) < 0))
                      continue;

                    int left = check ((*binary_cloud) (i - dist, j), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);
                    int top = check ((*binary_cloud) (i, j - dist), (*binary_cloud) (i, j), c_intensity, object_cluster_tolerance_);

                    if (left == 0 && top == 0)
                    {
                      if ((*binary_cloud) (i - dist, j).intensity != (*binary_cloud) (i, j - dist).intensity)
                      {
                        float smaller_intensity = (*binary_cloud) (i - dist, j).intensity;
                        float bigger_intensity = (*binary_cloud) (i, j - dist).intensity;

                        if ((*binary_cloud) (i - dist, j).intensity > (*binary_cloud) (i, j - dist).intensity)
                        {
                          smaller_intensity = (*binary_cloud) (i, j - dist).intensity;
                          bigger_intensity = (*binary_cloud) (i - dist, j).intensity;
                        }

                        connected_labels[bigger_intensity] = smaller_intensity;
                        (*binary_cloud) (i, j).intensity = smaller_intensity;
                        found = true;
                      }
                    }
                    else if (left == 0 || top == 0)
                    {
                      //one had label
                      found = true;
                    }
                  }

                  if (!found)
                  {
                    //none had label in the bigger window
                    c_intensity += intensity_incr;
                    (*binary_cloud) (i, j).intensity = c_intensity;
                  }
                }
              }
            }
          }

        }
      }
    }
  }

  std::map<float, pcl::PointIndices> clusters_map;

  {
    std::map<float, float>::iterator it;

    for (int i = 0; i < int (binary_cloud->width); i++)
    {
      for (int j = 0; j < int (binary_cloud->height); j++)
      {
        if (binary_cloud->at (i, j).intensity != 0)
        {
          //check if this is a root label...
          it = connected_labels.find (binary_cloud->at (i, j).intensity);
          while (it != connected_labels.end ())
          {
            //the label is on the list, change pixel intensity until it has a root label
            (*binary_cloud) (i, j).intensity = (*it).second;
            it = connected_labels.find (binary_cloud->at (i, j).intensity);
          }

          std::map<float, pcl::PointIndices>::iterator it_indices;
          it_indices = clusters_map.find (binary_cloud->at (i, j).intensity);
          if (it_indices == clusters_map.end ())
          {
            pcl::PointIndices indices;
            clusters_map[binary_cloud->at (i, j).intensity] = indices;
          }

          clusters_map[binary_cloud->at (i, j).intensity].indices.push_back (static_cast<int> (j * binary_cloud->width + i));
        }
      }
    }
  }

  clusters.resize (clusters_map.size ());

  std::map<float, pcl::PointIndices>::iterator it_indices;
  int k = 0;
  for (it_indices = clusters_map.begin (); it_indices != clusters_map.end (); it_indices++)
  {

    if (int ((*it_indices).second.indices.size ()) >= object_cluster_min_size_)
    {

      clusters[k] = CloudPtr (new Cloud ());
      pcl::copyPointCloud (*input_, (*it_indices).second.indices, *clusters[k]);
      k++;
      indices_clusters_.push_back((*it_indices).second);
    }
  }

  clusters.resize (k);

}
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
  // ... do data processing
  sensor_msgs::PointCloud2 output;

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::fromROSMsg (*input, *cloud);

  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.10); // 2cm
  ec.setMinClusterSize (20);
  ec.setMaxClusterSize (2500);
  ec.setSearchMethod (tree);
  ec.setInputCloud(cloud);
  ec.extract (cluster_indices);
  
  ROS_INFO("cluster_indices has %d data points.", (int) cluster_indices.size());
  ROS_INFO("cloud has %d data points.", (int) cloud->points.size());

  visualization_msgs::Marker marker;
  marker.header   = cloud->header;
  marker.id       = 1;
  marker.type     = visualization_msgs::Marker::CUBE_LIST;
  marker.action   = visualization_msgs::Marker::ADD;
  marker.color.r  = 1;
  marker.color.g  = 0;
  marker.color.b  = 0;
  marker.color.a  = 0.7;
  marker.scale.x  = 0.2;
  marker.scale.y  = 0.2;
  marker.scale.z  = 0.2;
  marker.lifetime = ros::Duration(60.0);
  Eigen::Vector4f minPoint;
  Eigen::Vector4f maxPoint;
//  pcl::getMinMax3D(*cloud, minPoint, maxPoint);

  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud->points[*pit]); 

    std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
    // Merge current clusters to whole point cloud
    *clustered_cloud += *cloud_cluster;
 //   for(size_t j = 0; j < cloud_cluster->points.size() - 1; j++)
 //   {
      /*
      geometry_msgs::Point pt1;
      pt1.x = cloud_cluster->points[j].x;
      pt1.y = cloud_cluster->points[j].y;
      pt1.z = cloud_cluster->points[j].z;
      geometry_msgs::Point pt2;
      pt2.x = cloud_cluster->points[j+1].x;
      pt2.y = cloud_cluster->points[j+1].y;
      pt2.z = cloud_cluster->points[j+1].z;

      marker.points.push_back(pt1);
      marker.points.push_back(pt2);
      */
      //Seg for top of prism
      geometry_msgs::Point pt3;      
      pt3.x = 0.0;
      pt3.y = 0.0;
      pt3.z = 0.0;
      std_msgs::ColorRGBA colors;
      colors.r = 0.0;
      colors.g = 0.0;
      colors.b = 0.0;
      for(size_t i=0; i<cloud_cluster->points.size(); i++)
      {
        pt3.x += cloud_cluster->points[i].x;
        pt3.y += cloud_cluster->points[i].y;
        pt3.z += cloud_cluster->points[i].z;
      }
      pt3.x /= cloud_cluster->points.size();
      pt3.y /= cloud_cluster->points.size();
      pt3.z /= cloud_cluster->points.size();
      pcl::getMinMax3D(*cloud_cluster, minPoint, maxPoint);
      marker.scale.y= maxPoint.y();
      //marker.scale.x= maxPoint.x();
      //marker.scale.z= maxPoint.z();
      marker.scale.x= maxPoint.x()-minPoint.x();
      colors.r = marker.scale.x;
//      colors.g = marker.scale.y;
      //marker.scale.z= maxPoint.z()-minPoint.z();
      //pt3.z = maxPoint.z();

      //geometry_msgs::Point pt4;
      //pt4.x = cloud_cluster->points[j+1].x;
      //pt4.y = cloud_cluster->points[j+1].y;
      //pt4.z = cloud_cluster->points[j+1].z;
      //pt4.z = maxPoint.z();

      //marker.pose.position.x = pt3.x;
      //marker.pose.position.y = pt3.y;
      //marker.pose.position.z = pt3.z;
      //marker.colors.push_back(colors);
      marker.points.push_back(pt3);
      //marker.points.push_back(pt4);

      //Seg for bottom vertices to top vertices
     // marker.points.push_back(pt1);
      //marker.points.push_back(pt3);
 //   }
    object_pub.publish(marker);

  }
  // Publish the data
  pcl::toROSMsg(*clustered_cloud, output);
  output.header = cloud->header;
//  output.header.frame_id="/camera_link";
//  output.header.stamp = ros::Time::now();

  pub.publish (output);

}
예제 #18
0
파일: vfh.hpp 프로젝트: gimlids/BodyScanner
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::VFHEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
{
  // ---[ Step 1a : compute the centroid in XYZ space
  Eigen::Vector4f xyz_centroid;

  if (use_given_centroid_) 
    xyz_centroid = centroid_to_use_;
  else
    compute3DCentroid (*surface_, *indices_, xyz_centroid);          // Estimate the XYZ centroid

  // ---[ Step 1b : compute the centroid in normal space
  Eigen::Vector4f normal_centroid = Eigen::Vector4f::Zero ();
  int cp = 0;

  // If the data is dense, we don't need to check for NaN

  if (use_given_normal_)
    normal_centroid = normal_to_use_;
  else
  {
    if (normals_->is_dense)
    {
      for (size_t i = 0; i < indices_->size (); ++i)
      {
        normal_centroid += normals_->points[(*indices_)[i]].getNormalVector4fMap ();
        cp++;
      }
    }
    // NaN or Inf values could exist => check for them
    else
    {
      for (size_t i = 0; i < indices_->size (); ++i)
      {
        if (!pcl_isfinite (normals_->points[(*indices_)[i]].normal[0])
            ||
            !pcl_isfinite (normals_->points[(*indices_)[i]].normal[1])
            ||
            !pcl_isfinite (normals_->points[(*indices_)[i]].normal[2]))
          continue;
        normal_centroid += normals_->points[(*indices_)[i]].getNormalVector4fMap ();
        cp++;
      }
    }
    normal_centroid /= cp;
  }

  // Compute the direction of view from the viewpoint to the centroid
  Eigen::Vector4f viewpoint (vpx_, vpy_, vpz_, 0);
  Eigen::Vector4f d_vp_p = viewpoint - xyz_centroid;
  d_vp_p.normalize ();

  // Estimate the SPFH at nn_indices[0] using the entire cloud
  computePointSPFHSignature (xyz_centroid, normal_centroid, *surface_, *normals_, *indices_);

  // We only output _1_ signature
  output.points.resize (1);
  output.width = 1;
  output.height = 1;

  // Estimate the FPFH at nn_indices[0] using the entire cloud and copy the resultant signature
  for (int d = 0; d < hist_f1_.size (); ++d)
    output.points[0].histogram[d + 0] = hist_f1_[d];

  size_t data_size = hist_f1_.size ();
  for (int d = 0; d < hist_f2_.size (); ++d)
    output.points[0].histogram[d + data_size] = hist_f2_[d];

  data_size += hist_f2_.size ();
  for (int d = 0; d < hist_f3_.size (); ++d)
    output.points[0].histogram[d + data_size] = hist_f3_[d];

  data_size += hist_f3_.size ();
  for (int d = 0; d < hist_f4_.size (); ++d)
    output.points[0].histogram[d + data_size] = hist_f4_[d];

  // ---[ Step 2 : obtain the viewpoint component
  hist_vp_.setZero (nr_bins_vp_);

  double hist_incr;
  if (normalize_bins_)
    hist_incr = 100.0 / (double)(indices_->size ());
  else
    hist_incr = 1.0;

  for (size_t i = 0; i < indices_->size (); ++i)
  {
    Eigen::Vector4f normal (normals_->points[(*indices_)[i]].normal[0],
                            normals_->points[(*indices_)[i]].normal[1],
                            normals_->points[(*indices_)[i]].normal[2], 0);
    // Normalize
    double alpha = (normal.dot (d_vp_p) + 1.0) * 0.5;
    int fi = floor (alpha * hist_vp_.size ());
    if (fi < 0)
      fi = 0;
    if (fi > ((int)hist_vp_.size () - 1))
      fi = hist_vp_.size () - 1;
    // Bin into the histogram
    hist_vp_ [fi] += hist_incr;
  }
  data_size += hist_f4_.size ();
  // Copy the resultant signature
  for (int d = 0; d < hist_vp_.size (); ++d)
    output.points[0].histogram[d + data_size] = hist_vp_[d];
}
예제 #19
0
int main(int argc, char * argv[])
{
  using namespace Eigen;
  using namespace igl;
  using namespace std;

  // init mesh
  string filename = "../shared/beast.obj";
  if(argc < 2)
  {
    cerr<<"Usage:"<<endl<<"    ./example input.obj"<<endl;
    cout<<endl<<"Opening default mesh..."<<endl;
  }else
  {
    // Read and prepare mesh
    filename = argv[1];
  }

  // dirname, basename, extension and filename
  string d,b,ext,f;
  pathinfo(filename,d,b,ext,f);
  // Convert extension to lower case
  transform(ext.begin(), ext.end(), ext.begin(), ::tolower);
  vector<vector<double > > vV,vN,vTC;
  vector<vector<int > > vF,vFTC,vFN;
  if(ext == "obj")
  {
    // Convert extension to lower case
    if(!igl::readOBJ(filename,vV,vTC,vN,vF,vFTC,vFN))
    {
      return 1;
    }
  }else if(ext == "off")
  {
    // Convert extension to lower case
    if(!igl::readOFF(filename,vV,vF,vN))
    {
      return 1;
    }
  }else if(ext == "wrl")
  {
    // Convert extension to lower case
    if(!igl::readWRL(filename,vV,vF))
    {
      return 1;
    }
  //}else
  //{
  //  // Convert extension to lower case
  //  MatrixXi T;
  //  if(!igl::readMESH(filename,V,T,F))
  //  {
  //    return 1;
  //  }
  //  //if(F.size() > T.size() || F.size() == 0)
  //  {
  //    boundary_faces(T,F);
  //  }
  }
  if(vV.size() > 0)
  {
    if(!list_to_matrix(vV,V))
    {
      return 1;
    }
    triangulate(vF,F);
  }

  // Compute normals, centroid, colors, bounding box diagonal
  per_vertex_normals(V,F,N);
  mid = 0.5*(V.colwise().maxCoeff() + V.colwise().minCoeff());
  bbd = (V.colwise().maxCoeff() - V.colwise().minCoeff()).maxCoeff();

  // Init embree
  ei.init(V.cast<float>(),F.cast<int>());

  // Init glut
  glutInit(&argc,argv);

  if( !TwInit(TW_OPENGL, NULL) )
  {
    // A fatal error occured
    fprintf(stderr, "AntTweakBar initialization failed: %s\n", TwGetLastError());
    return 1;
  }
  // Create a tweak bar
  rebar.TwNewBar("TweakBar");
  rebar.TwAddVarRW("scene_rot", TW_TYPE_QUAT4F, &scene_rot, "");
  rebar.TwAddVarRW("lights_on", TW_TYPE_BOOLCPP, &lights_on, "key=l");
  rebar.TwAddVarRW("color", TW_TYPE_COLOR4F, color.data(), "colormode=hls");
  rebar.TwAddVarRW("ao_factor", TW_TYPE_DOUBLE, &ao_factor, "min=0 max=1 step=0.2 keyIncr=] keyDecr=[ ");
  rebar.TwAddVarRW("ao_normalize", TW_TYPE_BOOLCPP, &ao_normalize, "key=n");
  rebar.TwAddVarRW("ao_on", TW_TYPE_BOOLCPP, &ao_on, "key=a");
  rebar.TwAddVarRW("light_intensity", TW_TYPE_DOUBLE, &light_intensity, "min=0 max=0.4 step=0.1 keyIncr=} keyDecr={ ");
  rebar.load(REBAR_NAME);

  glutInitDisplayString( "rgba depth double samples>=8 ");
  glutInitWindowSize(glutGet(GLUT_SCREEN_WIDTH)/2.0,glutGet(GLUT_SCREEN_HEIGHT));
  glutCreateWindow("ambient-occlusion");
  glutDisplayFunc(display);
  glutReshapeFunc(reshape);
  glutKeyboardFunc(key);
  glutMouseFunc(mouse);
  glutMotionFunc(mouse_drag);
  glutPassiveMotionFunc((GLUTmousemotionfun)TwEventMouseMotionGLUT);
  glutMainLoop();
  return 0;
}
template<typename PointT, typename PointNT, typename PointLT> void
pcl::OrganizedMultiPlaneSegmentation<PointT, PointNT, PointLT>::segment (std::vector<ModelCoefficients>& model_coefficients, 
                                                                         std::vector<PointIndices>& inlier_indices,
                                                                         std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& centroids,
                                                                         std::vector <Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> >& covariances,
                                                                         pcl::PointCloud<PointLT>& labels,
                                                                         std::vector<pcl::PointIndices>& label_indices)
{
  if (!initCompute ())
    return;

  // Check that we got the same number of points and normals
  if (static_cast<int> (normals_->points.size ()) != static_cast<int> (input_->points.size ()))
  {
    PCL_ERROR ("[pcl::%s::segment] Number of points in input cloud (%zu) and normal cloud (%zu) do not match!\n",
               getClassName ().c_str (), input_->points.size (),
               normals_->points.size ());
    return;
  }

  // Check that the cloud is organized
  if (!input_->isOrganized ())
  {
    PCL_ERROR ("[pcl::%s::segment] Organized point cloud is required for this plane extraction method!\n",
               getClassName ().c_str ());
    return;
  }

  // Calculate range part of planes' hessian normal form
  std::vector<float> plane_d (input_->points.size ());
  
  for (unsigned int i = 0; i < input_->size (); ++i)
    plane_d[i] = input_->points[i].getVector3fMap ().dot (normals_->points[i].getNormalVector3fMap ());
  
  // Make a comparator
  //PlaneCoefficientComparator<PointT,PointNT> plane_comparator (plane_d);
  compare_->setPlaneCoeffD (plane_d);
  compare_->setInputCloud (input_);
  compare_->setInputNormals (normals_);
  compare_->setAngularThreshold (static_cast<float> (angular_threshold_));
  compare_->setDistanceThreshold (static_cast<float> (distance_threshold_), true);

  // Set up the output
  OrganizedConnectedComponentSegmentation<PointT,pcl::Label> connected_component (compare_);
  connected_component.setInputCloud (input_);
  connected_component.segment (labels, label_indices);

  Eigen::Vector4f clust_centroid = Eigen::Vector4f::Zero ();
  Eigen::Vector4f vp = Eigen::Vector4f::Zero ();
  Eigen::Matrix3f clust_cov;
  pcl::ModelCoefficients model;
  model.values.resize (4);

  // Fit Planes to each cluster
  for (size_t i = 0; i < label_indices.size (); i++)
  {
    if (static_cast<unsigned> (label_indices[i].indices.size ()) > min_inliers_)
    {
      pcl::computeMeanAndCovarianceMatrix (*input_, label_indices[i].indices, clust_cov, clust_centroid);
      Eigen::Vector4f plane_params;
      
      EIGEN_ALIGN16 Eigen::Vector3f::Scalar eigen_value;
      EIGEN_ALIGN16 Eigen::Vector3f eigen_vector;
      pcl::eigen33 (clust_cov, eigen_value, eigen_vector);
      plane_params[0] = eigen_vector[0];
      plane_params[1] = eigen_vector[1];
      plane_params[2] = eigen_vector[2];
      plane_params[3] = 0;
      plane_params[3] = -1 * plane_params.dot (clust_centroid);

      vp -= clust_centroid;
      float cos_theta = vp.dot (plane_params);
      if (cos_theta < 0)
      {
        plane_params *= -1;
        plane_params[3] = 0;
        plane_params[3] = -1 * plane_params.dot (clust_centroid);
      }
      
      // Compute the curvature surface change
      float curvature;
      float eig_sum = clust_cov.coeff (0) + clust_cov.coeff (4) + clust_cov.coeff (8);
      if (eig_sum != 0)
        curvature = fabsf (eigen_value / eig_sum);
      else
        curvature = 0;

      if (curvature < maximum_curvature_)
      {
        model.values[0] = plane_params[0];
        model.values[1] = plane_params[1];
        model.values[2] = plane_params[2];
        model.values[3] = plane_params[3];
        model_coefficients.push_back (model);
        inlier_indices.push_back (label_indices[i]);
        centroids.push_back (clust_centroid);
        covariances.push_back (clust_cov);
      }
    }
  }
  deinitCompute ();
}
bool checkCloud(const sensor_msgs::PointCloud2& cloud_msg,
                typename pcl::PointCloud<T>::Ptr hand_cloud,
                //typename pcl::PointCloud<T>::Ptr finger_cloud,
                const std::string& frame_id,
                tf::Vector3& hand_position,
                tf::Vector3& arm_position,
                tf::Vector3& arm_direction)
{  
  typename pcl::PointCloud<T>::Ptr cloud(new pcl::PointCloud<T>);
  pcl::fromROSMsg(cloud_msg, *cloud);

  if((cloud->points.size() < g_config.min_cluster_size) ||
     (cloud->points.size() > g_config.max_cluster_size))
    return false;

  pcl::PCA<T> pca;
  pca.setInputCloud(cloud);
  Eigen::Vector4f mean = pca.getMean();

  if((mean.coeff(0) < g_config.min_x) || (mean.coeff(0) > g_config.max_x)) return false;
  if((mean.coeff(1) < g_config.min_y) || (mean.coeff(1) > g_config.max_y)) return false;
  if((mean.coeff(2) < g_config.min_z) || (mean.coeff(2) > g_config.max_z)) return false;

  Eigen::Vector3f eigen_value = pca.getEigenValues();
  double ratio = eigen_value.coeff(0) / eigen_value.coeff(1);

  if((ratio < g_config.min_eigen_value_ratio) || (ratio > g_config.max_eigen_value_ratio)) return false;

  T search_point;
  Eigen::Matrix3f ev = pca.getEigenVectors();
  Eigen::Vector3f main_axis(ev.coeff(0, 0), ev.coeff(1, 0), ev.coeff(2, 0));
  main_axis.normalize();
  arm_direction.setX(main_axis.coeff(0));
  arm_direction.setY(main_axis.coeff(1));
  arm_direction.setZ(main_axis.coeff(2));
  arm_position.setX(mean.coeff(0));
  arm_position.setY(mean.coeff(1));
  arm_position.setZ(mean.coeff(2));

  main_axis = (-main_axis * 0.3) + Eigen::Vector3f(mean.coeff(0), mean.coeff(1), mean.coeff(2));
  search_point.x = main_axis.coeff(0);
  search_point.y = main_axis.coeff(1);
  search_point.z = main_axis.coeff(2);



  //find hand
  pcl::KdTreeFLANN<T> kdtree;
  kdtree.setInputCloud(cloud);

  //find the closet point from the serach_point
  std::vector<int> point_indeices(1);
  std::vector<float> point_distances(1);
  if ( kdtree.nearestKSearch (search_point, 1, point_indeices, point_distances) > 0 )
  {
    //update search point
    search_point = cloud->points[point_indeices[0]];

    //show seach point
    if(g_marker_array_pub.getNumSubscribers() != 0)
    {
      pushSimpleMarker(search_point.x, search_point.y, search_point.z,
                       1.0, 0, 0,
                       0.02,
                       g_marker_id, g_marker_array, frame_id);
    }

    //hand
    point_indeices.clear();
    point_distances.clear();
    kdtree.radiusSearch(search_point, g_config.hand_lenght, point_indeices, point_distances);
    for (size_t i = 0; i < point_indeices.size (); ++i)
    {
      hand_cloud->points.push_back(cloud->points[point_indeices[i]]);
      hand_cloud->points.back().r = 255;
      hand_cloud->points.back().g = 0;
      hand_cloud->points.back().b = 0;
    }

    Eigen::Vector4f centroid;
    pcl::compute3DCentroid(*hand_cloud, centroid);

    if(g_marker_array_pub.getNumSubscribers() != 0)
    {
      pushSimpleMarker(centroid.coeff(0), centroid.coeff(1), centroid.coeff(2),
                       0.0, 1.0, 0,
                       0.02,
                       g_marker_id, g_marker_array, frame_id);
    }

    hand_position.setX(centroid.coeff(0));
    hand_position.setY(centroid.coeff(1));
    hand_position.setZ(centroid.coeff(2));

#if 0
    //fingers
    search_point.x = centroid.coeff(0);
    search_point.y = centroid.coeff(1);
    search_point.z = centroid.coeff(2);
    std::vector<int> point_indeices_inner;
    std::vector<float> point_distances_inner;
    kdtree.radiusSearch(search_point, 0.07, point_indeices_inner, point_distances_inner);

    std::vector<int> point_indeices_outter;
    std::vector<float> point_distances_outter;
    kdtree.radiusSearch(search_point, 0.1, point_indeices_outter, point_distances_outter);

    //ROS_INFO("before %d %d", point_indeices_inner.size(), point_indeices_outter.size());

    std::vector<int>::iterator it;
    for(size_t i = 0; i < point_indeices_inner.size(); i++)
    {

      it =  std::find(point_indeices_outter.begin(), point_indeices_outter.end(), point_indeices_inner[i]);
      if(it != point_indeices_outter.end())
      {
        point_indeices_outter.erase(it);
      }
    }

    //ROS_INFO("after %d %d", point_indeices_inner.size(), point_indeices_outter.size());

    //ROS_DEBUG_THROTTLE(1.0, "found %lu", point_indeices.size ());
    for (size_t i = 0; i < point_indeices_outter.size (); ++i)
    {
      finger_cloud->points.push_back(cloud->points[point_indeices_outter[i]]);
      finger_cloud->points.back().r = 255;
      finger_cloud->points.back().g = 0;
      finger_cloud->points.back().b = 0;
    }
#endif

  }
  else
  {    
    return false;
  }

  if(g_marker_array_pub.getNumSubscribers() != 0)
  {
    pushEigenMarker<T>(pca, g_marker_id, g_marker_array, 0.1, frame_id);
  }


  return true;
}
예제 #22
0
파일: LoadPCD.cpp 프로젝트: RobH616/trunk
int LoadPCD::compute()
{
	//for each selected filename
	for (int k = 0; k < m_filenames.size(); ++k)
	{
		Eigen::Vector4f origin;
		Eigen::Quaternionf orientation;

		QString filename = m_filenames[k];

		boost::shared_ptr<PCLCloud> cloud_ptr_in = loadSensorMessage(filename, origin, orientation);

		if (!cloud_ptr_in) //loading failed?
			return 0;

		PCLCloud::Ptr cloud_ptr;
		if (!cloud_ptr_in->is_dense) //data may contain nans. Remove them
		{
			//now we need to remove nans
			pcl::PassThrough<PCLCloud> passFilter;
			passFilter.setInputCloud(cloud_ptr_in);

			cloud_ptr = PCLCloud::Ptr(new PCLCloud);
			passFilter.filter(*cloud_ptr);
		}
		else
		{
			cloud_ptr = cloud_ptr_in;
		}

		//now we construct a ccGBLSensor with these characteristics
		ccGBLSensor * sensor = new ccGBLSensor;

		// get orientation as rot matrix
		Eigen::Matrix3f eigrot = orientation.toRotationMatrix();

		// and copy it into a ccGLMatrix
		ccGLMatrix ccRot;
		for (int i = 0; i < 3; ++i)
		{
			for (int j = 0; j < 3; ++j)
			{
				ccRot.getColumn(j)[i] = eigrot(i,j);
			}
		}

		ccRot.getColumn(3)[3] = 1.0;

		// now in a format good for CloudComapre
		//ccGLMatrix ccRot = ccGLMatrix::FromQuaternion(orientation.coeffs().data());

		//ccRot = ccRot.transposed();
		ccRot.setTranslation(origin.data());

		sensor->setRigidTransformation(ccRot);
		sensor->setDeltaPhi(static_cast<PointCoordinateType>(0.05));
		sensor->setDeltaTheta(static_cast<PointCoordinateType>(0.05));
		sensor->setVisible(true);

		//uncertainty to some default
		sensor->setUncertainty(static_cast<PointCoordinateType>(0.01));

		ccPointCloud* out_cloud = sm2ccConverter(cloud_ptr).getCloud();
		if (!out_cloud)
			return -31;

		sensor->setGraphicScale(out_cloud->getBB().getDiagNorm() / 10);

		//do the projection on sensor
		ccGenericPointCloud* cloud = ccHObjectCaster::ToGenericPointCloud(out_cloud);
		int errorCode;
		CCLib::SimpleCloud* projectedCloud = sensor->project(cloud,errorCode,true);
		if (projectedCloud)
		{
			//DGM: we don't use it but we still have to delete it!
			delete projectedCloud;
			projectedCloud = 0;
		}

		QString cloud_name = QFileInfo(filename).baseName();
		out_cloud->setName(cloud_name);

		QFileInfo fi(filename);
		QString containerName = QString("%1 (%2)").arg(fi.fileName()).arg(fi.absolutePath());

		ccHObject* cloudContainer = new ccHObject(containerName);
		out_cloud->addChild(sensor);
		cloudContainer->addChild(out_cloud);

		emit newEntity(cloudContainer);
	}

	return 1;
}
예제 #23
0
void VertexProcessor::parameter(vp::Parameter param, const Eigen::Vector4f& v)
{
    parameter(param, v.x(), v.y(), v.z(), v.w());
}
예제 #24
0
void
pcl::apps::DominantPlaneSegmentation<PointType>::compute_full (std::vector<CloudPtr> & clusters)
{

  // Has the input dataset been set already?
  if (!input_)
  {
    PCL_WARN ("[pcl::apps::DominantPlaneSegmentation] No input dataset given!\n");
    return;
  }

  CloudConstPtr cloud_;
  CloudPtr cloud_filtered_ (new Cloud ());
  CloudPtr cloud_downsampled_ (new Cloud ());
  pcl::PointCloud<pcl::Normal>::Ptr cloud_normals_ (new pcl::PointCloud<pcl::Normal> ());
  pcl::PointIndices::Ptr table_inliers_ (new pcl::PointIndices ());
  pcl::ModelCoefficients::Ptr table_coefficients_ (new pcl::ModelCoefficients ());
  CloudPtr table_projected_ (new Cloud ());
  CloudPtr table_hull_ (new Cloud ());
  CloudPtr cloud_objects_ (new Cloud ());
  CloudPtr cluster_object_ (new Cloud ());

  typename pcl::search::KdTree<PointType>::Ptr normals_tree_ (new pcl::search::KdTree<PointType>);
  typename pcl::search::KdTree<PointType>::Ptr clusters_tree_ (new pcl::search::KdTree<PointType>);
  clusters_tree_->setEpsilon (1);

  // Normal estimation parameters
  n3d_.setKSearch (10);
  n3d_.setSearchMethod (normals_tree_);

  // Table model fitting parameters
  seg_.setDistanceThreshold (sac_distance_threshold_);
  seg_.setMaxIterations (2000);
  seg_.setNormalDistanceWeight (0.1);
  seg_.setOptimizeCoefficients (true);
  seg_.setModelType (pcl::SACMODEL_NORMAL_PLANE);
  seg_.setMethodType (pcl::SAC_MSAC);
  seg_.setProbability (0.98);

  proj_.setModelType (pcl::SACMODEL_NORMAL_PLANE);
  bb_cluster_proj_.setModelType (pcl::SACMODEL_NORMAL_PLANE);

  prism_.setHeightLimits (object_min_height_, object_max_height_);

  // Clustering parameters
  cluster_.setClusterTolerance (object_cluster_tolerance_);
  cluster_.setMinClusterSize (object_cluster_min_size_);
  cluster_.setSearchMethod (clusters_tree_);

  // ---[ PassThroughFilter
  pass_.setFilterLimits (min_z_bounds_, max_z_bounds_);
  pass_.setFilterFieldName ("z");
  pass_.setInputCloud (input_);
  pass_.filter (*cloud_filtered_);

  if (int (cloud_filtered_->points.size ()) < k_)
  {
    PCL_WARN ("[DominantPlaneSegmentation] Filtering returned %zu points! Aborting.",
        cloud_filtered_->points.size ());
    return;
  }

  // Downsample the point cloud
  grid_.setLeafSize (downsample_leaf_, downsample_leaf_, downsample_leaf_);
  grid_.setDownsampleAllData (false);
  grid_.setInputCloud (cloud_filtered_);
  grid_.filter (*cloud_downsampled_);

  PCL_INFO ("[DominantPlaneSegmentation] Number of points left after filtering&downsampling (%f -> %f): %zu out of %zu\n",
      min_z_bounds_, max_z_bounds_, cloud_downsampled_->points.size (), input_->points.size ());

  // ---[ Estimate the point normals
  n3d_.setInputCloud (cloud_downsampled_);
  n3d_.compute (*cloud_normals_);

  PCL_INFO ("[DominantPlaneSegmentation] %zu normals estimated. \n", cloud_normals_->points.size ());

  // ---[ Perform segmentation
  seg_.setInputCloud (cloud_downsampled_);
  seg_.setInputNormals (cloud_normals_);
  seg_.segment (*table_inliers_, *table_coefficients_);

  if (table_inliers_->indices.size () == 0)
  {
    PCL_WARN ("[DominantPlaneSegmentation] No Plane Inliers points! Aborting.");
    return;
  }

  // ---[ Extract the plane
  proj_.setInputCloud (cloud_downsampled_);
  proj_.setIndices (table_inliers_);
  proj_.setModelCoefficients (table_coefficients_);
  proj_.filter (*table_projected_);

  // ---[ Estimate the convex hull
  std::vector<pcl::Vertices> polygons;
  CloudPtr table_hull (new Cloud ());
  hull_.setInputCloud (table_projected_);
  hull_.reconstruct (*table_hull, polygons);

  // Compute the plane coefficients
  Eigen::Vector4f model_coefficients;
  EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;

  model_coefficients[0] = table_coefficients_->values[0];
  model_coefficients[1] = table_coefficients_->values[1];
  model_coefficients[2] = table_coefficients_->values[2];
  model_coefficients[3] = table_coefficients_->values[3];

  // Need to flip the plane normal towards the viewpoint
  Eigen::Vector4f vp (0, 0, 0, 0);
  // See if we need to flip any plane normals
  vp -= table_hull->points[0].getVector4fMap ();
  vp[3] = 0;
  // Dot product between the (viewpoint - point) and the plane normal
  float cos_theta = vp.dot (model_coefficients);
  // Flip the plane normal
  if (cos_theta < 0)
  {
    model_coefficients *= -1;
    model_coefficients[3] = 0;
    // Hessian form (D = nc . p_plane (centroid here) + p)
    model_coefficients[3] = -1 * (model_coefficients.dot (table_hull->points[0].getVector4fMap ()));
  }

  //Set table_coeffs
  table_coeffs_ = model_coefficients;

  // ---[ Get the objects on top of the table
  pcl::PointIndices cloud_object_indices;
  prism_.setInputCloud (cloud_filtered_);
  prism_.setInputPlanarHull (table_hull);
  prism_.segment (cloud_object_indices);

  pcl::ExtractIndices<PointType> extract_object_indices;
  extract_object_indices.setInputCloud (cloud_downsampled_);
  extract_object_indices.setIndices (boost::make_shared<const pcl::PointIndices> (cloud_object_indices));
  extract_object_indices.filter (*cloud_objects_);

  if (cloud_objects_->points.size () == 0)
    return;

  // ---[ Split the objects into Euclidean clusters
  std::vector<pcl::PointIndices> clusters2;
  cluster_.setInputCloud (cloud_filtered_);
  cluster_.setIndices (boost::make_shared<const pcl::PointIndices> (cloud_object_indices));
  cluster_.extract (clusters2);

  PCL_INFO ("[DominantPlaneSegmentation::compute_full()] Number of clusters found matching the given constraints: %zu.\n",
      clusters2.size ());

  clusters.resize (clusters2.size ());

  for (size_t i = 0; i < clusters2.size (); ++i)
  {
    clusters[i] = CloudPtr (new Cloud ());
    pcl::copyPointCloud (*cloud_filtered_, clusters2[i].indices, *clusters[i]);
  }
}
예제 #25
0
template <typename PointT> void
pcl::SampleConsensusModelStick<PointT>::projectPoints (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
{
  // Needs a valid model coefficients
  if (!isModelValid (model_coefficients))
    return;

  // Obtain the line point and direction
  Eigen::Vector4f line_pt  (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);

  projected_points.header = input_->header;
  projected_points.is_dense = input_->is_dense;

  // Copy all the data fields from the input cloud to the projected one?
  if (copy_data_fields)
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (input_->points.size ());
    projected_points.width    = input_->width;
    projected_points.height   = input_->height;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < projected_points.points.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[i], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the line
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      Eigen::Vector4f pt (input_->points[inliers[i]].x, input_->points[inliers[i]].y, input_->points[inliers[i]].z, 0);
      // double k = (DOT_PROD_3D (points[i], p21) - dotA_B) / dotB_B;
      float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) / line_dir.dot (line_dir);

      Eigen::Vector4f pp = line_pt + k * line_dir;
      // Calculate the projection of the point on the line (pointProj = A + k * B)
      projected_points.points[inliers[i]].x = pp[0];
      projected_points.points[inliers[i]].y = pp[1];
      projected_points.points[inliers[i]].z = pp[2];
    }
  }
  else
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (inliers.size ());
    projected_points.width    = static_cast<uint32_t> (inliers.size ());
    projected_points.height   = 1;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < inliers.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[inliers[i]], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the line
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      Eigen::Vector4f pt (input_->points[inliers[i]].x, input_->points[inliers[i]].y, input_->points[inliers[i]].z, 0);
      // double k = (DOT_PROD_3D (points[i], p21) - dotA_B) / dotB_B;
      float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) / line_dir.dot (line_dir);

      Eigen::Vector4f pp = line_pt + k * line_dir;
      // Calculate the projection of the point on the line (pointProj = A + k * B)
      projected_points.points[i].x = pp[0];
      projected_points.points[i].y = pp[1];
      projected_points.points[i].z = pp[2];
    }
  }
}
예제 #26
0
template <typename PointT> void
pcl::SampleConsensusModelPlane<PointT>::projectPoints (
      const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields)
{
  // Needs a valid set of model coefficients
  if (model_coefficients.size () != 4)
  {
    PCL_ERROR ("[pcl::SampleConsensusModelPlane::projectPoints] Invalid number of model coefficients given (%zu)!\n", model_coefficients.size ());
    return;
  }

  projected_points.header = input_->header;
  projected_points.is_dense = input_->is_dense;

  Eigen::Vector4f mc (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);

  // normalize the vector perpendicular to the plane...
  mc.normalize ();
  // ... and store the resulting normal as a local copy of the model coefficients
  Eigen::Vector4f tmp_mc = model_coefficients;
  tmp_mc[0] = mc[0];
  tmp_mc[1] = mc[1];
  tmp_mc[2] = mc[2];

  // Copy all the data fields from the input cloud to the projected one?
  if (copy_data_fields)
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (input_->points.size ());
    projected_points.width    = input_->width;
    projected_points.height   = input_->height;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < input_->points.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[i], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the plane
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      // Calculate the distance from the point to the plane
      Eigen::Vector4f p (input_->points[inliers[i]].x,
                         input_->points[inliers[i]].y,
                         input_->points[inliers[i]].z,
                         1);
      // use normalized coefficients to calculate the scalar projection
      float distance_to_plane = tmp_mc.dot (p);

      pcl::Vector4fMap pp = projected_points.points[inliers[i]].getVector4fMap ();
      pp.matrix () = p - mc * distance_to_plane;        // mc[3] = 0, therefore the 3rd coordinate is safe
    }
  }
  else
  {
    // Allocate enough space and copy the basics
    projected_points.points.resize (inliers.size ());
    projected_points.width    = static_cast<uint32_t> (inliers.size ());
    projected_points.height   = 1;

    typedef typename pcl::traits::fieldList<PointT>::type FieldList;
    // Iterate over each point
    for (size_t i = 0; i < inliers.size (); ++i)
      // Iterate over each dimension
      pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> (input_->points[inliers[i]], projected_points.points[i]));

    // Iterate through the 3d points and calculate the distances from them to the plane
    for (size_t i = 0; i < inliers.size (); ++i)
    {
      // Calculate the distance from the point to the plane
      Eigen::Vector4f p (input_->points[inliers[i]].x,
                         input_->points[inliers[i]].y,
                         input_->points[inliers[i]].z,
                         1);
      // use normalized coefficients to calculate the scalar projection
      float distance_to_plane = tmp_mc.dot (p);

      pcl::Vector4fMap pp = projected_points.points[i].getVector4fMap ();
      pp.matrix () = p - mc * distance_to_plane;        // mc[3] = 0, therefore the 3rd coordinate is safe
    }
  }
}
예제 #27
0
파일: shot.hpp 프로젝트: 5irius/pcl
template <typename PointInT, typename PointNT, typename PointOutT, typename PointRFT> void
pcl::SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::interpolateSingleChannel (
    const std::vector<int> &indices,
    const std::vector<float> &sqr_dists,
    const int index,
    std::vector<double> &binDistance,
    const int nr_bins,
    Eigen::VectorXf &shot)
{
  const Eigen::Vector4f& central_point = (*input_)[(*indices_)[index]].getVector4fMap ();
  const PointRFT& current_frame = (*frames_)[index];

  Eigen::Vector4f current_frame_x (current_frame.x_axis[0], current_frame.x_axis[1], current_frame.x_axis[2], 0);
  Eigen::Vector4f current_frame_y (current_frame.y_axis[0], current_frame.y_axis[1], current_frame.y_axis[2], 0);
  Eigen::Vector4f current_frame_z (current_frame.z_axis[0], current_frame.z_axis[1], current_frame.z_axis[2], 0);

  for (size_t i_idx = 0; i_idx < indices.size (); ++i_idx)
  {
    if (!pcl_isfinite(binDistance[i_idx]))
      continue;

    Eigen::Vector4f delta = surface_->points[indices[i_idx]].getVector4fMap () - central_point;
    delta[3] = 0;

    // Compute the Euclidean norm
   double distance = sqrt (sqr_dists[i_idx]);

    if (areEquals (distance, 0.0))
      continue;

    double xInFeatRef = delta.dot (current_frame_x);
    double yInFeatRef = delta.dot (current_frame_y);
    double zInFeatRef = delta.dot (current_frame_z);

    // To avoid numerical problems afterwards
    if (fabs (yInFeatRef) < 1E-30)
      yInFeatRef  = 0;
    if (fabs (xInFeatRef) < 1E-30)
      xInFeatRef  = 0;
    if (fabs (zInFeatRef) < 1E-30)
      zInFeatRef  = 0;


    unsigned char bit4 = ((yInFeatRef > 0) || ((yInFeatRef == 0.0) && (xInFeatRef < 0))) ? 1 : 0;
    unsigned char bit3 = static_cast<unsigned char> (((xInFeatRef > 0) || ((xInFeatRef == 0.0) && (yInFeatRef > 0))) ? !bit4 : bit4);

    assert (bit3 == 0 || bit3 == 1);

    int desc_index = (bit4<<3) + (bit3<<2);

    desc_index = desc_index << 1;

    if ((xInFeatRef * yInFeatRef > 0) || (xInFeatRef == 0.0))
      desc_index += (fabs (xInFeatRef) >= fabs (yInFeatRef)) ? 0 : 4;
    else
      desc_index += (fabs (xInFeatRef) > fabs (yInFeatRef)) ? 4 : 0;

    desc_index += zInFeatRef > 0 ? 1 : 0;

    // 2 RADII
    desc_index += (distance > radius1_2_) ? 2 : 0;

    int step_index = static_cast<int>(floor (binDistance[i_idx] +0.5));
    int volume_index = desc_index * (nr_bins+1);

    //Interpolation on the cosine (adjacent bins in the histogram)
    binDistance[i_idx] -= step_index;
    double intWeight = (1- fabs (binDistance[i_idx]));

    if (binDistance[i_idx] > 0)
      shot[volume_index + ((step_index+1) % nr_bins)] += static_cast<float> (binDistance[i_idx]);
    else
      shot[volume_index + ((step_index - 1 + nr_bins) % nr_bins)] += - static_cast<float> (binDistance[i_idx]);

    //Interpolation on the distance (adjacent husks)

    if (distance > radius1_2_)   //external sphere
    {
      double radiusDistance = (distance - radius3_4_) / radius1_2_;

      if (distance > radius3_4_) //most external sector, votes only for itself
        intWeight += 1 - radiusDistance;  //peso=1-d
      else  //3/4 of radius, votes also for the internal sphere
      {
        intWeight += 1 + radiusDistance;
        shot[(desc_index - 2) * (nr_bins+1) + step_index] -= static_cast<float> (radiusDistance);
      }
    }
    else    //internal sphere
    {
      double radiusDistance = (distance - radius1_4_) / radius1_2_;

      if (distance < radius1_4_) //most internal sector, votes only for itself
        intWeight += 1 + radiusDistance;  //weight=1-d
      else  //3/4 of radius, votes also for the external sphere
      {
        intWeight += 1 - radiusDistance;
        shot[(desc_index + 2) * (nr_bins+1) + step_index] += static_cast<float> (radiusDistance);
      }
    }

    //Interpolation on the inclination (adjacent vertical volumes)
    double inclinationCos = zInFeatRef / distance;
    if (inclinationCos < - 1.0)
      inclinationCos = - 1.0;
    if (inclinationCos > 1.0)
      inclinationCos = 1.0;

    double inclination = acos (inclinationCos);

    assert (inclination >= 0.0 && inclination <= PST_RAD_180);

    if (inclination > PST_RAD_90 || (fabs (inclination - PST_RAD_90) < 1e-30 && zInFeatRef <= 0))
    {
      double inclinationDistance = (inclination - PST_RAD_135) / PST_RAD_90;
      if (inclination > PST_RAD_135)
        intWeight += 1 - inclinationDistance;
      else
      {
        intWeight += 1 + inclinationDistance;
        assert ((desc_index + 1) * (nr_bins+1) + step_index >= 0 && (desc_index + 1) * (nr_bins+1) + step_index < descLength_);
        shot[(desc_index + 1) * (nr_bins+1) + step_index] -= static_cast<float> (inclinationDistance);
      }
    }
    else
    {
      double inclinationDistance = (inclination - PST_RAD_45) / PST_RAD_90;
      if (inclination < PST_RAD_45)
        intWeight += 1 + inclinationDistance;
      else
      {
        intWeight += 1 - inclinationDistance;
        assert ((desc_index - 1) * (nr_bins+1) + step_index >= 0 && (desc_index - 1) * (nr_bins+1) + step_index < descLength_);
        shot[(desc_index - 1) * (nr_bins+1) + step_index] += static_cast<float> (inclinationDistance);
      }
    }

    if (yInFeatRef != 0.0 || xInFeatRef != 0.0)
    {
      //Interpolation on the azimuth (adjacent horizontal volumes)
      double azimuth = atan2 (yInFeatRef, xInFeatRef);

      int sel = desc_index >> 2;
      double angularSectorSpan = PST_RAD_45;
      double angularSectorStart = - PST_RAD_PI_7_8;

      double azimuthDistance = (azimuth - (angularSectorStart + angularSectorSpan*sel)) / angularSectorSpan;

      assert ((azimuthDistance < 0.5 || areEquals (azimuthDistance, 0.5)) && (azimuthDistance > - 0.5 || areEquals (azimuthDistance, - 0.5)));

      azimuthDistance = (std::max)(- 0.5, std::min (azimuthDistance, 0.5));

      if (azimuthDistance > 0)
      {
        intWeight += 1 - azimuthDistance;
        int interp_index = (desc_index + 4) % maxAngularSectors_;
        assert (interp_index * (nr_bins+1) + step_index >= 0 && interp_index * (nr_bins+1) + step_index < descLength_);
        shot[interp_index * (nr_bins+1) + step_index] += static_cast<float> (azimuthDistance);
      }
      else
      {
        int interp_index = (desc_index - 4 + maxAngularSectors_) % maxAngularSectors_;
        assert (interp_index * (nr_bins+1) + step_index >= 0 && interp_index * (nr_bins+1) + step_index < descLength_);
        intWeight += 1 + azimuthDistance;
        shot[interp_index * (nr_bins+1) + step_index] -= static_cast<float> (azimuthDistance);
      }

    }

    assert (volume_index + step_index >= 0 &&  volume_index + step_index < descLength_);
    shot[volume_index + step_index] += static_cast<float> (intWeight);
  }
예제 #28
0
파일: lum.cpp 프로젝트: 2php/pcl
int
main (int argc, char **argv)
{
  double dist = 2.5;
  pcl::console::parse_argument (argc, argv, "-d", dist);

  int iter = 10;
  pcl::console::parse_argument (argc, argv, "-i", iter);

  int lumIter = 1;
  pcl::console::parse_argument (argc, argv, "-l", lumIter);

  double loopDist = 5.0;
  pcl::console::parse_argument (argc, argv, "-D", loopDist);

  int loopCount = 20;
  pcl::console::parse_argument (argc, argv, "-c", loopCount);

  pcl::registration::LUM<PointType> lum;
  lum.setMaxIterations (lumIter);
  lum.setConvergenceThreshold (0.001f);

  std::vector<int> pcd_indices;
  pcd_indices = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");

  CloudVector clouds;
  for (size_t i = 0; i < pcd_indices.size (); i++)
  {
    CloudPtr pc (new Cloud);
    pcl::io::loadPCDFile (argv[pcd_indices[i]], *pc);
    clouds.push_back (CloudPair (argv[pcd_indices[i]], pc));
    std::cout << "loading file: " << argv[pcd_indices[i]] << " size: " << pc->size () << std::endl;
    lum.addPointCloud (clouds[i].second);
  }

  for (int i = 0; i < iter; i++)
  {
    for (size_t i = 1; i < clouds.size (); i++)
      for (size_t j = 0; j < i; j++)
      {
        Eigen::Vector4f ci, cj;
        pcl::compute3DCentroid (*(clouds[i].second), ci);
        pcl::compute3DCentroid (*(clouds[j].second), cj);
        Eigen::Vector4f diff = ci - cj;

        //std::cout << i << " " << j << " " << diff.norm () << std::endl;

        if(diff.norm () < loopDist && (i - j == 1 || i - j > loopCount))
        {
          if(i - j > loopCount)
            std::cout << "add connection between " << i << " (" << clouds[i].first << ") and " << j << " (" << clouds[j].first << ")" << std::endl;
          pcl::registration::CorrespondenceEstimation<PointType, PointType> ce;
          ce.setInputTarget (clouds[i].second);
          ce.setInputSource (clouds[j].second);
          pcl::CorrespondencesPtr corr (new pcl::Correspondences);
          ce.determineCorrespondences (*corr, dist);
          if (corr->size () > 2)
            lum.setCorrespondences (j, i, corr);
        }
      }

    lum.compute ();

    for(size_t i = 0; i < lum.getNumVertices (); i++)
    {
      //std::cout << i << ": " << lum.getTransformation (i) (0, 3) << " " << lum.getTransformation (i) (1, 3) << " " << lum.getTransformation (i) (2, 3) << std::endl;
      clouds[i].second = lum.getTransformedCloud (i);
    }
  }

  for(size_t i = 0; i < lum.getNumVertices (); i++)
  {
    std::string result_filename (clouds[i].first);
    result_filename = result_filename.substr (result_filename.rfind ("/") + 1);
    pcl::io::savePCDFileBinary (result_filename.c_str (), *(clouds[i].second));
    //std::cout << "saving result to " << result_filename << std::endl;
  }

  return 0;
}
예제 #29
0
template <typename PointT, typename PointNT, typename PointFeature> void
pcl::NormalBasedSignatureEstimation<PointT, PointNT, PointFeature>::computeFeature (FeatureCloud &output)
{
  // do a few checks before starting the computations

  PointFeature test_feature;
  (void)test_feature;
  if (N_prime_ * M_prime_ != sizeof (test_feature.values) / sizeof (float))
  {
    PCL_ERROR ("NormalBasedSignatureEstimation: not using the proper signature size: %u vs %u\n", N_prime_ * M_prime_, sizeof (test_feature.values) / sizeof (float));
    return;
  }

  std::vector<int> k_indices;
  std::vector<float> k_sqr_distances;

  tree_->setInputCloud (input_);
  output.points.resize (indices_->size ());

  for (size_t index_i = 0; index_i < indices_->size (); ++index_i)
  {
    size_t point_i = (*indices_)[index_i];
    Eigen::MatrixXf s_matrix (N_, M_);

    Eigen::Vector4f center_point = input_->points[point_i].getVector4fMap ();

    for (size_t k = 0; k < N_; ++k)
    {
      Eigen::VectorXf s_row (M_);

      for (size_t l = 0; l < M_; ++l)
      {
        Eigen::Vector4f normal = normals_->points[point_i].getNormalVector4fMap ();
        Eigen::Vector4f normal_u = Eigen::Vector4f::Zero ();
        Eigen::Vector4f normal_v = Eigen::Vector4f::Zero ();

        if (fabs (normal.x ()) > 0.0001f)
        {
          normal_u.x () = - normal.y () / normal.x ();
          normal_u.y () = 1.0f;
          normal_u.z () = 0.0f;
          normal_u.normalize ();

        }
        else if (fabs (normal.y ()) > 0.0001f)
        {
          normal_u.x () = 1.0f;
          normal_u.y () = - normal.x () / normal.y ();
          normal_u.z () = 0.0f;
          normal_u.normalize ();
        }
        else
        {
          normal_u.x () = 0.0f;
          normal_u.y () = 1.0f;
          normal_u.z () = - normal.y () / normal.z ();
        }
        normal_v = normal.cross3 (normal_u);

        Eigen::Vector4f zeta_point = 2.0f * static_cast<float> (l + 1) * scale_h_ / static_cast<float> (M_) * 
            (cosf (2.0f * static_cast<float> (M_PI) * static_cast<float> ((k + 1) / N_)) * normal_u + 
             sinf (2.0f * static_cast<float> (M_PI) * static_cast<float> ((k + 1) / N_)) * normal_v);

        // Compute normal by using the neighbors
        Eigen::Vector4f zeta_point_plus_center = zeta_point + center_point;
        PointT zeta_point_pcl;
        zeta_point_pcl.x = zeta_point_plus_center.x (); zeta_point_pcl.y = zeta_point_plus_center.y (); zeta_point_pcl.z = zeta_point_plus_center.z ();

        tree_->radiusSearch (zeta_point_pcl, search_radius_, k_indices, k_sqr_distances);

        // Do k nearest search if there are no neighbors nearby
        if (k_indices.size () == 0)
        {
          k_indices.resize (5);
          k_sqr_distances.resize (5);
          tree_->nearestKSearch (zeta_point_pcl, 5, k_indices, k_sqr_distances);
        }
        
        Eigen::Vector4f average_normal = Eigen::Vector4f::Zero ();

        float average_normalization_factor = 0.0f;

        // Normals weighted by 1/squared_distances
        for (size_t nn_i = 0; nn_i < k_indices.size (); ++nn_i)
        {
          if (k_sqr_distances[nn_i] < 1e-7f)
          {
            average_normal = normals_->points[k_indices[nn_i]].getNormalVector4fMap ();
            average_normalization_factor = 1.0f;
            break;
          }
          average_normal += normals_->points[k_indices[nn_i]].getNormalVector4fMap () / k_sqr_distances[nn_i];
          average_normalization_factor += 1.0f / k_sqr_distances[nn_i];
        }
        average_normal /= average_normalization_factor;
        float s = zeta_point.dot (average_normal) / zeta_point.norm ();
        s_row[l] = s;
      }

      // do DCT on the s_matrix row-wise
      Eigen::VectorXf dct_row (M_);
      for (int m = 0; m < s_row.size (); ++m)
      {
        float Xk = 0.0f;
        for (int n = 0; n < s_row.size (); ++n)
          Xk += static_cast<float> (s_row[n] * cos (M_PI / (static_cast<double> (M_ * n) + 0.5) * static_cast<double> (k)));
        dct_row[m] = Xk;
      }
      s_row = dct_row;
      s_matrix.row (k).matrix () = dct_row;
    }

    // do DFT on the s_matrix column-wise
    Eigen::MatrixXf dft_matrix (N_, M_);
    for (size_t column_i = 0; column_i < M_; ++column_i)
    {
      Eigen::VectorXf dft_col (N_);
      for (size_t k = 0; k < N_; ++k)
      {
        float Xk_real = 0.0f, Xk_imag = 0.0f;
        for (size_t n = 0; n < N_; ++n)
        {
          Xk_real += static_cast<float> (s_matrix (n, column_i) * cos (2.0f * M_PI / static_cast<double> (N_ * k * n)));
          Xk_imag += static_cast<float> (s_matrix (n, column_i) * sin (2.0f * M_PI / static_cast<double> (N_ * k * n)));
        }
        dft_col[k] = sqrtf (Xk_real*Xk_real + Xk_imag*Xk_imag);
      }
      dft_matrix.col (column_i).matrix () = dft_col;
    }

    Eigen::MatrixXf final_matrix = dft_matrix.block (0, 0, N_prime_, M_prime_);

    PointFeature feature_point;
    for (size_t i = 0; i < N_prime_; ++i)
      for (size_t j = 0; j < M_prime_; ++j)
        feature_point.values[i*M_prime_ + j] = final_matrix (i, j);

    output.points[index_i] = feature_point;
  }
}
template<template<class > class Distance, typename PointT, typename FeatureT> bool
GlobalNNPipelineROS<Distance,PointT,FeatureT>::classifyROS (classifier_srv_definitions::classify::Request & req, classifier_srv_definitions::classify::Response & response)
    {
        typename pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>());
        pcl::fromROSMsg(req.cloud, *cloud);
        this->input_ = cloud;

        pcl::PointCloud<pcl::PointXYZRGB>::Ptr pClusteredPCl (new pcl::PointCloud<pcl::PointXYZRGB>());
        pcl::copyPointCloud(*cloud, *pClusteredPCl);

        //clear all data from previous visualization steps and publish empty markers/point cloud
        for (size_t i=0; i < markerArray_.markers.size(); i++)
        {
            markerArray_.markers[i].action = visualization_msgs::Marker::DELETE;
        }
        vis_pub_.publish( markerArray_ );
        sensor_msgs::PointCloud2 scenePc2;
        vis_pc_pub_.publish(scenePc2);
        markerArray_.markers.clear();

        for(size_t cluster_id=0; cluster_id < req.clusters_indices.size(); cluster_id++)
        {
          std::vector<int> cluster_indices_int;
          Eigen::Vector4f centroid;
          Eigen::Matrix3f covariance_matrix;

          const float r = std::rand() % 255;
          const float g = std::rand() % 255;
          const float b = std::rand() % 255;

          this->indices_.resize(req.clusters_indices[cluster_id].data.size());
          for(size_t kk=0; kk < req.clusters_indices[cluster_id].data.size(); kk++)
          {
                this->indices_[kk] = static_cast<int>(req.clusters_indices[cluster_id].data[kk]);
                pClusteredPCl->at(req.clusters_indices[cluster_id].data[kk]).r = 0.8*r;
                pClusteredPCl->at(req.clusters_indices[cluster_id].data[kk]).g = 0.8*g;
                pClusteredPCl->at(req.clusters_indices[cluster_id].data[kk]).b = 0.8*b;
          }

          this->classify ();

          std::cout << "for cluster " << cluster_id << " with size " << cluster_indices_int.size() << ", I have following hypotheses: " << std::endl;

          object_perception_msgs::classification class_tmp;
          for(size_t kk=0; kk < this->categories_.size(); kk++)
          {
            std::cout << this->categories_[kk] << " with confidence " << this->confidences_[kk] << std::endl;
            std_msgs::String str_tmp;
            str_tmp.data = this->categories_[kk];
            class_tmp.class_type.push_back(str_tmp);
            class_tmp.confidence.push_back( this->confidences_[kk] );
          }
          response.class_results.push_back(class_tmp);

          typename pcl::PointCloud<PointT>::Ptr pClusterPCl_transformed (new pcl::PointCloud<PointT>());
          pcl::computeMeanAndCovarianceMatrix(*this->input_, cluster_indices_int, covariance_matrix, centroid);
          Eigen::Matrix3f eigvects;
          Eigen::Vector3f eigvals;
          pcl::eigen33(covariance_matrix, eigvects,  eigvals);

          Eigen::Vector3f centroid_transformed = eigvects.transpose() * centroid.topRows(3);

          Eigen::Matrix4f transformation_matrix = Eigen::Matrix4f::Zero(4,4);
          transformation_matrix.block<3,3>(0,0) = eigvects.transpose();
          transformation_matrix.block<3,1>(0,3) = -centroid_transformed;
          transformation_matrix(3,3) = 1;

          pcl::transformPointCloud(*this->input_, cluster_indices_int, *pClusterPCl_transformed, transformation_matrix);

          //pcl::transformPointCloud(*frame_, cluster_indices_int, *frame_eigencoordinates_, eigvects);
          PointT min_pt, max_pt;
          pcl::getMinMax3D(*pClusterPCl_transformed, min_pt, max_pt);
          std::cout << "Elongations along eigenvectors: " << max_pt.x - min_pt.x << ", " << max_pt.y - min_pt.y
                    << ", " << max_pt.z - min_pt.z << std::endl;
          geometry_msgs::Point32 centroid_ros;
          centroid_ros.x = centroid[0];
          centroid_ros.y = centroid[1];
          centroid_ros.z = centroid[2];
          response.centroid.push_back(centroid_ros);

          // calculating the bounding box of the cluster
          Eigen::Vector4f min;
          Eigen::Vector4f max;
          pcl::getMinMax3D (*this->input_, cluster_indices_int, min, max);

          object_perception_msgs::BBox bbox;
          geometry_msgs::Point32 pt;
          pt.x = min[0]; pt.y = min[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = min[0]; pt.y = min[1]; pt.z = max[2]; bbox.point.push_back(pt);
          pt.x = min[0]; pt.y = max[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = min[0]; pt.y = max[1]; pt.z = max[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = min[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = min[1]; pt.z = max[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = max[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = max[1]; pt.z = max[2]; bbox.point.push_back(pt);
          response.bbox.push_back(bbox);

          // getting the point cloud of the cluster
          typename pcl::PointCloud<PointT>::Ptr cluster (new pcl::PointCloud<PointT>);
          pcl::copyPointCloud(*this->input_, cluster_indices_int, *cluster);

          sensor_msgs::PointCloud2  pc2;
          pcl::toROSMsg (*cluster, pc2);
          response.cloud.push_back(pc2);

          // visualize the result as ROS topic
            visualization_msgs::Marker marker;
            marker.header.frame_id = camera_frame_;
            marker.header.stamp = ros::Time::now();
            //marker.header.seq = ++marker_seq_;
            marker.ns = "object_classification";
            marker.id = cluster_id;
            marker.type = visualization_msgs::Marker::TEXT_VIEW_FACING;
            marker.action = visualization_msgs::Marker::ADD;
            marker.pose.position.x = centroid_ros.x;
            marker.pose.position.y = centroid_ros.y - 0.1;
            marker.pose.position.z = centroid_ros.z - 0.1;
            marker.pose.orientation.x = 0;
            marker.pose.orientation.y = 0;
            marker.pose.orientation.z = 0;
            marker.pose.orientation.w = 1.0;
            marker.scale.z = 0.1;
            marker.color.a = 1.0;
            marker.color.r = r/255.f;
            marker.color.g = g/255.f;
            marker.color.b = b/255.f;
            std::stringstream marker_text;
            marker_text.precision(2);
            marker_text << this->categories_[0] << this->confidences_[0];
            marker.text = marker_text.str();
            markerArray_.markers.push_back(marker);
        }

        pcl::toROSMsg (*pClusteredPCl, scenePc2);
        vis_pc_pub_.publish(scenePc2);
        vis_pub_.publish( markerArray_ );

        response.clusters_indices = req.clusters_indices;
        return true;
    }